On the motivic class of the commuting variety

Andrew Morrison
ETH Zürich

In 1960, Walter Feit and Nathan Fine discovered an elegant polynomial formula counting the number of \mathbb{F}_q points on the commuting variety, i.e. pairs of commuting matrices over the finite field \mathbb{F}_q. This formula is in fact valid in the Grothendieck ring of varieties over any base field. We will explain a new geometric proof which leads to several refinements and generalizations of the original result recently used to find the virtual motives of $\text{Hilb}^n(\mathbb{C}^3)$.

Tuesday, May 6
4:00 – 5:00 p.m.
Harvard (SC 507)