Families of foliations
and varieties of complexes

Fernando Cukierman
University of Buenos Aires and CONICET

We consider differential 1-forms on the complex projective space of dimension r, with homogeneous polynomials of degree d as coefficients, and satisfying the Frobenius integrability condition. The set of all such 1-forms is an algebraic variety, denoted $F(r, d)$. One open problem in this area is to find the irreducible components of $F(r, d)$. In the first part of the talk we plan to describe some of the known irreducible components.

Afterwards, we'll discuss a strategy for approaching the problem, via the varieties of complexes. More precisely: let V be a finite dimensional graded vector space and denote by $C(V)$ the corresponding variety of differential complexes, that is, the set of linear endomorphisms of V, of degree one and square zero. We shall review some of the basic geometry of the algebraic variety $C(V)$, including the description of its singular points and irreducible components. Then, we represent $F(r, d)$ as a linear section of a certain $C(V)$, and discuss possible consequences for the problem of enumerating irreducible components of $F(r, d)$, and some generalizations.

Tuesday, April 15
4:30 – 5:30 p.m.
Harvard (SC 507)