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Abstract. We derive integral formulas for the solutions of the Knizhnik-Zamolodchikov
equations in the setting of Deligne Categories.
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1. Introduction

The Knizhnik-Zamolodchikov (KZ) connection is an important object in representation
theory of affine Lie algebras and quantum groups. Namely, for an arbitrary simple Lie
algebra g we may consider a connection ∇𝐾𝑍 on a base space

C𝑟 ∖
⋃︁

1≤𝑖<𝑗≤𝑟

{𝑧 ∈ C𝑟|𝑧𝑖 − 𝑧𝑗} (1.1)

given by

∇𝐾𝑍 = 𝑑− ℏ
∑︁

1≤𝑖<𝑗≤𝑟

𝑑(𝑧𝑖 − 𝑧𝑗)

𝑧𝑖 − 𝑧𝑗
Ω𝑖𝑗, (1.2)

where Ω𝑖𝑗 ∈ 𝑈(g)⊗𝑟 is equal to

Ω𝑖𝑗 =
∑︁

1≤𝑎≤dim(g)

1(1)⊗. . . 1(𝑖−1)⊗𝑒(𝑖)𝑎 ⊗1(𝑖+1)⊗· · ·⊗. . . 1(𝑗−1)⊗𝑒𝑎(𝑗)⊗1(𝑗+1)⊗· · ·⊗1(𝑟) (1.3)

and 𝑒𝑎, 𝑒
𝑎 are dual bases in g. The Knizhnik-Zamolodchikov connection admits an obvious

generalization to the case of general linear groups.

One may consider an analogous vector bundle with the fiber equal to the tensor product
of g modules 𝑉1, . . . , 𝑉𝑟. We may choose a root system and the Cartan subalgebra h for
g. Then since the action of g on 𝑉1 ⊗ · · · ⊗ 𝑉𝑟 commutes with Ω𝑖𝑗 and since the operators
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Ω𝑖𝑗 have weight 0 with respect to g, it makes sense to restrict the connection to a weight
space

𝑉1 ⊗ · · · ⊗ 𝑉𝑟[𝜇] ⊂ 𝑉1 ⊗ · · · ⊗ 𝑉𝑟, 𝜇 ∈ h*. (1.4)
If we slightly deform the KZ connection and look for the flat sections of ∇𝐾𝑍 on (1.4),
one write a system of compatible dynamical equations and integral solutions which satisfy
both the KZ and dynamical equations [6].

The Deligne category Rep(𝐺𝐿𝑡) for a parameter 𝑡 ∈ C is a certain interpolation of
the representation category of the classical algebraic Lie group 𝐺𝐿𝑛 [1]. It is possible to
produce a pencil of KZ connections in the setting of Deligne categories depending on the
parameter 𝑡 [5]. Therefore we may look for the flat sections of the KZ equations in this
case as well. A direct application of the approach in [6] fails since there are no weight
spaces (1.4) in Deligne categories. Nevertheless, it is possible to find a certain (gl𝑡, gl𝑟)-
duality which allows us to write integral formulas for the solutions to the KZ equations
for all non-integer and large enough integer 𝑡.

The paper is structured as follows. Chapter 2 contains preliminaries. In Chapter 3 we
produce the duality under which the KZ connection maps to the dynamical connection on
a certain simple module for the dual general linear algebra. Finally, the integral formulas
for solutions to the dynamical equations from Chapter 3 are presented in Chapter 4.

2. Preliminaries

2.1. Kac-Moody Lie algebras. Suppose we are given an integer square matrix 𝐴 of
size 𝑛 and rank 𝑙, such that

𝑎𝑖𝑖 = 2, 𝑎𝑖𝑗 ≤ 0 if 𝑖 ̸= 𝑗, 𝑎𝑖𝑗 = 0 ⇒ 𝑎𝑗𝑖 = 0. (2.1)

It is called a generalized Cartan matrix. Let h be a vector space of dimension 2𝑛− 𝑙 with
independent simple co-roots Π∨ = {ℎ∨

1 , . . . , ℎ
∨
𝑛} in h and let Π be a set of independent

simple roots {𝛼1, . . . , 𝛼𝑛} in h*, such that

⟨ℎ∨
𝑖 , 𝛼𝑗⟩ = 𝑎𝑖𝑗. (2.2)

Then there exists a Lie algebra g(𝐴) = n−⊕h⊕n+, such that n+ is generated by elements
𝑒1, . . . , 𝑒𝑛 and n− is generated by elements 𝑓1, . . . , 𝑓𝑛 with relations

[𝑒𝑖, 𝑓𝑗] = 𝛿𝑖𝑗ℎ
∨
𝑖 , [ℎ, ℎ′] = 0, [ℎ, 𝑒𝑖] = 𝛼𝑖(ℎ)𝑒𝑖, [ℎ, 𝑓𝑖] = −𝛼𝑖(ℎ)𝑓𝑖 (2.3)

for ℎ, ℎ′ ∈ h and
𝑎𝑑1−𝑎𝑖𝑗

𝑒𝑖
(𝑒𝑗) = 0, 𝑎𝑑

1−𝑎𝑖𝑗
𝑓𝑖

(𝑓𝑗) = 0. (2.4)
Those are called the Chevalley-Serre generators and relations respectively. The con-
structed Lie algebra is called the Kac-Moody Lie algebra associated to the generalized
Cartan matrix 𝐴 [7].

2.2. General linear groups and algebras. The general linear group 𝐺𝐿𝑛(C) is the
group of invertible matrices of size 𝑛 over C. The standard choice of a maximal torus
𝑇𝑛 of 𝐺𝐿𝑛(C) is the subgroup of diagonal matrices and the standard choice of a Borel
subgroup 𝐵𝑛 is the subgroup of upper-triangular matrices. This yields the following
description of the Lie algebra gl𝑛(C) of 𝐺𝐿𝑛(C) and its root system:

gl𝑛(C) = n− ⊕ h⊕ n+, n− = span⟨𝐸𝑖𝑗⟩𝑖>𝑗, n+ = span⟨𝐸𝑖𝑗⟩𝑖<𝑗, h = span⟨𝐸𝑖𝑖⟩, (2.5)

h* = span⟨𝜃𝑖⟩, 𝜃𝑖(𝐸𝑗𝑗) = 𝛿𝑖𝑗, 𝑅 = {𝜃𝑖 − 𝜃𝑗|𝑖 ̸= 𝑗}, 𝑅+ = {𝜃𝑖 − 𝜃𝑗|𝑖 < 𝑗}, (2.6)
Π = {𝜃𝑖 − 𝜃𝑖+1}, Π∨ = {𝐸𝑖,𝑖 − 𝐸𝑖+1,𝑖+1}. (2.7)
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All irreducible representatios of 𝐺𝐿𝑛(C) (or, equivalently, integrable irreducible repre-
sentations of gl𝑛(C)) are parameterized by an 𝑛-tuples of integers (𝜆1, . . . , 𝜆𝑛) such that
𝜆𝑖 ≥ 𝜆𝑖+1. If 𝑉 is the tautological representation of 𝐺𝐿𝑛(C) then any such representation
can be tensored with the one-dimensional representation Λ𝑛𝑉 several times, so that 𝜆
becomes a partition of length not greater than 𝑛. The resulting representation may be
realized via a Schur functor S𝜆 applied to 𝑉 .

2.3. The Deligne category. The Deligne category Rep(𝐺𝐿, 𝑇 ) for a formal variable 𝑇
and a field C of characteristic 0 is the Karoubi closure of the additive closure of the free
rigid monoidal C[𝑇 ]-linear category generated by an object 𝑉 of dimension 𝑇 . For non-
negative integers 𝑛,𝑚 the endomorphism algebra of an object 𝑉 ⊗𝑛 ⊗ 𝑉 *⊗𝑚 is the walled
Brauer algebra 𝐵𝑟𝑛,𝑚(𝑇 ) over C[𝑇 ] [1].

For any element 𝑡 of C we may specialize the category Rep(𝐺𝐿, 𝑇 ) to 𝑇 = 𝑡. The result-
ing C-linear category Rep(𝐺𝐿𝑡) is also usually called a Deligne category [3]. If 𝑡 is not an
integer then Rep(𝐺𝐿𝑡) is abelian and semisimple [1]. For integer 𝑡 it is only Karoubian [1].

Indecomposable objects 𝐿[𝜆,𝜇] of Rep(𝐺𝐿𝑡) are parameterized by bi-partitions (𝜆, 𝜇)

and are obtained by applying appropriate idempotents to 𝑉 ⊗|𝜆| ⊗ 𝑉 *⊗|𝜇|. For any posi-
tive integer 𝑡 the category Rep(𝐺𝐿𝑡) admits a full tensor functor 𝐹 to Rep(𝐺𝐿𝑡) which
sends 𝑉 to the tautological representation of 𝐺𝐿𝑡 and 𝐿[𝜆,𝜇] to the simple representation
in 𝑉 ⊗|𝜆| ⊗ 𝑉 *⊗|𝜇| with the largest (w.r.t. the standard partial order on the root lattice)
highest weight if 𝑙(𝜆) + 𝑙(𝜇) ≤ 𝑡. If 𝑙(𝜆) + 𝑙(𝜇) > 𝑡, then 𝐹 (𝐿[𝜆,𝜇]) = 0.

The group 𝐺𝐿𝑡 is the fundamental group of Rep(𝐺𝐿𝑡) [2, 4]. The Lie algebra gl𝑡 (or
gl(𝑉 )) of 𝐺𝐿𝑡 is

gl𝑡 = 𝑉 ⊗ 𝑉 *. (2.8)

Note that gl𝑡 is an associative algebra via the evaluation map, therefore it is also a Lie
algebra [4].

3. KZ equations and dynamical differential equations

3.1. Knizhnik-Zamolodchikov equations. Consider the category Rep(𝐺𝐿𝑡) for a com-
plex 𝑡. For integer 𝑚,𝑛 ≥ 0 we may consider the Casimir operators

Ω𝑖𝑗 : 𝑉
*⊗𝑛 ⊗ 𝑉 ⊗𝑚 → 𝑉 *⊗𝑛 ⊗ 𝑉 ⊗𝑚, Ω𝑖𝑗 = Ω𝑗𝑖 (3.1)

which act in 𝑖, 𝑗 tensor components via a flip if 𝑖, 𝑗 ≤ 𝑛 or 𝑖, 𝑗 > 𝑛, and via −coev ∘ ev for
other 𝑖, 𝑗. Here ev: 𝑉 ⊗𝑉 * → 1 and coev: 1 → 𝑉 ⊗𝑉 * are the evaluation and coevaluation
maps.

One may write the Knizhnik-Zamolodchikov connection on C𝑚+𝑛 ∖ {diagonals} with
values in HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉

*⊗𝑛 ⊗ 𝑉 ⊗𝑚)

∇𝐾𝑍(ℏ) = 𝑑− ℏ
∑︁
𝑖<𝑗

𝑑𝑧𝑖 − 𝑑𝑧𝑗
𝑧𝑖 − 𝑧𝑗

Ω𝑖𝑗, (3.2)

where the action of Ω𝑖𝑗 on 𝑉 *⊗𝑛 ⊗ 𝑉 ⊗𝑚 is extended to endomorphisms of
HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉

*⊗𝑛 ⊗ 𝑉 ⊗𝑚). We may assume |𝜆|+ 𝑛 = |𝜇|+𝑚, otherwise

HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉
*⊗𝑛 ⊗ 𝑉 ⊗𝑚) = 0 (3.3)
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Example 3.1.1 ([5]). In the case when both 𝜆, 𝜇 = 0 and 𝑚 = 𝑛 we can describe Ω𝑖𝑗

explicitly: note that HomRep(𝐺𝐿𝑡)(1, 𝑉
*⊗𝑚 ⊗ 𝑉 ⊗𝑚) = C[𝑆𝑚], so for 1 ≤ 𝑖 < 𝑗 ≤ 2𝑚 and

𝜎 ∈ 𝑆𝑚 we have

Ω𝑖𝑗𝜎 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑖, 𝑗) ∘ 𝜎, 𝑖, 𝑗 ≤ 𝑚

𝜎 ∘ (𝑖−𝑚, 𝑗 −𝑚), 𝑖, 𝑗 > 𝑚

−𝑡𝜎, 𝜎(𝑗 −𝑚) = 𝑖, 𝑖 ≤ 𝑚 < 𝑗

−(𝑖, 𝜎(𝑗 −𝑚)) ∘ 𝜎, 𝜎(𝑗 −𝑚) ̸= 𝑖, 𝑖 ≤ 𝑚 < 𝑗

(3.4)

Since the vector space of homomorphisms HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉
*⊗𝑛⊗𝑉 ⊗𝑚) has the same

dimension for all non-integer and all large enough integer 𝑡 = dim𝑉 , it is sufficient for us
to consider the setup for gl𝑡, 𝑡 ∈ N - for large 𝑡 we have an isomorphism

𝐹 : HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉
*⊗𝑛 ⊗ 𝑉 ⊗𝑚)

∼−→ Homgl𝑡(𝑉𝜆,𝜇, 𝑉
*⊗𝑛 ⊗ 𝑉 ⊗𝑚). (3.5)

Where 𝑉𝜆,𝜇 is the irreducible representation of gl𝑡 weight
(𝜆1, 𝜆2, . . . , 0, . . . , 0, . . . ,−𝜇2,−𝜇1), (3.6)

where the first coordinates are the coordinates of 𝜆, the last coordinates are the coordi-
nates of −𝜇 and the coordinates in between are all zeros.

For large positive integer 𝑡 we have
Homgl𝑡(𝑉𝜆,𝜇, 𝑉

*⊗𝑛 ⊗ 𝑉 ⊗𝑚) ∼= Homgl𝑡(𝑉𝜆,𝜇 ⊗ (Λ𝑡𝑉 )⊗𝑛, (Λ𝑡−1𝑉 )⊗𝑛 ⊗ 𝑉 ⊗𝑚). (3.7)

3.2. (gl𝑡, gl𝑚+𝑛) duality. Let 𝑡 be a positive integer and gl𝑡 the corresponding general
linear Lie algebra. In this section we derive a duality between the KZ equations for gl𝑡
and dynamical differential equations for gl𝑚+𝑛, via the joint action of gl𝑡 and gl𝑚+𝑛 on
the space Λ∙(𝑉 ⊗𝑊 ), where 𝑉,𝑊 are the tautological representations for gl𝑡 and gl𝑚+𝑛

respectively. The derivation is similar to [11].

The space in (3.7) can be given the structure of a weight space of a gl(𝑛+𝑚) module.
Namely, consider the space Λ∙(𝑉 ⊗𝑊 ), which inherits the action of gl(𝑉 )⊕ gl(𝑊 ). The
skew-Howe duality states that as a gl(𝑉 )⊕ gl(𝑊 )-module

Λ∙(𝑉 ⊗𝑊 ) =
⨁︁

𝛿, 𝑙(𝛿)≤𝑡,𝑙(𝛿⊤)≤𝑚+𝑛

𝑉𝛿 ⊗𝑊𝛿⊤ , (3.8)

where 𝑉𝛿,𝑊𝛿⊤ are the irreducible representations of gl(𝑉 ) and gl(𝑊 ) of weights 𝛿 and
𝛿⊤ respectively. The sum is over all partitions 𝛿 satisfying the written conditions. Also,
given a choice of basis for 𝑊 , we have an embedding (Λ𝑡−1𝑉 )⊗𝑛 ⊗ 𝑉 ⊗𝑚 →˓ Λ∙(𝑉 ⊗𝑊 ),
whose image is the subspace of gl(𝑛+𝑚) weight

𝛽 := (𝑡− 1, . . . , 𝑡− 1⏟  ⏞  
𝑛 times

, 1, . . . , 1⏟  ⏞  
𝑚 times

). (3.9)

Therefore, if 𝜇1 ≤ 𝑛, 𝜆1 ≤ 𝑚 (otherwise the space (3.7) is 0) we have an embedding

Homgl𝑡(𝑉𝜆,𝜇 ⊗ (Λ𝑡𝑉 )⊗𝑛,(Λ𝑡−1𝑉 )⊗𝑛 ⊗ 𝑉 ⊗𝑚)

→˓ Homgl𝑡(𝑉𝜆,𝜇 ⊗ (Λ𝑡𝑉 )⊗𝑛,Λ∙(𝑉 ⊗𝑊 )) ∼= 𝑊𝛾⊤ , (3.10)

with 𝑊𝛾⊤ [𝛽] being the image of the embedding. Here 𝛾 is the highest weight of the
gl𝑡-module 𝑉𝜆,𝜇 ⊗ (Λ𝑡𝑉 )⊗𝑛,

𝛾 := (𝑛+ 𝜆1, 𝑛+ 𝜆2, . . . , 𝑛− 𝜇2, 𝑛− 𝜇1⏟  ⏞  
𝑡 entries

). (3.11)

The upshot is that we will identify the space HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉
*⊗𝑛 ⊗ 𝑉 ⊗𝑚) with the

weight space 𝑊𝛾⊤ [𝛽] (Notice that the transpose 𝛾⊤ can be interpolated to generic 𝑡;
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Lemma 3.2.3 will extend the isomorphism to generic 𝑡).

Let us take a basis 𝑥𝑎,𝑖, 1 ≤ 𝑎 ≤ 𝑡, 1 ≤ 𝑖 ≤ 𝑚+𝑛 of 𝑉 ⊗𝑊 . As a gl𝑡-module, the space
Λ∙(𝑉 ⊗𝑊 ) is isomorphic to

Λ∙[𝑥1,1, . . . , 𝑥𝑡,1]⊗ · · · ⊗ Λ∙[𝑥1,𝑛+𝑚, . . . , 𝑥𝑡,𝑛+𝑚]. (3.12)
The gl𝑡 Casimir operators Ω𝑖𝑗 (as in (3.1)) act on this space as

Ω𝑖𝑗 =
∑︁
𝑎

(𝑒𝑎)(𝑖)(𝑒
𝑎)(𝑗) (3.13)

where {𝑒𝑎}, {𝑒𝑎} are dual bases of gl𝑡, and the outside subscripts (𝑖) indicate action on
the 𝑖-th factor of the tensor product. Meanwhile, as a gl𝑚+𝑛-module, we have action by
the operators 𝜅𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑚+ 𝑛, 𝑖 ̸= 𝑗 defined by

𝜅𝑖𝑗 := 𝑒𝛼𝑒−𝛼 + 𝑒−𝛼𝑒𝛼 (3.14)
where 𝛼 is the root 𝜃𝑖 − 𝜃𝑗 of gl𝑚+𝑛 and 𝑒±𝛼 are the corresponding root vectors from
g𝛼 ⊂ gl𝑚+𝑛 normalized by Tr(𝑒𝛼𝑒−𝛼) = 1.

Let 𝐸𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑚+ 𝑛, be the standard basis of gl𝑚+𝑛.

Lemma 3.2.1. For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚+ 𝑛, the equality

2Ω𝑖𝑗 = −𝜅𝑖𝑗 + 𝐸𝑖𝑖 + 𝐸𝑗𝑗 (3.15)
holds as operators on Λ∙(𝑉 ⊗𝑊 ).

Proof. The action of Ω̃𝑖𝑗 on Λ∙(𝑉 ⊗𝑊 ) can be written as∑︁
1≤𝑎,𝑏≤𝑡

𝑥𝑎,𝑖𝜕𝑏,𝑖𝑥𝑏,𝑗𝜕𝑎,𝑗 (3.16)

where 𝑥𝑟,𝑐 and 𝜕𝑟,𝑐 are the operators of multiplication and differentiation by 𝑥𝑟,𝑐 (with
appropriate powers of −1). Similarly, the action of 𝜅𝑖𝑗 is∑︁

1≤𝑎,𝑏≤𝑡

𝑥𝑎,𝑖𝜕𝑎,𝑗𝑥𝑏,𝑗𝜕𝑏,𝑖 + 𝑥𝑏,𝑗𝜕𝑏,𝑖𝑥𝑎,𝑖𝜕𝑎,𝑗. (3.17)

In view of the anticommutation relation 𝑥𝑎,𝑖𝜕𝑏,𝑗 + 𝑥𝑏,𝑗𝜕𝑎,𝑖 = 𝛿𝑎,𝑏𝛿𝑖,𝑗, we have

𝜅𝑖𝑗 =
∑︁

1≤𝑎,𝑏≤𝑡

𝑥𝑎,𝑖(−𝑥𝑏,𝑗𝜕𝑎,𝑗 + 𝛿𝑎,𝑏)𝜕𝑏,𝑖 + 𝑥𝑏,𝑗(−𝑥𝑎,𝑖𝜕𝑏,𝑖 + 𝛿𝑎,𝑏)𝜕𝑎,𝑗 (3.18)

= −2Ω𝑖𝑗 +
∑︁
1≤𝑎≤𝑡

(𝑥𝑎,𝑖𝜕𝑎,𝑖 + 𝑥𝑎,𝑗𝜕𝑎,𝑗) = −2Ω𝑖𝑗 + 𝐸𝑖𝑖 + 𝐸𝑗𝑗 (3.19)

as desired. □

Let 𝑀𝛼,𝛽 be the subspace of Λ∙(𝑉 ⊗𝑊 ) with gl𝑡-weight 𝛼 and gl𝑚+𝑛-weight 𝛽. As a
consequence of the above lemma, we have the following theorem.

Theorem 3.2.2. A function 𝑓 : {(𝑧1, · · · , 𝑧𝑚+𝑛) ∈ C𝑚+𝑛 | 𝑧𝑖 ̸= 𝑧𝑗} → 𝑀𝜆,𝜇 is a flat
section of the KZ connection

∇𝐾𝑍 = 𝑑− ℏ
∑︁

1≤𝑖<𝑗≤𝑚+𝑛

𝑑𝑧𝑖 − 𝑑𝑧𝑗
𝑧𝑖 − 𝑧𝑗

Ω𝑖𝑗 (3.20)

if and only if the function 𝑔 = 𝑓 ·
∏︀

1≤𝑖<𝑗≤𝑚+𝑛(𝑧𝑖 − 𝑧𝑗)
−(𝛽𝑖+𝛽𝑗)ℏ/2 is a flat section of the

connection
∇𝜅 := 𝑑+

ℏ
2

∑︁
1≤𝑖<𝑗≤𝑚+𝑛

𝑑𝑧𝑖 − 𝑑𝑧𝑗
𝑧𝑖 − 𝑧𝑗

𝜅𝑖𝑗. (3.21)
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Additionally, by using the gauge transformation ∇𝜅 → ℎ∇𝜅ℎ
−1 where

ℎ = exp

(︃
ℏ
2

∑︁
1≤𝑖<𝑗≤𝑚+𝑛

(𝛽𝑖 − 𝛽𝑗) log(𝑧𝑖 − 𝑧𝑗)

)︃
(3.22)

we can change the ∇𝜅 connection to the dynamical connection ∇𝐷 as in [6]:

∇𝐷 = 𝑑+ ℏ
∑︁

1≤𝑖<𝑗≤𝑚+𝑛

𝑑𝑧𝑖 − 𝑑𝑧𝑗
𝑧𝑖 − 𝑧𝑗

𝑒−𝛼𝑒𝛼 (3.23)

Proof. A straightforward computation. For the second part, note that

𝑒𝛼𝑒−𝛼 + 𝑒−𝛼𝑒𝛼 = 2𝑒−𝛼𝑒𝛼 + ℎ∨
𝛼 (3.24)

and ℎ∨
𝛼 acts on 𝑀𝛼,𝛽 by 𝛽𝑖 − 𝛽𝑗, where 𝛼 = 𝜃𝑖 − 𝜃𝑗. □

We also need the following lemma.

Lemma 3.2.3. For all non-integer and large enough integer 𝑡 we have an isomorphism

𝜑 := HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉
*⊗𝑛 ⊗ 𝑉 ⊗𝑚) ∼= 𝐿𝛾⊤ [𝛽], (3.25)

where 𝐿𝛾⊤ is the unique irreducible gl𝑚+𝑛-module of the highest weight 𝛾⊤.

Proof. Note that for the specified 𝑡 the dimension of the LHS is the same as the dimension
of the same space for some large enough integer 𝑡. The dimension of the RHS is constant
for the aforementioned 𝑡 due to the BGG resolution.

For the choice of the LHS basis let us consider a projection

𝜋 : HomRep(𝐺𝐿𝑡)(𝑉
⊗|𝜆| ⊗ 𝑉 *⊗|𝜇|, 𝑉 *⊗𝑛 ⊗ 𝑉 ⊗𝑚) ↠ HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉

*⊗𝑛 ⊗ 𝑉 ⊗𝑚) (3.26)

and let us fix a set 𝐵 from the spanning set of (𝑤,𝑤′)−diagrams from the bigger space
as in [1] for 𝑡 from a Zariski open set 𝑈 ⊂ C such that the projection of 𝐵 is a basis.

Let us fix a basis of the corresponding weight space from the PBW-spanning set on
the RHS. Note that the relations on the PBW vectors from the RHS are independent
on 𝑡. Indeed, otherwise it would mean that we have a singular vector above 𝛽 in the
Verma module 𝑀𝛾⊤ whose coefficients necessarily depend on 𝑡. This in turn would imply
the same fact for all large integer 𝑡, but with this assumption all the relations on the
PBW vectors are independent on 𝑡 due to the consideration of the embedding below. In
particular, it is clear that if a subset from the set of spanning PBW vectors is a basis
for some 𝑡 as in the lemma, then it will also be a basis for the same weight space for all
non-integer or large enough integer 𝑡 because the weights of the singular vectors of the
corresponding Verma module sitting above 𝛽 are all the same for such 𝑡.

For a large integer 𝑡 we may associate the space (3.7) with the space of gl(𝑉 ) highest
weight vectors of the gl(𝑉 ) ⊕ gl(𝑊 )-weight (𝛾, 𝛽) in Λ∙(𝑉 ⊗ 𝑊 ). We may embed both
spaces for a large integer 𝑡 into the (𝛾, 𝛽)-weight space of Λ∙(𝑉 ⊗𝑊 ). In turn, it can be
viewed as the space

Λ𝛾1𝑊 ⊗ · · · ⊗ Λ𝛾𝑡𝑊 [𝛽]. (3.27)
The highest weight vector of Λ𝛾1𝑊 ⊗ · · · ⊗ Λ𝛾𝑡𝑊 is already gl(𝑉 )-singular when it is
embedded back into Λ∙(𝑉 ⊗𝑊 ), so if we want to get the image of LHS/RHS in (3.27), it
is sufficient for us to apply chains of gl(𝑊 ) lowering operators to this vector, so that we
arrive in the correct weight space 𝛽. The space in (3.27) has a basis

𝑤𝐼 = 𝑓𝑖11 . . . 𝑓𝑖1𝑠1𝑤1 ⊗ · · · ⊗ 𝑓𝑖𝑡1 . . . 𝑓𝑖𝑡𝑠𝑡𝑤𝑡, (3.28)
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where 𝑤𝑖 are the highest weight vectors in Λ𝛾𝑖𝑊 and

wt(𝑓𝑖11 . . . 𝑓𝑖1𝑠1 . . . 𝑓𝑖𝑡1 . . . 𝑓𝑖𝑡𝑠𝑡 ) = 𝛾⊤ − 𝛽. (3.29)

The coefficients in terms of (3.28) of the basis from the LHS will be rational in 𝑡 and
the coefficients of the basis from the RHS will be constant. We want to produce the
matrix of the basis change from RHS to the LHS. However, when 𝑡 → +∞ the image of
the LHS/RHS spaces lies in the subspace of a fixed (independent on 𝑡) finite dimension:

Λ𝛾1𝑊 ⊗ · · ·Λ𝛾|𝜆|𝑊 ⊗ (Λ𝑛𝑊 ⊗ · · · ⊗ Λ𝑛𝑊 )𝑆𝑡−|𝜆|−|𝜇| ⊗ Λ𝑡−|𝜇|+1𝑊 ⊗ · · · ⊗ Λ𝑡𝑊 [𝛽], (3.30)

where 𝑆𝑡−|𝜆|−|𝜇| acts by permutations of the tensor factors. Therefore, the matrix of the
basis change has fixed rational coefficients in 𝑡 and we can identify the spaces from (3.25)
for 𝑡 ∈ 𝑈 .

To describe the isomorphism for all non-integer and all large enough integer 𝑡 we may
simply choose a different set 𝐵′ instead of 𝐵 with the new supporting set 𝑈 ′ for 𝑡′. It is
clear that the isomorphisms agree over the intersection 𝑈 ∩ 𝑈 ′. □

We have the following consequence of this lemma.

Theorem 3.2.4. The isomorphism 𝜑 in (3.25) identifies the dynamical connection on
𝐿𝛾⊤ [𝛽] and the KZ connection on HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉

*⊗𝑛 ⊗ 𝑉 ⊗𝑚). In particular, if

𝑓 : {(𝑧1, · · · , 𝑧𝑚+𝑛) ∈ C𝑚+𝑛 | 𝑧𝑖 ̸= 𝑧𝑗} → 𝐿𝛾⊤ [𝛽] (3.31)

is a flat section of the dynamical connection, then∏︁
1≤𝑖<𝑗≤𝑚+𝑛

(𝑧𝑖 − 𝑧𝑗)
−(𝛽𝑖+𝛽𝑗)ℏ/2 · ℎ · 𝜑−1(𝑓) =

∏︁
1≤𝑖<𝑗≤𝑚+𝑛

(𝑧𝑖 − 𝑧𝑗)
−𝛽𝑗ℏ · 𝜑−1(𝑓) (3.32)

is a flat section of ∇𝐾𝑍.

Proof. Since we know that 𝑒−𝛼𝑒𝛼 act as truncated Casimirs on 𝐿𝛾⊤ [𝛽] for all sufficiently
large integers 𝑡 and this action is polynomial in 𝑡 (in terms of a PBW basis), it follows
that 𝑒−𝛼𝑒𝛼 will still act as truncated Casimirs for all non-integer and large enough integer
𝑡. □

4. Solutions to dynamical differential equations

4.1. Integral formulas. Due to Theorem 3.2.2 it suffices to find flat sections of the
dynamical connection (3.23) for the Lie algebra gl𝑛+𝑚 and the weight space 𝐿𝛾⊤ [𝛽]. Ex-
plicitly, we are looking for solutions 𝑢 : {(𝑧1, . . . , 𝑧𝑚+𝑛) ∈ C𝑚+𝑛 | 𝑧𝑖 ̸= 𝑧𝑗} → 𝐿𝛾⊤ [𝛽] to
the equations

𝑑𝑢 = −ℏ
∑︁

1≤𝑖<𝑗≤𝑛+𝑚

𝑑𝑧𝑖 − 𝑑𝑧𝑗
𝑧𝑖 − 𝑧𝑗

𝑒−𝛼𝑒𝛼𝑢 (4.1)

where 𝛼 is the root 𝜃𝑖−𝜃𝑗 of gl𝑛+𝑚 and 𝑒±𝛼 are the corresponding normalized root vectors.

From [6] we have integral solutions to these equations, which we will now describe. Let
𝑓𝑖 = 𝐸𝑖,𝑖+1 ∈ gl𝑛+𝑚 for 1 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1 be the standard lowering operators; associ-
ated with them are the simple roots 𝛼𝑖 = 𝜃𝑖 − 𝜃𝑖+1. Write 𝛾⊤ − 𝛽 as a sum of simple
roots 𝜆 =

∑︀𝑛+𝑚−1
𝑖=1 𝑚𝑖𝛼𝑖 for some 𝑚𝑖 ∈ Z≥0 (note that 𝛾⊤ − 𝛽 stabilizes for generic 𝑡,

so the 𝑚𝑖 do too). Let 𝑚 =
∑︀𝑛+𝑚−1

𝑖=1 𝑚𝑖, and let 𝑐 be the unique non-decreasing func-
tion from {1, . . . ,𝑚} → {1, . . . , 𝑛+𝑚−1} such that |𝑐−1(𝑖)| = 𝑚𝑖 for all 1 ≤ 𝑖 ≤ 𝑛+𝑚−1.

For permutations 𝜎 ∈ 𝑆𝑚 define the differential 𝑚-form 𝜔𝜎 = 𝑑 log(𝑡𝜎(1) − 𝑡𝜎(2)) ∧ · · · ∧
𝑑 log(𝑡𝜎(𝑚−1)− 𝑡𝜎(𝑚))∧𝑑 log(𝑡𝜎(𝑚)); also define the operator 𝑓𝑐(𝜎)𝑣 := 𝑓𝑐(𝜎(1)) · · · 𝑓𝑐(𝜎(𝑚)) Let
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𝑣 denote the highest weight vector in 𝐿𝛾⊤ . The 𝐿𝛾⊤ [𝛽]-valued differential 𝑚-form 𝜔 is
defined as

𝜔(𝑡1, . . . , 𝑡𝑚) =
∑︁
𝜎∈Σ𝑚

(−1)|𝜎|𝜔𝜎𝑓𝑐(𝜎)𝑣. (4.2)

Theorem 4.1.1. Let us fix an ordering 𝑙 : {1, . . . ,𝑚} → {1, . . . ,𝑚} of the set {1, . . . ,𝑚}.
The sections of the form

𝑢𝑙 :=

∫︁
Γ𝑙

exp

(︃
ℏ

𝑚∑︁
𝑖=1

(︀
𝑧𝑐(𝑖) − 𝑧𝑐(𝑖)+1

)︀
𝑡𝑖

)︃
Φ−ℏ𝜔 (4.3)

span the space of solutions of the dynamical equations in 𝐿𝛾⊤ [𝛽]. Here Γ𝑙 is a cycle given
by the picture below.

0

𝑡𝑙−1(1)

. . .

𝑡𝑙−1(𝑚)

Pic. 1. Integration contours for Γ𝑙.
Φ is the master function

Φ(𝑡1, . . . , 𝑡𝑚) :=
∏︁

1≤𝑖≤𝑚

𝑡
−(𝛼𝑐(𝑖),𝛾

⊤)

𝑖

∏︁
𝑖<𝑗

(𝑡𝑖 − 𝑡𝑗)
(𝛼𝑐(𝑖),𝛼𝑐(𝑗)) (4.4)

and 𝜔 is a 𝐿𝛾⊤ [𝛽]-valued differential 𝑚-form which has the combinatorial description
(4.2). The integrals converge in the region ℜ(ℏ(𝑧𝑖 − 𝑧𝑖+1)) < 0.

Proof. From [6] we know that the sections

𝑢(𝑧1, . . . , 𝑧𝑚+𝑛, 𝑥) :=

∫︁
Γ

exp

(︃
ℏ

(︃
𝑚∑︁
𝑖=1

(︀
𝑧𝑐(𝑖) − 𝑧𝑐(𝑖)+1

)︀
𝑡𝑖 − ⟨𝛾⊤, 𝑧⟩𝑥

)︃)︃
Φ̃−ℏ(𝑥)𝜔(𝑡, 𝑥) (4.5)

for any appropriate cycle Γ satisfy both the trivial Knizhnik-Zamolodchikov connection
(on the single variable 𝑥)

𝑑

𝑑𝑥
+ ℏ𝑧 (4.6)

where we view 𝑧 = (𝑧1, . . . , 𝑧𝑚+𝑛) as an element of the standard Cartan subalgebra of
gl𝑚+𝑛 and the dynamical equations for

∇′
𝐷 := 𝑑𝑧 + ℏ

(︃
𝑚+𝑛∑︁
𝑖=1

𝛽𝑖𝑥𝑑𝑧𝑖 +
∑︁

1≤𝑖<𝑗≤𝑚+𝑛

𝑑𝑧𝑖 − 𝑑𝑧𝑗
𝑧𝑖 − 𝑧𝑗

𝑒−𝛼𝑒𝛼

)︃
. (4.7)

Here we have
Φ̃(𝑥) :=

∏︁
1≤𝑖≤𝑚

(𝑡𝑖 − 𝑥)−(𝛼𝑐(𝑖),𝛾
⊤)
∏︁
𝑖<𝑗

(𝑡𝑖 − 𝑡𝑗)
(𝛼𝑐(𝑖),𝛼𝑐(𝑗)) (4.8)

and 𝜔(𝑡, 𝑥) is as in (4.2) but with 𝜔𝜎 replaced by

𝜔𝜎(𝑡, 𝑥) := 𝑑 log(𝑡𝜎(1)− 𝑡𝜎(2))∧· · ·∧𝑑 log(𝑡𝜎(𝑚−1)− 𝑡𝜎(𝑚))∧𝑑 log(𝑡𝜎(𝑚)−𝑥), 𝑑 = 𝑑𝑡. (4.9)

If we assume that |𝑥| is sufficiently small and make a suitable linear change of variables
for 𝑡𝑖 we may expand the solutions in 𝑥. From the form of the (4.7) we deduce that the
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first term of this expansion, i.e. (4.3), is a flat section for ∇𝐷.

The sections 𝑢𝑙 in (4.3) span the space of flat sections of ∇𝐷. Indeed, consider a limit
ℏ = 𝜖, 𝑧𝑖 = 𝑧′𝑖/𝜖, 𝜖 → 0 so that ℜ(𝑧′𝑖 − 𝑧′𝑖+1) < 0. By deforming the contours of integration
we may assume that both “tails” of each individual contour are close to the real line.

0 Re𝑡𝑙−1(1)

. . .
𝑡𝑙−1(𝑚)

Pic. 2. Deformation of the cycle Γ𝑙.

We may note that the integral 𝑢𝑙(𝑧
′
𝑖, 𝜖) converges absolutely in 𝜖, so it is entire in 𝜖 and

we may consider 𝑢𝑙(𝑧
′
𝑖, 0). Assume for simplicity that we are working with only one term

𝜔𝜎 of 𝜔. When we let 𝜖 = 0 the function under the integral (4.3) becomes entire on
C𝑚 ∖ (

⋃︀
𝑖<𝑗{𝑡𝑖 = 𝑡𝑗}∪

⋃︀
𝑖{𝑡𝑖 = 0}). If we look at the function 𝑢𝑙(𝑧

′
𝑖, 0) without the integral

over 𝑡𝑙−1(1), the resulting function 𝑓1(𝑡𝑙−1(1), 𝑧
′
𝑖) is meromorphic in 𝑡𝑙−1(1) with the only pole

at 𝑡𝑙−1(1) = 0. Therefore, if we perform the missing integration in 𝑡𝑙−1(1) and pinch two
tails of integration from 𝑎+ 𝑖0+ to +∞+ 𝑖0+ and back from +∞− 𝑖0+ to 𝑎− 𝑖0+ where
𝑎 ∈ R>0 they will cancel each other out. Thus the resulting integral computes the residue
of 𝑓1(𝑡𝑙−1(1), 𝑧

′
𝑖) at 𝑡𝑙−1(1) = 0. If 𝜔𝜎 does not have a pole at 𝑡𝑙−1(1) = 0 the integral is zero.

This argument shows that we may algebraically compute the residue of a function

exp (
𝑚∑︁
𝑖=1

(𝑧′𝑐(𝑖) − 𝑧′𝑐(𝑖)+1)𝑡𝑖)
1

(𝑡𝜎(1) − 𝑡𝜎(2))(𝑡𝜎(2) − 𝑡𝜎(3)) . . . (𝑡𝜎(𝑚−1) − 𝑡𝜎(𝑚))𝑡𝜎(𝑚)

(4.10)

at 𝑡𝑙−1(1) = 0 and then perform the other 𝑚 − 1 integrations. Then we can consider the
same argument for the next variable 𝑡𝑙−1(2). This time the function will look differently,
namely we’ll have (assume 𝜎(𝑚) = 𝑙−1(1))

(−2𝜋𝑖) · exp (
𝑚∑︁

𝑖=1,𝑖 ̸=𝑙−1(1)

(𝑧′𝑐(𝑖) − 𝑧′𝑐(𝑖)+1)𝑡𝑖)[
1

(𝑡𝜎(1) − 𝑡𝜎(2))(𝑡𝜎(2) − 𝑡𝜎(3)) . . . 𝑡𝜎(𝑚−1)

− (4.11)

−(𝑧′𝑐(𝑚) − 𝑧′𝑐(𝑚)+1)
1

(𝑡𝜎(1) − 𝑡𝜎(2))(𝑡𝜎(2) − 𝑡𝜎(3)) . . . (𝑡𝜎(𝑚−2) − 𝑡𝜎(𝑚−1))
], (4.12)

but the last term does not contribute to the integral, because the degree of the denomi-
nator is smaller than the number of integrations. If we compute the integral over the last
term by the trick above, eventually we will have a function without any poles in some
variable 𝑡𝑖 which will give us 0 after the integration.

From this we see that∫︁
Γ𝑙

exp (
𝑚∑︁

𝑖=1,𝑖 ̸=𝑙−1(1)

(𝑧′𝑐(𝑖) − 𝑧′𝑐(𝑖)+1)𝑡𝑖)𝜔𝜎 = (−2𝜋𝑖)𝑚𝛿𝜎,𝑙−1∘𝑤, (4.13)

where 𝑤(𝑖) = 𝑚+ 1− 𝑖, 1 ≤ 𝑖 ≤ 𝑚. Then we have

𝑢𝑙(𝑧
′
𝑖, 0) =

∫︁
Γ𝑙

∑︁
𝜎∈𝑆𝑚

𝜔𝜎𝑓𝑐(𝜎)𝑣 = (−2𝜋𝑖)𝑚𝑓𝑐(𝑙−1∘𝑤)𝑣. (4.14)

The vectors 𝑓𝑐(𝜎)𝑣 span 𝐿𝛾⊤ [𝛽], so the solutions (4.3) span the space of all solutions in
𝐿𝛾⊤ [𝛽]. □
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Remark 4.1.2. For large integer 𝑡 there is a natural embedding 𝜙 : 𝐿𝛾⊤ → Λ𝛾1𝑊 ⊗
· · ·⊗Λ𝛾𝑡𝑊 which sends the highest-weight vector of 𝐿𝛾⊤ to the product of highest-weight
vectors. One might also try to write solutions for large integer 𝑡 using Theorem 3.1 in
[6] on the gl𝑛+𝑚 weight space (Λ𝛾1𝑊 ⊗ · · · ⊗ Λ𝛾𝑡𝑊 ) [𝛽]. However, we can show that the
solutions obtained in this way actually lie in the image of 𝜙, and are in fact the same
as the solutions obtained in Theorem 4.1.1. Explicitly, the “new” solutions are described
as follows: let 𝑃 be the set of sequences 𝜎 = (𝑖11, . . . , 𝑖

1
𝑠1
; . . . ; 𝑖𝑡1, . . . , 𝑖

𝑡
𝑠𝑡) consisting of the

numbers 1, . . . ,𝑚 arranged into 𝑡 rows. For each such sequence, define the differential form
𝜔𝜎 = 𝜔𝑖11,...,𝑖

1
𝑠1
∧· · ·∧𝜔𝑖𝑡1,...,𝑖

𝑡
𝑠𝑡

where 𝜔𝑖1,...,𝑖𝑠 := 𝑑 log(𝑡𝑖1−𝑡𝑖2)∧· · ·∧𝑑 log(𝑡𝑖𝑠−1−𝑡𝑖𝑠)∧𝑑 log(𝑡𝑖𝑠).
Also define the vector 𝑓𝜎𝑣 := 𝑓𝑐(𝑖11) · · · 𝑓𝑐(𝑖1𝑠1 )𝑣1 ⊗ · · · ⊗ 𝑓𝑐(𝑖𝑡1) · · · 𝑓𝑐(𝑖𝑡𝑠𝑡 )𝑣𝑡 where 𝑣𝑗 is the
highest-weight vector in Λ𝛾𝑗𝑊 . Then the “new” solutions are given by

𝑢𝑙 =

∫︁
Γ𝑙

exp

(︃
ℏ

𝑚∑︁
𝑖=1

(︀
𝑧𝑐(𝑖) − 𝑧𝑐(𝑖)+1

)︀
𝑡𝑖

)︃
Φ−ℏ𝜔̃ (4.15)

where
𝜔̃ :=

∑︁
𝜎∈𝑃

(−1)|𝜎|𝜔𝜎𝑓𝜎𝑣. (4.16)

By repeatedly using Lemma 7.4.4 from [10] and the formula for the action of a Lie algebra
g on a tensor product of g-modules we can re-arrange terms in (4.15). This way we can
see that the solutions (4.15) are the same as (4.3).

Example 4.1.3. As in Example 3.1.1, consider the case when 𝜆, 𝜇 = 0 and 𝑚 = 𝑛 so we
have HomRep(𝐺𝐿𝑡)(1, 𝑉

*⊗𝑚 ⊗ 𝑉 ⊗𝑚) ∼= C[𝑆𝑚]. This is also identified with the gl2𝑚-weight
space 𝐿𝛾⊤ [𝛽] where

𝛾⊤ = (𝑡, . . . , 𝑡⏟  ⏞  
𝑚 times

, 0, . . . , 0⏟  ⏞  
𝑚 times

). (4.17)

The difference 𝛾⊤ − 𝛽 is written as the sum of simple roots
∑︀2𝑚−1

𝑖=1 𝑚𝑖𝛼𝑖 where 𝑚𝑖 =
𝑚− |𝑚− 𝑖|, so our solutions involve 𝑚 = 𝑚2 integrations.

4.2. Bethe ansatz. The problem of the Bethe ansatz is to simultaneously diagonalize
the Gaudin operators 𝐻𝑖 =

∑︀
𝑗 ̸=𝑖 Ω𝑖𝑗/(𝑧𝑖 − 𝑧𝑗) which appear on the right hand side of the

KZ equations. We can obtain such eigenvectors from KZ solutions by taking the limit
ℏ → 0. Explicitly, if the spectrum of 𝐻𝑖 is simple, the Bethe vectors for 𝐻𝑖 acting on
the RHS of (3.2.3) can be extracted from KZ solutions (4.3) by using WKB method. For
that we would need to find all the critical points of the function

exp

(︃
ℏ

𝑚∑︁
𝑖=1

(𝑧𝑐(𝑖) − 𝑧𝑐(𝑖)+1)𝑡𝑖

)︃
Φ−ℏ (4.18)

However, it turns out that this function has many critical points which are difficult to
analyze.

Nevertheless, we may still prove that the spectrum is indeed simple.

Proposition 4.2.1. The common spectrum of the Gaudin hamiltonians 𝐻𝑖 on

HomRep(𝐺𝐿𝑡)(𝑉𝜆,𝜇, 𝑉
*⊗𝑛 ⊗ 𝑉 ⊗𝑚) (4.19)

is simple for generic 𝑡, 𝑧𝑖.

Proof. The simplicity of the spectrum is a Zariski open condition on parameters 𝑡, 𝑧𝑖, so
it is sufficient for us to prove it for a special 𝑡 and generic 𝑧𝑖. The latter can be proved
by taking a sufficiently large integer 𝑡. In this case we have isomorphisms (3.5), (3.7)
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and (3.25), so the space (4.19) can be identified with the space Sing(Λ∙(𝑉 ⊗𝑊 )𝛾,𝛽) of
all gl(𝑉 )-singular vectors of gl(𝑉 ) ⊕ gl(𝑊 ) weight space (𝛾, 𝛽) in Λ∙(𝑉 ⊗ 𝑊 ). How-
ever, from [8] we know that Gaudin hamiltonians 𝐻𝑖 separate the Bethe vectors basis in
Sing(Λ∙(𝑉 ⊗𝑊 )𝛾,𝛽), thus we have the proposition. □

Appendix A. Hypergeometric solutions for 𝜆, 𝜇 = 0 and 𝑚 = 𝑛 = 2

In this appendix we will describe explicit solutions in terms of hypergeometric functions
for the special case when 𝜆, 𝜇 = 0 and 𝑚 = 𝑛 = 2. In this case we are working in
the space HomRep(𝐺𝐿𝑡)(1, 𝑉

*⊗2 ⊗ 𝑉 ⊗2) ∼= C[𝑆2], and the Casimirs Ω𝑖𝑗 act as in (3.4).
Then letting 𝑒, (12) be the two permutations in C[𝑆2] we can express a KZ section as
𝜑(𝑧1, 𝑧2, 𝑧3, 𝑧4) = 𝑓(𝑧1, 𝑧2, 𝑧3, 𝑧4) · 𝑒+ 𝑔(𝑧1, 𝑧2, 𝑧3, 𝑧4) · (12), and the KZ equations read{︃
ℏ−1𝜕1𝑓 = 𝑔

𝑧12
− 𝑡𝑓+𝑔

𝑧13

ℏ−1𝜕1𝑔 = 𝑓
𝑧12

− 𝑓+𝑡𝑔
𝑧14

and symm. eqs. for 𝑧𝑖 ↦→ 𝑧𝜋(𝑖), 𝜋 ∈ {(12)(34), (13)(24), (14)(23)}

(A.1)

where for brevity we denote 𝑧𝑖𝑗 := 𝑧𝑖 − 𝑧𝑗 and 𝜕𝑖 := 𝜕𝑧𝑖 . Also, denote Δ := 𝑡ℏ. Then it is
straightforward to check that the equations (A.1) are solved by

𝑓(𝑧1, 𝑧2, 𝑧3, 𝑧4) =
𝐴(𝑧1, 𝑧2, 𝑧3, 𝑧4)

𝑧Δ13𝑧
Δ
24

(A.2)

𝑔(𝑧1, 𝑧2, 𝑧3, 𝑧4) =
𝐵(𝑧1, 𝑧2, 𝑧3, 𝑧4)

𝑧Δ14𝑧
Δ
23

. (A.3)

where 𝐴,𝐵 are functions depending on two parameters 𝑐1, 𝑐2 ∈ C:

𝐴 :=

(︂
𝑧14𝑧32
𝑧12𝑧34

)︂1−Δ

2𝐹1

(︂
1− ℏ−Δ, 1 + ℏ−Δ; 2−Δ,

𝑧14𝑧32
𝑧12𝑧34

)︂
𝑐1

+ 2𝐹1

(︂
−ℏ, ℏ; Δ,

𝑧14𝑧32
𝑧12𝑧34

)︂
𝑐2

𝐵 := ℏ−1𝑧Δ14𝑧
Δ−1
23 𝑧−Δ+1

13 𝑧−Δ
24 𝑧12(𝜕1𝐴).

Note that these solutions involve one integration (in the hypergeometric functions), as
opposed to four integrations we would get in our general solutions (see Example 4.1.3).
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