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1 Introduction

Simply stated, we would like to classify all embedded submanifolds Σ1 ⊂ R2

without boundary whose Gaussian length is critical with respect to all compactly
supported variations that preserve the enclosed Gaussian area. For a fixed
enclosed Gaussian area, it is known that the Gaussian length is minimized by
lines Σ, as stated more generally in [MR15]. This work also extends the known
fact originally due to Abresch and Langer [AL86] that the only closed embedded
shrinkers of the mean curvature flow in R2 are isometric to S1√

2
. The sub-

manifolds, Σ, of interest, naturally admit descriptions in term of geometric
differential equations, and we study their immersed solutions R → R2 more
generally (cf. [AL86]’s classification of closed immersed plane shrinkers). In
particular, Σ will obey an inhomogeneous shrinker equation:

H =
1

2
⟨x,n⟩+ CΣ

where CΣ is a constant depending on Σ and the choice of an orientation n.
Of course the case CΣ = 0 will recover the shrinker equation governing plane
shrinkers. Our two main results are:

Theorem 1. All such Σ are either lines or strictly convex, in which case they
admit an orientation n so that H > 0. Then if CΣ ≥ 0 it follows that Σ = S1

R

for some 0 < R ≤
√
2.

Remark 2. The condition CΣ > 0 when H > 0 in the previous theorem is
equivalent to the assertion that any compactly supported variation that locally
increases the enclosed Gaussian area also locally increases the Gaussian length.
See Equation 1 in the next section.

Theorem 3. All such Σ are either lines, S1
R for R > 0, or belong in a moduli

space Emdn of such Σ with n-fold rotational symmetry around the origin for
n > 1. Then the following is known about Emdn:
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1. Let ∼ denote the equivalence relation associated to rotation about the ori-
gin and let (RΣ, rΣ) be (maxx∈Σ |x|,minx∈Σ |x|). Then Emdn / ∼ is a
smooth connected 1-dimensional family which may be uniquely parameter-
ized by |RΣ − rΣ| ∈ (0,∞).

2. One boundary limit in the natural Gromov-Hausdorff sense is S1√
2(n2−1)

,

that is, for the doubly induced Hausdorff distance, d, on sets of subsets of
R2:

lim
|RΣ−rΣ|→0

d

(
Emdn
∼

,

{
S1√

2(n2−1)

})
= 0

3. Let N,R denote the set of regular N -gons inscribed in S1
R. Then in the

other direction we have Gromov-Hausdorff covergence:

lim
|RΣ−rΣ|→∞

d

(
Emdn
∼

, n,|RΣ|

)
= 0

Taken together, these results show that the rigidity theorem for proper em-
bedded shrinkers only extends naturally when a non-negativity condition is
enforced. In the absence of such a condition, we can find families of such Σ that
vary between circles and regular n-gons centered at the origin for every n > 1.

To prove these theorems we adopt what is for the most part a local Euclidean
geometric perspective to the issue of analyzing Σ. To that end, the outline of
the paper goes as follows:

• In Section 2 we first obtain the differential equations governing such Σ
locally.

• In Section 3 we classify the oriented immersed Σ ⊂ R2 without boundary
(and thus often improper) that satisfy these equations everywhere, noting
that setting {RΣ, rΣ} = {maxx∈Σ⟨x,n⟩,minx∈Σ⟨x,n⟩} gives a convenient
parameterization.

• In Section 4 we prove Theorem 1 on the backs of the new classification
using the Tait-Kneser Theorem. Then the problem reduces to proving
a certain 2 real variable inequality which we handle through the use of
convexity.

• In Section 5 we continue in the same setting and lay some of the ground-
work for Theorem 3 by bounding various Euclidean geometric quantities
related to Σ, a key one of which measures the “distance” of Σ from being
polygonal.

• In Section 6 we take a decidedly different tack and use a more geometric
analytic approach to control the behavior of Σ when it is close to a circle.

• In Section 7 we finally perform the proof of Theorem 3, using the fruits of
the previous two sections in addition to some more 2 real variable analysis
facilitated by convexity much like in the proof of Theorem 1.
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2 Defining Equations

Let n be the outwardly pointing normal for Σ. Any compactly supported tan-
gent variation will preserve Σ, and hence the Gaussian length and enclosed
Gaussian area. So we may assume F is a normal variation on Σ. Then we may
define ft : Σ → R so that Ft|Σ = ftn.

Following the computation in Lemma 3.3.2 of [CM24], by Lemma 3.2.1 of
[CM24],

∂tds = ftH ds,

while on the other hand,

∂te
− x2

4 = −1

2
ft⟨x,n⟩e−

x2

4 ,

and therefore the rate of change of the Gaussian length under the variation at
Σ is given by

Lt =

∫
Σ

ft

(
H − 1

2
⟨x,n⟩

)
e−

|x|2
4 ds.

Meanwhile, the rate of change of the enclosed Gaussian area under the variation
at Σ is just

At =

∫
Σ

fte
− |x|2

4 ds.
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Hence it is an equivalent problem to classify all embedded Σ1 ⊂ R2 such
that there is a constant CΣ satisfying

Lt = CΣAt ⇐⇒ (1)

CΣ = H − 1

2
⟨x,n⟩. (2)

Alternatively, given a local parameterization in s, we have that equivalently,

Hs =

(
1

2
⟨x,n⟩

)
s

=
1

2
⟨xs,n⟩+

1

2
⟨x,ns⟩ =

1

2
⟨x, xs⟩⟨xs,ns⟩ =

(
|x|2

4

)
s

H,

and thus there is a constant EΣ satisfying

EΣ = He−
|x|2
4 . (3)

Remark 4. Equation 3 seems to have been first noted for plane shrinkers in
[CM12] Remark 10.47.

3 The Oriented Immersed Σ

So from now on suppose Σ is an oriented, immersed, possibly improper, solution
of Equation 1 without boundary. We first resolve the case of EΣ = 0 separately:

Lemma 5. The only such Σ with EΣ = 0 are exactly the lines.

Proof. By Equation 3, H = 0, and so Σ is a line, and the reverse implication
holds as well.

Thus henceforth we will assume that EΣ ̸= 0 and therefore Σ is strictly
convex by Equation 3. As we shall see, Σ is also then necessarily bounded,
offering a means of classification:

Theorem 6. Suppose Σ is not a line. Then Σ resembles a hypotrochoid; in
particular there exists a bijection between equivalence classes of Σ up to rotation,
and pairs {(rΣ, RΣ) : |rΣ| < |RΣ|, rΣ +RΣ ̸= 0} so that all of the following hold
for x ∈ Σ:

• r2Σ ≤ |x|2 ≤ R2
Σ, with both bounds obtained and no other critical values.

• min(rΣ, RΣ) ≤ ⟨x,n⟩ ≤ max(rΣ, RΣ) with both bounds obtained exactly at
critical points for |x|2and no other critical values.

• If rΣ ̸= RΣ then

(EΣ, CΣ) =

1

2

RΣ − rΣ

e
R2

Σ
4 − e

r2
Σ
4

,−1

2

RΣe
−R2

Σ
4 − rΣe

− r2Σ
4

e−
R2

Σ
4 − e−

r2
Σ
4

 ,

and otherwise if rΣ = RΣ = R, then

(EΣ, CΣ) =

(
1

R
e−

R2

4 ,
1

R
− R

2

)
.
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• If rΣ ̸= RΣ and U is a closed connected subset of Σ containing critical
points at the boundaries and nowhere else, then the length of the image of
U under the Gauss map Σ → S1 is the half-period

TΣ :=

∣∣∣∣∣∣∣∣
∫ RΣ

rΣ

1√
4 log

(
u
2 +CΣ

EΣ

)
− u2

du

∣∣∣∣∣∣∣∣ < π

• Σ is preserved under reflections connecting critical points to the origin.

• Σ is preserved under rotations of 2TΣ around the origin.

• Σ is smooth.

and we shall take these properties as definitions for rΣ and RΣ.

Proof. Let θ : Σ → R be a lift of the Gauss map Σ → S1 under an isometric
covering R → S1. Since H does not vanish, θ is an injection. Therefore there
exists a mapping θ 7→ ⟨x,n⟩ and moreover this map can be explicitly written
out via integration. Indeed, using the definitions of EΣ and CΣ, it satisfies the
(effectively) separable differential equation (here J is the action of rotation by
π
2 in a direction agreeing with the covering R → S1):

⟨x,n⟩θ = ⟨x, J(n)⟩ = sgn(⟨x, xθ⟩)
√

|x|2 − ⟨x,n⟩2

= sgn((|x|2)θ)

√
4 log

( 1
2 ⟨x,n⟩+ CΣ

EΣ

)
− ⟨x,n⟩2.

In the opposite direction, any solution of this equation satisfies EΣe
|x|2
4 =

1
2 ⟨x,n⟩ + CΣ, and thus upon taking derivatives and using the calculation in

Equation 3 we have EΣe
|x|2
4 = H whenever (|x|2)θ ̸= 0, so any Σ obtained

from θ 7→ ⟨x,n⟩ is a solution except perhaps at critical points of |x|2, which is
sufficient to conclude that Σ is a true solution if also given that these critical
points are isolated.

Accordingly, let f : V ⊂ R3 → R be given by

f(u,C,E) = 4 log

( 1
2u+ C

E

)
− u2. (4)

so that f(⟨x,n⟩, CΣ, EΣ) = ⟨x,n⟩2θ for all (x,Σ) with x ∈ Σ. Then

fuu = − 1

( 12u+ C)2
− 2 < 0,

so it follows that since there in fact exists u so that f(u,CΣ, EΣ) ≥ 0, there
moreover exists a unique pair of possibly non-distinct zeroes, {rΣ, RΣ} with
|rΣ| ≤ |RΣ|, of u 7→ f(u,CΣ, EΣ), and ⟨x,n⟩ always lies between them.
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In fact, for every choice of (a, b) such that a + b ̸= 0 and |a| ≤ |b|, there
exists unique CΣ and EΣ so that (rΣ, RΣ) = (a, b). This results from solving
the system of equations

e
r2Σ
4 EΣ − CΣ =

1

2
rΣ

e
R2

Σ
4 EΣ − CΣ =

1

2
RΣ,

which has a unique solution when |rΣ| ≠ |RΣ|, and when rΣ = RΣ, we may take
an appropriate limit via replacing one of the equations with its derivative as so,

e
r2Σ
4 EΣ − CΣ =

1

2
rΣ

rΣ
2
e

r2Σ
4 EΣ =

1

2
,

giving solutions as long as rΣ ̸= 0.
If |rΣ| = |RΣ| = R, then from f(rΣ, CΣ, EΣ) = f(RΣ, CΣ, EΣ) we get rΣ =

RΣ, so evidently ⟨x,n⟩ = rΣ = RΣ always, and therefore 0 =
(
|x|2
)
θ
always,

which is enough to conclude that Σ must be a circle centered at the origin with
radius R and orientation chosen appropriately to agree with signs. It can then be

checked that this gives a solution with CΣ = ±
(
1
R − R

2

)
and EΣ = ±

(
1
Re−

R2

4

)
that corresponds with rΣ = RΣ = ±R.

Otherwise, it follows from Picard–Lindelöf that on any open interval con-
taining no critical points for |x|2 and hence, f(⟨x,n⟩, CΣ, EΣ) > 0, the mapping
θ 7→ ⟨x,n⟩ is uniquely determined by an initial value. Indeed, the length of a
maximal such interval, U , is also uniquely determined via the formula

TΣ :=

∫
U

dθ = sgn(RΣ − rΣ)

∫ RΣ

rΣ

1√
4 log

(
u
2 +CΣ

EΣ

)
− u2

du

obtained by simple integration. In particular, 4 log
(

u
2 +CΣ

EΣ

)
as a function of u

is concave down and intersects the function u2 when u ∈ {rΣ, RΣ}. Therefore,

TΣ < sgn(RΣ − rΣ)

∫ RΣ

rΣ

1√
(RΣ − u)(u− rΣ)

du = π,

which shows that U is finite.
On these maximal intervals θ 7→ ⟨x,n⟩ is uniquely determined up to a re-

flection in θ depending on whether |x|2 is decreasing or increasing. In turn it
follows that |x|2 attains a global minimum of |rΣ|2 and a global maximum of
|RΣ|2. We have that the critical points of |x|2 are also isolated; as otherwise
it follows that some circle is a solution which in turn uniquely determines CΣ

and EΣ that we know must result in rΣ = RΣ. Hence, given the location of any
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critical point, θ 7→ ⟨x,n⟩ is uniquely given by stitching the maps obtained on
each interval, U , between critical points.

This then determines a unique Σ where θ 7→ x can be explictly written
in terms of θ 7→ ⟨x,n⟩ as x = ⟨x,n⟩n + (⟨x,n⟩)θJ(n). Hence, by leaving the
location of any critical point unspecified, Σ will be unique up to rotation around
the origin, and moreover from the structure of θ 7→ ⟨x,n⟩, Σ is preserved under
rotation by 2TΣ and reflection over any line through the origin and a critical
point. That Σ is smooth is automatic.

Lemma 7. A bounded, non-circular immersed solution Σ gives rise to an em-
bedded solution if and only if TΣ|π and rΣRΣ > 0.

Proof. The preceding theorem shows that Σ is the union of rotations and re-
flections of pieces which we will refer to as half-periods of Σ. The condition
that rΣRΣ > 0 is the same as specifying that ⟨x,n⟩ ≠ 0 for all x ∈ Σ, which
is equivalet to stating that each half-period lies in the “polar rectangle” with
opposite vertices as endpoints. This is a necessary condition for embedded-ness
as any intersection of the half-period with the interior of the radial side of the
rectangle will also be present in an adjacent half-period via the reflection prop-
erty. Once this is satisfied, embeddedness corresponds to the perfect overlap of
the polar rectangles, which occurs exactly when TΣ|π.

4 The Non-Negative Embedded Σ

We are now able to prove to attack Theorem 1. For this section and the one that
follows, consider a half-period of Σ, i.e., a connected subset of Σ with no critical
points in the interior and bounded by a global minimum and maximum for |x|
labeled x− and x+ respectively. The following lemma serves as the geometric
basis for the proof that follows:

Lemma 8. Suppose that x− is a local minimum for curvature on a curve. Then
the osculating circle to the curve at x− contains any neighboring local maximum
for curvature, x+.

Proof. Note that the curvature is increasing in the direction from x− to x+.
Therefore, the Tait-Kneser Theorem applies and shows that this segment of the
curve lies entirely inside the osculating circle at x0.

We now present the main proof.

Proof of Theorem 1. It is clear that Σ may be any line. So suppose that oriented
Σ is embedded and not a line, while EΣCΣ ≥ 0. The work mainly consists in
showing Σ must be a circle.

By the Four Vertex Theorem, ∠(x−, x+) ≤ π
2 . Lemma 8 also applies to show

that x+ must lie inside the osculating circle at x−. Equivalently,

|x+ − x− +H−1
x−

nx− |2 ≤ H−2
x−

.
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Equation 3 shows that critical points of H correspond to critical points of
|x|, so we may apply Theorem 6 to obtain that, x− = rΣnx− , and |x+| = |RΣ|.
Then it is straightforward to compute:

H2
x−

≥ |x+ − x− +H−1
x−

nx− |2

= R2
Σ + (H−1

x−
− rΣ)

2 − 2(H−1
x−

− rΣ)⟨x+, x−⟩
≥ R2

Σ + r2Σ − 2rΣH
−1
x−

+H−2
x−

and hence r2Σ +R2
Σ ≤ 2rΣH

−1
x−

.

We will now show that in fact 1
4

(
r2Σ +R2

Σ

)
≥ 1

2rΣH
−1
x−

, so equality must
hold, which in fact occurs only when RΣ = rΣ.

Using equations 2 & 3, we see that

1

2
rΣH

−1
x−

= (Hx− − CΣ)H
−1
x−

= 1− CΣ

EΣ
e−

r2Σ
4 ≤ 1,

where we now employ the fact EΣCΣ ≥ 0. So let this quantity be a. Further
expansion using Theorem 6 shows that at least while rΣ ̸= RΣ,

a = 1− CΣ

EΣ
e−

r2Σ
4 = 1−

RΣe
r2Σ
4 − rΣe

R2
Σ
4

RΣ − rΣ

 e−
r2Σ
4 =

e
R2

Σ−r2Σ
4 − 1

RΣ

rΣ
− 1

.

As r2Σ + R2
Σ > 0, we must have a > 0 as well, which in particular forces rΣ

and RΣ to have the same sign. Then we may treat R2
Σ as a variable, u, in the

expression to get:

R2
Σ − r2Σ
4

= ln

(
|RΣ|+

(
1

a
− 1

)
|rΣ|

)
+ ln

(
a

|rΣ|

)
=⇒

∫ R2
Σ

r2Σ

1

4
du =

∫ R2
Σ

r2Σ

1

2
√
u
(√

u+
(
1
a − 1

)
|rΣ|

) du
But now since a < 1, we can check that the map f(u) = [2(u+

(
1
a − 1

)
|rΣ|

√
u)]−1

satisfies both f ′ < 0 and f ′′ > 0. Hence we can bound the RHS as follows:∫ R2
Σ

r2Σ

f
(
r2Σ
)
du ≥

∫ R2
Σ

r2Σ

f(u)du =

∫ R2
Σ

r2Σ

f(u) + f(r2Σ +R2
Σ − u)

2
du ≥

∫ R2
Σ

r2Σ

f

(
r2Σ +R2

Σ

2

)
du.

Thus,

f
(
r2Σ
)
≥ 1

4
≥ f

(
r2Σ +R2

Σ

2

)
.

The first inequality results in r2Σ ≤ 2a, which in turn implies f(2a) ≥ 1
4 , and

now since f ′ < 0, the second inequality combines to show r2Σ +R2
Σ ≥ 4a. Recall

that we originally showed the opposite inequality. Hence equality must hold,
but this only occurs when rΣ = RΣ, so Σ must be a circle as wanted.

Now by 6, any circle centered at the origin with positive radius R is a
solution, and we only need to check those that satisfy EΣCΣ ≥ 0. But this is
equivalent to 1

R − R
2 ≥ 0 or R ≤

√
2 as desired.
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5 The Half-Periods Σ

By Theorem 6, we already have that embedded solutions resemble hypotro-
choids. Hence embedded solutions can be described as looking like something
between a regular polygon and a perfect circle, and we can put a quantity to
this by defining

gΣ := |rΣ −RΣ cos(TΣ)|,

which we will refer to as the gap. It is equivalent to the length of the projection
of a half-period of Σ onto the line through the origin with given direction nx−

as can be seen from the computation∣∣x+

x−
⟨x,nx−⟩ = ⟨x+,nx−⟩ − ⟨x−,nx−⟩ = RΣ⟨nx+

,nx−⟩ − rΣ = RΣ cos(TΣ)− rΣ.

In particular, if Σ is embedded then the distance in the Gromov-Hausdorff sense
between Σ and the union of line segments joining neighboring points on Σ with
maximal distance to the origin is given by gΣ. As such, gΣ both gives another
descriptive quantity, and another way of accessing the crucial TΣ for determining
embeddedness according to Lemma 7.

Somewhat surprisingly, it is possible to derive an equivalent local condition
on Σ in terms of Euclidean geometric quantities, as opposed to say Gaussian
ones. For now, let θ be a Gauss map parameterization, s be an arclength
parameterization agreeing with the direction of θ, and α : R2 \ {0} → R a
winding map again with the appropriate direction. Then we can make the
following calculation:

Lemma 9. Working locally we see that the polar area under any connected
subset of the curve can be rewritten as:∫

1

2
|x|2 dα =

∫
1

2
⟨x,n⟩ds =

∫
(H − CΣ)ds =

∫
1dθ − CΣ

∫
1ds.

First we notice that a simple lower bound for TΣ obtains:

Lemma 10.
cos(TΣ) ≤

rΣ
RΣ

Proof. This follows from convexity as the half-period lies entirely to one side of
the tangent line to Σ at x−, and the fact that H and RΣ share the same sign
(check the formula for EΣ in Theorem 6). Thus:

cos(TΣ) = ⟨nx+ ,nx−⟩ =
⟨x+,nx−⟩

RΣ
≤

⟨x−,nx−⟩
RΣ

=
rΣ
RΣ

We will show later on that this bounds doubles as a good estimate for TΣ.
In order to do that, we will need to obtain upper bounds on gΣ.
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The idea here will be to take a half-period of Σ, and split it into two parts.
Set the splitting point, xd, to be distance d away from the origin. As a matter
of convenience we will assume that rΣRΣ > 0 so that Σ has a well-defined polar
parameterization, though such an assumption should be able to be dropped with
some adjustments to the arguments without affecting the order of the bounds
subsequently obtained. Then we have that:

gΣ =
∣∣∣∣∣x+

x−
⟨x,nx−⟩

∣∣∣ = ∣∣∣∣∣xd

x−
⟨x,nx−⟩

∣∣∣+ ∣∣∣∣∣x+

xd
⟨x,nx−⟩

∣∣∣
and we bound each term separately. In particular, we set ourselves up to be in
a position to be able to take advantage of Lemma 9.

We observe two essentially visual facts to directly relate the quantities in
Lemma 9.

Lemma 11. ∣∣∣∣∣xd

x−
⟨x,nx−⟩

∣∣∣ ≤ sin
(∣∣∣∣∣xd

x−
θ
∣∣∣) ∣∣∣∣∣xd

x−
s
∣∣∣∣∣∣∣∣x+

xd
⟨x,nx−⟩

∣∣∣ ≤ sin
(∣∣∣∣∣x+

xd
θ
∣∣∣) ∣∣∣∣∣x+

xd
s
∣∣∣∣∣∣∣∣xd

x−
s
∣∣∣ ≤ d− |rΣ|+ d

∣∣∣∣∣xd

x−
α
∣∣∣∣∣∣∣∣x+

xd
s
∣∣∣ ≤ |RΣ| − d+ |RΣ|

∣∣∣∣∣x+

xd
α
∣∣∣

Proof. For the first two inequalities, notice that∣∣∣∣∣∣I⟨x,nx−⟩
∣∣∣∣ = ∣∣∣∣∫

I

sin(∠(n,nx−))ds

∣∣∣∣ = ∣∣∣∣∫
I

sin(∠(n,nx−))ds

∣∣∣∣
≤ max

I
| sin(∠(n,nx−))| ·

∣∣∣∣∣∣Is∣∣∣∣
and the referenced angle is the same as the displacement in θ from x−. It
is therefore maximized at the end of the interval farthest x− which suffices.
For the last two inequalities, note that locally in polar coordinates we have
ds ≤ dr+r dα and since θ and α are monotonic, this inequality can be weakened
with r ≤ maxI r and then integrated over I to obtain the desired result.

So now we derive the following (fairly ugly) upper bound for gΣ:

Lemma 12. Assume rΣRΣ ≥ 0. Then for any d ∈ (
√
rΣRΣ, RΣ):

gΣ ≤ (π + 1)2d2
∣∣∣∣12RΣ + CΣ

∣∣∣∣ e d2−R2
Σ

4 +
2π|RΣ|+ d2(|RΣ| − d)

|RΣ(RΣ − rΣ)| − 2|RΣ|(|RΣ| − d)

Proof. It is easiest to bound the first term. We only need that since TΣ < π, the
same holds for any displacements of α or θ, in combination with the previous
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lemma: ∣∣∣∣∣xd

x−
s
∣∣∣ ≤ d− |rΣ|+ d

∣∣∣∣∣xd

x−
α
∣∣∣ ≤ (π + 1)d∣∣∣∣∣xd

x−
θ
∣∣∣ = ∣∣∣∣∫

I

H ds

∣∣∣∣ ≤ |Hxd
| ·
∣∣∣∣∣xd

x−
s
∣∣∣ = ∣∣Hx+

∣∣ e d2−R2
Σ

4 ·
∣∣∣∣∣xd

x−
s
∣∣∣

=⇒
∣∣∣∣∣xd

x−
⟨x,nx−⟩

∣∣∣ ≤ ∣∣Hx+

∣∣ e d2−R2
Σ

4 ·
∣∣∣∣∣xd

x−
s
∣∣∣2 ≤

∣∣∣∣12RΣ + CΣ

∣∣∣∣ e d2−R2
Σ

4 · (π + 1)2d2

The last term is the trickier one, and for which we introduced Lemma 9. From
the formula for CΣ in Theorem 6, it is not too hard to check that CΣ ≥ − rΣ

2 .
It is also true from our choices of them that s and θ are either both increasing
or decreasing so we conclude from Lemma 9 that:

1

2
d2
∣∣∣∣∣x+

xd
α
∣∣∣ = ∣∣∣∣∫

I

1

2
|x|2 dα

∣∣∣∣ = ∣∣∣∣∣∣∣∣x+

xd
θ
∣∣∣− CΣ

∣∣∣∣∣x+

xd
s
∣∣∣∣∣∣

≤ π +
|rΣ|
2

(
|RΣ| − d+ |RΣ|

∣∣∣∣∣x+

xd
α
∣∣∣)

=⇒
∣∣∣∣∣x+

xd
α
∣∣∣ ≤ 2π + |rΣ|(|RΣ| − d)

d2 − rΣRΣ

=⇒
∣∣∣∣∣x+

xd
s
∣∣∣ ≤ 2π|RΣ|+ d2(|RΣ| − d)

d2 − rΣRΣ
≤ 2π|RΣ|+ |RΣ|(R2

Σ − d2)

|RΣ(RΣ − rΣ)| − (R2
Σ − d2)

=⇒
∣∣∣∣∣x+

xd
⟨x,n|x|=rΣ⟩

∣∣∣ ≤ 2πRΣ + d2(RΣ − d)

|RΣ(RΣ − rΣ)| − 2|RΣ|(|RΣ| − d)
,

where we obtain the bound on
∣∣∣∣∣x+

xd
s
∣∣∣ by substituting the just obtained bound

on
∣∣∣∣∣x+

xd
α
∣∣∣ into the first equality.

Now, we do have to be careful about estimating CΣ, but these estimates are
enough to almost establish the desired limits. In good times the first and third
terms will be negligible while the middle term will act as proxy for cos−1( rΣ

RΣ
),

enabling us with good upper and lower bounds (indeed, the middle term can
be lower bounded using the same techniques though its not necessary for the
current argumentation) that let us establish the result. In bad times however,
RΣ − rΣ is “small” and we are unable to ignore the first and last terms. For
that case we will need a separate set of bounds.

This bound will be more useful in the following form:

Corollary 13. Suppose rΣRΣ > 0 and |RΣ − rΣ| is not too small in the sense

that |RΣ−rΣ||RΣ|
log |RΣ| is bounded below by some K0 ∈ R>0. Then there exists B,K ∈

R>0 such that for |RΣ| ≥ B,

gΣ ≤ K
log |RΣ|
|RΣ − rΣ|

Proof. Notice that according to the formula for CΣ in Theorem 6, CΣ = o(RΣ).

Then pick d so that |RΣ| − d ∼ 12 log |RΣ|
|RΣ| in the previous lemma and again

perform the asymptotic calculations.
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6 The Round Σ

We will now study the map θ 7→ H as the basis for identifying possible Σ. Here
we take advantage of H’s designation as the shape operator ; we have a bijection
between the equivalence classes of maps θ 7→ H under isometries of the domain
(R1) and the equivalence classes of strictly convex oriented Σ under isometries
of R2.

Let L be the linear operator defined by f
L7→ f + fθθ. We see that Σ+ v is a

solution to

H − 1

2
⟨x,n⟩ = CΣ +

1

2
⟨v,n⟩,

and in particular the set of functions { 1
2 ⟨v,n⟩ : CΣ ∈ R, v ∈ R2} is precisely the

kernel of L. Hence we are looking for those maps θ → H that satisfy

L(H) =
1

2
L(⟨x,n⟩) + CΣ

In particular we have the following important identity:

⟨x,n⟩+ ⟨x,n⟩θθ = ⟨x,n⟩+ (⟨xθ,n⟩)θ + (⟨x,nθ⟩)θ = ⟨x,n⟩+ (⟨x, J(n)⟩)θ

= ⟨x,n⟩+ ⟨xθ, J(n)⟩ − ⟨x,n⟩ = ⟨xθ,nθ⟩ =
1

H

=⇒ L(⟨x,n⟩) = 1

H

Therefore it obtains that an equivalent formulation is

Hθθ =
1

2H
−H + CΣ (5)

=⇒ Hθθθ = −
[
1 +

1

2H2

]
Hθ (6)

Thus we have derived a constant free ordinary differential equation which char-
acterizes all and only those immersed oriented solutions up to translation.

In the last section we found a bound for gΣ when |RΣ − rΣ| isn’t very small.
We now show that a different method gives decent bounds on TΣ when the other
fails. Indeed, we will use it to show that the limit of TΣ as RΣ − rΣ → 0 always
exists and compute its value. More precisely:

Lemma 14.

π√
1 + 1

2( 1
2 rΣ+CΣ)2

≤ TΣ ≤ π√
1 + 1

2( 1
2RΣ+CΣ)2

Corollary 15.

TS1
R
:= lim

Σ→S1
R

TΣ =
π√

R2

2 + 1
.

12



The proof is via the following comparison lemma concerning the eigenfunc-
tions produced by L.

Lemma 16. Suppose that f : If → R and g : Ig → R are twice-differentiable
functions on closed, connected subsets of R, If and Ig, that are nonzero in the
interior and zero on the boundary of their respective domains. Moreover suppose
that

inf
If

f ′′

f
≥ sup

Ig

g′′

g
.

Then the length of If , L(If ) is at least the length of Ig, L(Ig).

Proof. By Mean Value Theorem, there exists af ∈ If and ag ∈ Ig such that
f ′(af ) = 0 and g′(ag) = 0. By translating f and g as necessary, we may also
assume af = ag = 0. We then only need to use that

f ′′

f
≥ g′′

g

holds pointwise on If ∩ Ig from the hypothesis. Let’s look at h := |fg−1|,
which will be a twice-differentiable positive function on If ∩Ig. By construction
moreover, h′(0) = 0. We observe that:[

h′g2
]′

hg2
=

f ′′

f
− g′′

g
≥ 0 =⇒ h′g2 ↗

It then follows that h(0) > 0 is a global minimum for h. So we conclude that
Ig ⊆ If , which gives the result, as otherwise the limit of h as one approaches
one of the boundary points would be 0, impossible.

Proof of Lemma 14. Consider the pair (f, g) =
(
Hθ, sin

(√
1 + 1

2(min |H|)2 θ
))

as functions of θ. Then Lemma 16 applies since by the derived ODE, we see
that

inf
Hθ ̸=0

Hθθθ

Hθ
= inf

Hθ ̸=0
−
[
1 +

1

2H2

]
= −

[
1 +

1

2(min |H|)2

]
= sup

g ̸=0

gθθ
g

.

Hence for appropriately constructed intervals If and Ig, we have that L(If ) ≥
L(Ig) =

π√
1+ 1

2(min |H|)2
. But L(If ) = TΣ so we obtain the lower bound. Similarly

the upper bound follows by using the pair (f, g) =
(
sin
(√

1 + 1
2(max |H|)2 θ

)
, Hθ

)
.

7 The Embedded Σ

We are now ready to describing the space of possible embedded Σ. By Lemma
7, this becomes a problem of determining the behavior of TΣ. Recall the formula

13



given in Theorem 6:

TΣ = sgn(RΣ − rΣ)

∫ RΣ

rΣ

1√
4 log

(
u
2 +CΣ

EΣ

)
− u2

du.

Ignoring order we thus obtain a symmetric function T : R2 \ {|x| = |y|} → R
given by

T (x, y) :=
y − x

|y − x|

∫ y

x

1√
4 log

(
u
2 +CΣ

EΣ

)
− u2

du

where

EΣ =
1

2

y − x

e
y2

4 − e
x2

4

CΣ = −1

2

ye−
y2

4 − xe−
x2

4

e−
y2

4 − e−
x2

4

.

It is easy to check that T is smooth on the given domain. Moreover, we suspect
that T can be extended to a smooth function defined on all of R2, as suggested
by Corollary 15, though we will not need this full strength.

Our first task is to show that the differential of T is surjective everywhere,
therefore implying that the topology of the space of embedded Σ should be
fairly simple. We will accomplish this by merely showing that the derivative of
T in the direction of (1, 1) is always non-zero, which also doubles to show that
|RΣ − rΣ| is useful as a possible parameterization. But first we will need some
boring calculations.

Lemma 17. If |RΣ| ↗ and |RΣ − rΣ| constant, then max |H| ↘.

Proof. A matter of computation. Let t be a dummy variable for the derivative,
then we have by the latter condition that (RΣ)t = (rΣ)t. Hence,

(max |H|)t =
(∣∣∣∣12RΣ + CΣ

∣∣∣∣)
t

=

(∣∣∣∣12rΣ + CΣ

∣∣∣∣)
t

=⇒

(max |H|)t =
e

r2Σ
4

(∣∣ 1
2RΣ + CΣ

∣∣)
t
− e

R2
Σ
4

(∣∣ 1
2rΣ + CΣ

∣∣)
t

e
r2
Σ
4 − e

R2
Σ
4

=

e
r2Σ
4

(
|EΣ|e

R2
Σ
4

)
t

− e
R2

Σ
4

(
|EΣ|e

r2Σ
4

)
t

e
r2
Σ
4 − e

R2
Σ
4

= e
R2

Σ+r2Σ
4 |EΣ|

(
RΣ

2 (RΣ)t − rΣ
2 (rΣ)t

e
r2
Σ
4 − e

R2
Σ
4

)
= −e

R2
Σ+r2Σ

4 E2
Σ(|RΣ|)t,

where we use that sgn(EΣ) = sgn(RΣ) to obtained the desired.
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Lemma 18. If rΣRΣ > 0, |RΣ| constant and |RΣ − rΣ| ↗, then max |H| ↗.

Proof. For once assume rΣ, RΣ > 0. From max |H| =
∣∣ 1
2RΣ + CΣ

∣∣ it suffices to
show that CΣ ↗. On the other hand, from Theorem 6, we have that −2CΣ is
the slope of the line connecting the points (x, f(x)) for f(x) = 2x

√
− lnx and

x = e−
R2

Σ
4 , e−

r2Σ
4 . On the other hand f ′′(x) = 2 ln x−1

2x(
√
− ln x)

3 < 0 for all x < 1, so

the graph is concave down on this interval. Hence if |RΣ− rΣ| ↗ then e−
r2Σ
4 ↗,

and we know e−
R2

Σ
4 < e−

r2Σ
4 < 1, so it follows that −2CΣ ↘ which suffices.

Lemma 19. If |RΣ| ↗ and |RΣ − rΣ| constant, then TΣ ↘.

Proof. Again let t be a dummy variable for the derivative with (RΣ)t = (rΣ)t.
Now recall our favorite function f : V ⊂ R3 → R from the proof of Theorem 6

(Equation 4) defined by (⟨x,n⟩, CΣ, EΣ)
f7→ ⟨x, J(n)⟩2. If the first input is made

to vary in step with RΣ and rΣ, that is, (⟨x,n⟩)t = (RΣ)t, then we compute
that

ft = 4

[ 1
2 (RΣ)t + (CΣ)t
1
2 ⟨x,n⟩+ CΣ

− (EΣ)t
EΣ

]
− 2⟨x,n⟩.

In particular, when treated as a function of ⟨x,n⟩, we see that by Lemma 17,

sgn(f ′′
t ) = sgn

(
1

2
(RΣ)t + (CΣ)t

)
= sgn((maxH)t) = − sgn(EΣ) = − sgn(RΣ),

so we have convexity. Moreover, since f(rΣ, CΣ, EΣ) = f(RΣ, CΣ, EΣ) = 0 is
constant, we have that ft(rΣ) = ft(RΣ) = 0, and hence for ⟨x,n⟩ ∈ (rΣ, RΣ),
sgn(ft) = − sgn(f ′′

t ) = sgn(RΣ). So since

(TΣ)t = sgn(RΣ − rΣ)

(∫ RΣ

rΣ

f(u,CΣ, EΣ)
− 1

2 du

)
t

= sgn(RΣ − rΣ)

∫ RΣ

rΣ

−1

2
f(u,CΣ, EΣ)

− 3
2 ft(u)du,

it follows that sgn((TΣ)t) = − sgn(RΣ − rΣ) sgn(RΣ) = −1 as desired.

Next, we combine the results of the previous two sections to obtain bounds
for all rΣRΣ > 0

Lemma 20. Assuming rσRΣ > 0, there exists a constant K ∈ R>0 such that

gΣ < K|RΣ|
1
3 (log |RΣ|)

2
3

Proof. Note that gΣ is bounded when |RΣ| is, so we need only worry about the
asymptotic behavior as |RΣ| → ∞ and that |RΣ| is sufficiently large. We split
into two possible cases:

15



If |RΣ−rΣ| ≤ K0|RΣ|−
1
3 (log |RΣ|)

1
3 for some constant K0 ∈ R>0, then using

Lemma 14 and a standard Taylor series bound for cosx, we have that:

gΣ = |rΣ −RΣ cos(TΣ)| ≤ |RΣ|(1− cosTΣ) ≤
1

2
|RΣ|T 2

Σ ≤ |RΣ|
π2

2 + 1
(max |H|)2

.

By Lemma 18, we may assume that |RΣ− rΣ| = K0|RΣ|−
1
3 (log |RΣ|)

1
3 . Further

unpacking in terms of RΣ and rΣ gives:

gΣ ≤ |RΣ|
π2

2 + 1(
RΣ
2 +CΣ

)2

=
π2

4
|RΣ||RΣ − rΣ|2

(
1 +

|RΣ − rΣ|2

2
− 1

e
R2

Σ
−r2

Σ
4

)−1

≤ π2

4
|RΣ||RΣ − rΣ|2 = K|RΣ|

1
3 (log |RΣ|)

2
3

for |RΣ| sufficiently large and some constant K ∈ R>0 as wanted.

Otherwise if |RΣ − rΣ| > K0|RΣ|−
1
3 (log |RΣ|)

1
3 , then we get the result auto-

matically by Corollary 13.

Now as promised we can show that the lower bound on TΣ in Lemma 10
doubles as an asymptotic estimate for TΣ:

Corollary 21.

lim
|RΣ|→∞

cos(TΣ) =
rΣ
RΣ

Proof of Corollary 21. We have by the previous lemma that∣∣∣∣ rΣRΣ
− cos(TΣ)

∣∣∣∣ = gΣ
|RΣ|

< K

(
log |RΣ|
|RΣ|

) 2
3

,

for some K ∈ R>0, the latter of which goes to 0 as |RΣ| → ∞.

We now prove Theorem 3 in full.

Proof of Theorem 3. Any equivalence class of Emdn

∼ corresponds to a unique
pair (rΣ, RΣ) ∈ {(x, y) ∈ R2 : x + y, y − x > 0}. This is a simply connected
domain on which T is a smooth function, and furthermore Lemma 19 gives that
T also has no critical points, so it follows that the level set {T = t} is a smooth
1-dimensional subset of the domain. As defined in Theorem 6, 0 < TΣ < π, and
we now show that any non-empty level set is parameterized by y − x ∈ R>0.

Fix y − x = c. According to Lemma 10 and Lemma 21 respectively,

lim
x→0+

T
(
x− c

2
, x+

c

2

)
= π, lim

x→∞
T
(
x− c

2
, x+

c

2

)
= 0.

Therefore Lemma 19 provides for the existence of (x, y) with y−x = c satisfying
T (x, y) = t any t ∈ (0, π). This concludes the proof of the first property by
choosing t = π

n .
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For the second property observe that Corollary 15 provides an explicit con-
tinuous extension of T to {(x, x) ∈ R2

>0}. Hence the level set {T = t} will

include as a limit point (2(π
2

t2 − 1), 2(π
2

t2 − 1)). For t = π
n , this gives that as

|RΣ − rΣ| → 0, the members of Emdn are bounded by the shrinking annulus
{|rΣ| < |x| < |RΣ|} with limit S1

2(n2−1), which is sufficient to conclude the limit
in the Gromov-Hausdorff sense.

For the third property we have that the Hausdorff distance between Σ and
the regular polygon with vertices being those points of Σ farthest away from
the origin is gΣ. So now with a little bit of work once it is recognized that
|RΣ| ≥ 1

2 (|RΣ| + |rΣ|) ≥ 1
2 |RΣ − rΣ|, we have that by Corollary 21, since TΣ

is fixed, there exists constants M and K1 so that for any Σ ∈ Emdn with
|RΣ − rΣ| > M , we have |RΣ − rΣ| > K1|RΣ|, and in particular Corollary 13
then provides that there exists a constant K2 so that gΣ < K2(log |RΣ|)|RΣ|−1,
which is sufficient to show gΣ → 0 as |RΣ − rΣ| → ∞ as desired.

In particular, the proof of Theorem 3 used very little of the embeddedness
condition. Empirical evidence suggests that in fact the third property holds
in a sense for any family of immersed solutions, but for that we do not have
sufficiently strong bounds to prove with.
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