
Combinatorial Results in Partition Theory
UROP+ Final Report

Maximus Lu

Mentor: Ryota Inagaki

Summer 2024

Abstract

We prove a number of combinatorial results in partition theory, relating to the

double Glaisher map introduced by Keith, and also expanding on work by Herden et

al. on partitions with designated summands and the Andrews-Merca identity.
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1 Introduction

A partition λ = (λ1, λ2, . . . , λk) of n, denoted λ ⊢ n, is a sequence of positive integers

λ1 ≥ λ2 ≥ · · · ≥ λk with

λ1 + λ2 + · · ·+ λk = n.

We can also express partitions in terms of their multiplicities: the partition

(1m1 , 2m2 , . . . )

is the one in which each i ≥ 1 appears mi times. We use both notations in this report.

Many results in partition theory may be proved both analytically with the use of generating

functions and with combinatorial methods. A famous and fundamental identity by Euler

states that the number of partitions of n into odd parts is equal to the number of partitions

of n into distinct parts.

Glaisher’s generalization of this identity states that the number of partitions of n into parts

not divisible by k is equal to the number of partitions of n where each part appears less than

k times. The first class of partitions are called k-regular, and the second class are k-distinct.

We provide here a sketch of the bijective proof of this theorem. Consider a k-distinct partition

λ. For each part m = jkℓ, with j, ℓ ∈ Z≥0, and k ∤ j, replace m with kℓ copies of j in the

image. This maps λ to a k-regular partition. One may check that this map is invertible, and

hence gives a bijection.

The body of this report is divided into three sections. In Section 2, we discuss the double

Glaisher map introduced by Keith.

In [4], Keith generalizes the above bijection to a bijection between s-regular, t-distinct par-

titions and s-distinct, t-regular partitions. We prove a number of results regarding the

generalized map, and relate the results to those proven by O’Hara [5].

In Section 3, we prove several congruences conjectured by Herden et al. in [2], and make

some generalizations. These congruences relate to partitions with designated summands, in

which one part of each size is designated by ’. For instance, the partitions with designated

summands of 4 are

(4′), (3′, 1′), (2′, 2), (2, 2′), (2′, 1′, 1), (2′, 1, 1′), (1′, 1, 1, 1), (1, 1′, 1, 1), (1, 1, 1′, 1), (1, 1, 1, 1′).

In Section 4, we generalize another result of Herden et al. in [1] related to the Andrews-

Merca identity. We then demonstrate a connection between our generalization and both the

Andrews-Merca identity and the Beck identity of the first kind.
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2 The Double Glaisher Map

2.1 Definitions and Overview

We first repeat the definition of the generalized Glaisher map given by Keith in [4]. Given

a partition λ, the generalized Glaisher map ϕk is defined by the following procedure:

1. For each integer m ≥ 1 with k ∤ m, define a matrix Am so that the ℓth column of Am

is the base-k representation of the number of occurrences of mkℓ in λ (where the first

row is 1, the second is k, and so on).

2. For each m, let A′
m be the transpose of Am.

3. Undo the process in step 1 to get the partition ϕk(λ).

Note that by definition, ϕk is an involution. The matrices corresponding to each m are called

part-frequency matrices by Keith.

Example. Consider the case where k = 3 and λ = (184, 91, 62, 17). Then, we have two

part-frequency matrices, for m = 1 and m = 2, shown in the first row below. Applying the

procedure described above gives ϕ3(λ) = (69, 32, 215, 110).

λ :

1
1 0 1
2 0 0
0 0 0

2
0 2 1
0 0 1
0 0 0

ϕ2(λ) :

1
1 2 0
0 0 0
1 0 0

2
0 0 0
2 0 0
1 1 0

Figure 1: The top two matrices represent λ = (184, 91, 62, 17). The bottom two matrices
represent ϕ3(λ) = (69, 32, 215, 110). The number in the top-left corner of each matrix is m,

and the matrices Ai

Recall that an s-regular partition is one in which no part is divisible by s, and a t-distinct

partition is one in which every part appears less than t times. Throughout this section, we

always take s and t to be integers greater than 1.
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To motivate the definition of ϕk, consider the case where we begin with a k-regular parti-

tion λ. Then, only the first column of each Am can contain non-zero values, and thus the

transposes have only non-zero values in the first rows, corresponding exactly to k-distinct

partitions. It is not hard to check that the generalized map ϕk in fact restricts to the original

Glaisher bijection on the subset of k-regular partitions.

We also define the following set of partitions, for notational convenience.

Definition. Let RDs,t(n) denote the set of all s-regular, t-distinct partitions of n.

2.1.1 Overview

As Keith shows in [3], when s and t are coprime, the composed map ϕsϕt immediately gives

a bijection from s-regular, t-distinct partitions to s-distinct, t-regular partitions. If s and

t are not coprime, the bijection is more involved, and Keith does this working individually

with the primes dividing s and t.

In this section, we prove a number of properties resulting from iterating the double Glaisher

map ϕsϕt on partitions λ ∈ RDs,t(n), addressing in part the questions posed by Keith. We

also make connections to work by O’Hara [5] regarding a general class of bijections between

sets of partitions.

2.2 One Iteration of the Double Glaisher Map

Definition. For integers s, t > 1 and k ∈ N, define fs,t(k) to be the smallest non-negative

integer so that s | tfs,t(k)k. If no such integer exists, set fs,t(k) = +∞. Then, let gs,t(k) =

tfs,t(k).

For example, we have f6,10(3) = 1, and f10,6(3) = +∞.

Theorem 2.1. Let λ ⊢ n be a partition that is both s-regular and t-regular. Then, ϕt(λ) ∈
RDs,t(n) if and only if for all j ∈ N, j appears in λ less than gs,t(j) times.

Proof. Since λ is t-regular, ϕt(λ) is t-distinct. Thus, ϕt(λ) ∈ RDs,t(n) if and only if it is

s-regular. Note that if s | j, gs,t(j) = 1, and by definition, j does not appear in λ.

Now, suppose some part k in ϕt(λ) is divisible by s. Then, write k = tℓj, with t ∤ j and

ℓ ∈ Z. Since s | k, we have ℓ ≥ fs,t(j). Since k appears in ϕt(λ), j must appear at least

tℓ ≥ gs,t(j) times in λ.

The reverse argument holds as well. If j appears at least gs,t(j) times in λ, tmj must appear

in ϕt(λ) for some m ≥ fs,t(j), which implies s | tmj and ϕt(λ) ̸∈ RDs,t(n). The result

follows. ■
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Corollary 2.2. Take any partition λ ∈ RDs,t(n). Then, µ = ϕsϕt(λ) ∈ RDt,s(n) if and

only if for all j ∈ N, j appears in ϕt(λ) = ϕs(µ) less than min(gs,t(j), gt,s(j)) times.

Proof. Note that for λ ∈ RDs,t(n), ϕt(λ) is t-regular. Furthermore, every part of ϕt(λ)

divides some part of λ, so since λ is s-regular, ϕt(λ) is as well.

So, for any λ ∈ RDs,t(n), ϕt(λ) is s-regular, t-regular. Let δ = ϕt(λ). Then, µ ∈ RDt,s(n) if

and only if ϕs(δ) ∈ RDt,s(n). By Theorem 2.1, this occurs if and only if any j appears less

than gt,s(j) times in δ. Likewise, ϕt(δ) ∈ RDs,t(n), so any j appears less than gs,t(j) times

in δ. ■

Corollary 2.3. The generating function for the number of λ ∈ RDs,t(n) such that ϕsϕt(λ) ∈
RDt,s(n) is

∞∏
j=1

1− qjmin(fs,t(j),ft,s(j))

1− qj
.

Note that we take q+∞ = 0 in the case where fs,t(j) = ft,s(j) = +∞.

Corollary 2.4. Suppose that s = tk or t = sk for some integer k. Then, ϕsϕt(λ) ∈ RDt,s(n)

for all λ ∈ RDs,t(n).

Proof. It suffices to show that for any s-regular, t-regular partition µ, ϕt(µ) ∈ RDs,t(n) if

and only if ϕs(µ) ∈ RDt,s(n).

Let a = min(s, t) and b = max(s, t). No multiples of a appear in µ, since µ is a-regular. For

j with a ∤ j, we have gs,t(j) = gt,s(j) = b. By Theorem 2.1, this implies ϕt(µ) ∈ RDs,t(n) if

and only if ϕs(µ) ∈ RDt,s(n), as desired. ■

In fact, as we show in Theorem 2.19, for any other s, t with gcd(s, t) > 1, there exists some

s-regular, t-distinct partition λ such that ϕsϕt(λ) is not both s-distinct and t-regular.

2.3 Cycles of the Double Glaisher Map

We first make a few observations about the behavior of the Glaisher map.

Lemma 2.5. The Glaisher map ϕk is the composition of moves swapping k copies of an

integer m for one copy of km, or vice versa.

Proof. Consider the part-frequency matrices as used in the definition of the Glaisher map.

Note that conjugation of the matrix moves the entry corresponding to ka copies of jkb to an
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entry corresponding to kb copies of jka. It is not hard to see that this can be accomplished

by repeatedly merging k equal parts or splitting multiples of k.

Since the Glaisher map consists of several of these moves, it can be performed only by

merging and splitting. ■

Note that ϕsϕt is invertible (its inverse is ϕtϕs), and thus induces a permutation on partitions

of n. Hence, ϕsϕt splits the partitions of n into several cycles. In particular, for any partition

λ, we have (ϕsϕt)
kλ = λ for some k > 0.

Theorem 2.6. Take λ ∈ RDs,t(n). Suppose we make a series of moves as defined in

Lemma 2.5 for ϕs and ϕt, starting with λ and ending at a partition µ ∈ RDs,t(n). Then,

λ = µ.

Proof. For each k ∈ N, define the set Sk = {ksatb | a, b ∈ Z} ∩ Z. Note that the operations

defined in Lemma 2.5 for ϕs and ϕt preserve the sets Sk, i.e. if we perform an operation on

parts of size ksatb, the parts created will have sizes ksa±1tb or ksatb±1, all of which are also

in Sk.

Thus, it suffices to restrict our attention to the parts inside any fixed set Sk. If we show that

λ and µ coincide on Sk for each k, this implies λ = µ, as the Sk cover N.

We split into two cases.

Case 1: logs(t) ̸∈ Q.

In this case, note that satb = 1 for a, b ∈ Z if and only if a = b = 0. As described above, we

need only consider parts in Sk for some fixed k.

Consider a coordinate grid, where the cell at (a, b) represents ksatb. The moves described

Lemma 2.5 correspond to taking s from a cell and putting 1 in the cell to the right, or taking

t from a cell and putting 1 in the cell above, or the inverse operations.

Now, note that if (a, b) ∈ Sk, all cells above and to the right of (a, b) are also in Sk. Further-

more, the elements of Sk not divisible by either s or t are exactly those cells which do not

have an element of Sk either below or to the left. Call these cells corners.

First, ϕt(λ) is s-regular, t-regular, so all non-zero entries of ϕt(λ) are at corners. Since ϕt can

be performed using the moves in Lemma 2.5, it suffices to consider going from ϕt(λ) to ϕt(µ),

both of which are s-regular and t-regular. For convenience, define λ′ = ϕt(λ), µ
′ = ϕt(µ).

Consider the lowest element in the grid that appears in either λ′ or µ′. Call this corner

(x1, y1). Moving up the grid, call the next corner (x2, y2), and so on. Note that there may

be infinitely many corners. If there are finitely many corners, we add a final “corner” with

y = +∞. These corners satisfy x1 > x2 > . . . and y1 < y2 < . . . .

7



Maximus Lu Combinatorial Results in Partition Theory

Example. We give an example of the grid in the diagram below, where we take k = 48,

s = 6, and t = 24. The left diagram shows the partition λ = (1921, 121, 24, 324) and the right

diagram shows the partition µ = (1921, 721, 121, 24), obtained from λ by making a move of

the form described in Lemma 2.5.

The cells (a, b) in gray are the ones for which ksatb ̸∈ Z. The corners in the region −2 ≤
x, y ≤ 2 are (−2, 1), (−1, 0), (0,−1) and (2,−2).

-2

-2

-1

-1

0

0

1

1

2

2

4 1

24

1

-2

-2

-1

-1

0

0

1

1

2

2

4 1 1

1

Figure 2: When k = 48, s = 6, t = 24, the left diagram is the partition (1921, 121, 24, 324),
and the right diagram is the partition (1921, 721, 121, 24).

Consider a corner (xi, yi). Note that the smallest ℓ > yi for which s | ksxitℓ is exactly yi+1,

if any such ℓ exists. So, in the notation from Theorem 2.1, we have

fs,t(ks
xityi) = yi+1 − yi.

Note that this holds even in the case where yi+1 = +∞. In all cases, by Theorem 2.1, the

total value of the parts at (xi, yi) in both λ′ and µ′ is less than ksxityi+1 .

Claim. Suppose we make a series of moves of the form described in Lemma 2.5 for ϕs and

ϕt from λ′ to get another partition δ. Then, for each i ≥ 1, the sum of all parts with y < yi
does not decrease from λ′ to δ.

Proof. We induct on i. When i = 1, this holds, as the sum of parts below y1 is 0 in λ′. Also,

if yi = +∞, this is clear.

Now, suppose the claim holds for i ≤ ℓ, for some ℓ ≥ 1. Consider i = ℓ + 1, and assume

yℓ+1 < +∞. Suppose the total of all parts below yℓ in λ′ is equal to A, and the total of the

parts at (xℓ, yℓ) in λ is equal to B. As shown above, B < ksxℓtyℓ+1 .
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Consider the sum of all parts with y < yℓ+1 throughout the process as we go from λ′ to δ.

Note that this sum changes if and only if we make a swap of the form

t× (ksxtyℓ+1−1) ↔ ksxtyℓ+1 ,

where x ≥ xℓ. In particular, the sum of these parts is constant modulo ksxℓtyℓ+1 .

Suppose the sum of parts with y < yℓ+1 in δ is C. By the inductive hypothesis, we have

C ≥ A. The above argument shows

C ≡ A+B (mod ksxℓtyℓ+1).

Recall that B < ksxℓtyℓ+1 . Thus, we must have C ≥ A + B. This completes the inductive

step. So, for each yi, the sum of all parts with y < yi in λ′ is at most the sum in δ. □

Now, since we can go from λ′ to µ′, the sum of parts with y < yi in λ′ is at most the total

of such parts in µ′. Since all moves are reversible, and µ′ is also s-regular and t-regular, the

reverse inequality holds as well.

So, for each yi, the sum of all parts with y < yi in λ′ is equal to the sum in µ′. The only

parts in λ′ and µ′ with yi ≤ y < yi+1 are at (xi, yi). Thus, for each i, the multiplicities of

(xi, yi) in λ′ and µ′ are equal, so λ′ = µ′. Applying ϕt, we have λ = µ.

Case 2: logs(t) ∈ Q.

Suppose s = ma, t = mb, wherem, a, b ∈ N. Without loss of generality, suppose gcd(a, b) = 1.

(If gcd(a, b) = d, we may simply replace m with md.)

Note that for any k ∈ N, Sk is of the form {ℓ,mℓ,m2ℓ, . . . }, where ℓ ∈ N. (Since we assume

gcd(a, b) = 1, some integer linear combination of a and b is 1, so mℓ ∈ Sk.)

Recall from the previous case that we may restrict ourselves to only one Sk. Since all the Sk

have the same structure, without loss of generality, consider only S1.

We use the part-frequency matrix in base m. Let (x, y) denote the entry in the column

labelled mx and row labelled my, i.e. the coefficient of my in the base m representation of

the multiplicity of mx.

Since λ and µ are s-regular and t-distinct, all non-zero entries for both λ and µ lie in the

region 0 ≤ x < a, 0 ≤ y < b. Let Ra,b denote this region.

We define a labelling for cells (x, y), where x + y ≤ a + b− 2, of the part-frequency matrix

with labels from 0 to a−1 in the following way. Label the cell (x, y) with x for all 0 ≤ x < a,

0 ≤ y < b. Furthermore, impose the condition that the cell (x, y) has the same label as

(x− a, y+ a) and (x− b, y+ b) for all (x, y) (whenever these are valid entries in the matrix).
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In the diagram below, we exhibit the labelling for a = 5, b = 8.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

4

4

4

4

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

Figure 3: Example labelling for a = 5, b = 8. The regions Ra,b and Rb,a are outlined.

Claim. This labelling is consistent, i.e. it is not possible to go from any cell in the region

Ra,b to any other cell using the equivalence relations described above.

Proof. Note that the equivalence relations both fix x+y. Thus, we may restrict our attention

to a fixed diagonal of the form x + y = k, with 0 ≤ k ≤ a + b − 2. The x-values for the

portion of the diagonal that lies inside the region Ra,b are

max(0, k − b+ 1) ≤ x ≤ min(a− 1, k).

In the below argument, a “move” simply indicates moving by a or b along the diagonal, while

keeping x ≥ 0 and y ≥ 0.
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For contradiction, suppose some sequence of moves starts at x = u and ends at x = v, where

u ̸= v and

max(0, k − b+ 1) ≤ u, v ≤ min(a− 1, k).

Note that for both u and v, the only legal move, if any, is to:

• increase by a if a < b,

• decrease by b if a > b.

When a = b, there are never any possible moves.

Suppose we have a sequence of moves

u = x0 → x1 → x2 → · · · → xℓ = v.

Assume that this path is of minimal length. Then, xi ̸= xi+2 for any i. Further, since

k ≤ a+ b− 2, it is not possible to make consecutive moves by a and b in the same direction.

Thus, the possible moves after increasing by a are to increase by a again, or decrease by

b. Likewise, possible moves after decreasing by b are to decrease by b again or increase by

a. So, since the first move is either an increase by a or decrease by b, every move in the

sequence is either an increase by a or decrease by b.

However, as shown above, the final move must either be a decrease by a or increase by b,

contradiction. So, of the cells of the diagonal in the regionRa,b, no cell can reach another. □

Next, we show that all cells in the region 0 ≤ x+ y ≤ a+ b− 2 have a uniquely defined label

using the equivalence relations defined above.

Consider the graph with vertices labelled 0, 1, . . . , k, where two vertices u and v are connected

by an edge if and only if |u− v| ∈ {a, b}. Since k < a + b, any vertex v has at most one

neighbor in each of the sets {v − a, v + b} and {v + a, v − b}. In particular, each vertex has

degree at most 2.

Claim. This graph is acyclic.

Proof. Suppose we had some cycle with vertices v1, v2, . . . , vℓ in that order, where v1 and vℓ
are adjacent, and all vi are distinct. The argument in the previous claim shows that we may

assume only one of the moves +a or −a appears as we move along the cycle. Without loss

of generality, let this be +a (by reversing the cycle if needed).

11
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Then, again by the above argument, the only other possible moves are −b. Since gcd(a, b) =

1, in order to make a series of such moves starting at v1 and ending at v1, we must have at

least a moves of the form −b and b moves of the form +a.

So, the cycle must have at least a + b vertices. However, since we are on the diagonal

x+ y = k, there are only k + 1 < a+ b vertices in the graph, contradiction. □

Since every vertex has degree at most two, the connected components of the graph are paths,

possibly of one isolated vertex.

Also, note that there are max(k − a + 1, 0) edges of the form (v, v + a), and there are

max(k − b + 1, 0) edges of the form (v, v + b). Thus, the graph has k + 1 vertices and

max(k − a+ 1, 0) +max(k − b+ 1, 0) edges. Each connected component with ℓ vertices has

ℓ− 1 edges. So, the number of connected components in the graph is

k + 1−max(k − a+ 1, 0)−max(k − b+ 1, 0).

Recall from the proof of the previous claim that x-values of the cells on the diagonal inside

the region Ra,b is

max(0, k − b+ 1) ≤ x ≤ min(a− 1, k).

In particular, there are

min(a− 1, k)−max(0, k − b+ 1) + 1

such cells. We have k − max(k − a + 1, 0) = min(a − 1, k), so the number of connected

components is equal to the number of cells on the diagonal in Ra,b.

By the previous claim, each cell in Ra,b is in a different connected component. So, every

vertex is reachable from exactly one of the cells in Ra,b, so every cell has a well-defined,

unique label.

Claim. For a cell (x, y) with label k, if x+ y < k + b− 1, (x, y + 1) also has label k.

Proof. Since (x, y) has label k, there is a series of moves from (k, x + y − k) to (x, y). By

assumption, x+ y − k < b− 1, so (k, x+ y − k + 1) also has label k.

By making the same series of moves (shifted by one), we can reach the cell (x, y + 1) from

(k, x+ y − k + 1), so (x, y + 1) also has label k. □

Note that for any k, the cells (x, y) with label k all satisfy x+ y ≤ k + b− 1.

Claim. Fix k < a− 1. Consider the cells (x, y) with label k such that x+ y = k+ b− 1. For

all such cells, the cell (x, y + 1) has the same label as (k, b).

12
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Proof. Consider two cells (x1, y1) and (x2, y2) such that x1 + y1 = k + b − 1 = x2 + y2 and

both cells have label k. Then, as shown above, some series of moves connects (x1, y1) and

(x2, y2). Using this same series of moves (shifted by one), we can go from (x1, y1 + 1) to

(x2, y2 + 1). So, these two cells have the same label.

In particular, since (k, b− 1) has label k, this is the label of the cell (k, b). □

Now, define a directed graph on vertices labelled 0, 1, . . . , a − 1. For each v < a − 1, there

is exactly one outgoing edge from v, to the vertex that is the label of (v, b). Call this label

f(v). Note that f(v) > v, since all cells (x, y) with labels at most v satisfy x+ y < v + b.

For instance, referring to Fig. 3, in the case where a = 5 and b = 8, we have

f(0) = 3, f(1) = 4, f(2) = 3, f(3) = 4.

Since all cells with x + y = a + b − 2 have label a − 1, there is a directed path from v to

a− 1 for all v. So, since the graph has a− 1 edges, it must be a tree, with all edges directed

towards a− 1. Furthermore, note that for any edge u → v, we have u < v.

Claim. Take λ ∈ RDs,t. Suppose a series of moves as described in Lemma 2.5 sends λ to a

partition λ′. Then, for all 0 ≤ i ≤ a − 1, the total value of all cells with label i or that are

above cells with label i does not decrease from λ to λ′.

We define the value of the cell (x, y) to simply be mx+y. To compute the total value of cells

with label i, sum over all cells of label i, multiplying the value of each cell by the number

in that cell. Note that we do not even require the entries in the part-frequency matrix to

remain less than m.

Example. If we take m = 2, both of the below matrices would be possible intermediate

steps, corresponding to the partition λ = (47, 24, 16)

2 4 3
2 0 0
0 0 1

6 0 1
0 0 3
0 1 0

Figure 4: Two different matrices with m = 2, both representing the partition (47, 24, 16).

Proof. We induct on i. First, consider i = 0. The set of cells with label 0 is closed under

moves along a diagonal by a or b, by construction.

Since no other labels lie above a cell with label 0, the only way for the sum of entries in cells

of label 0 to change is to move within a column. Specifically, some cell directly below a cell
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with label 0 must decrease by 1, and the cell with label 0 above increases by m, or the cell

below increases by 1 and the cell above decreases by m.

Each of these operations changes the sum of parts with label 0 by mb. So, the total value

of all parts with label 0 is constant modulo mb. Since it is initially less than mb, it does not

decrease.

We now prove the inductive step. The argument is similar. Suppose the claim holds for all

i < k. Consider i = k.

Again, by construction, the set of cells with label k or above cells with label k is closed under

moves along diagonals. Since we include all cells above cells with label k, the only way for

this sum to change is the same as in the base case – a cell below a cell with label k must

decrease by 1, and the cell with label k increases by m, or the cell below increases by 1 and

the cell above decreases by m.

So, the sum in these cells is constant modulo mk+b. Now, consider the sum in cells not

labelled k which lie above cells labelled k. Recall that all these labels must be less than k,

since the edges in the directed graph constructed above all go from smaller to larger labels.

Let A be the sum in cells not labelled k which are above cells labelled k in λ, and let B be

the sum in cells labelled k in λ. Also, let C be the sum over all the cells covered by either

A or B in λ′. The inductive hypothesis implies C ≥ A, and the above argument shows

C ≡ A+B (mod mk+b).

Since λ is t-distinct, B < mk+b. So, C ≥ A+B, which completes the induction. □

Thus, from λ to µ, the total value in cells with label i or lying above cells with label i does

not decrease. The same argument shows that the sum does not decrease from µ to λ. So,

for each i, the total value in these cells is equal in µ and λ.

It is easy to see that this implies the total value of cells with label i in λ and µ are equal,

since no cell lies above a cell with strictly smaller label.

Since all non-zero entries initially are in Ra,b, and all entries are less than m, this implies

λ = µ. ■

Corollary 2.7. Take λ ∈ RDs,t(n). Then, (ϕsϕt)
kλ ∈ RDs,t if and only if λ = (ϕsϕt)

kλ.

2.3.1 Special Choices of s and t

In this section, we describe the behavior of the map ϕsϕt in the case where s | t, and especially

focus on the case logs(t) ∈ Q.
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We first describe how ϕmk acts on the part-frequency matrix with base m.

Lemma 2.8. The map ϕmk swaps the entries at (x1k+y1, x2k+y2) and (x2k+y1, x1k+y2),

where x1, x2, y1, y2 are non-negative integers, and y1, y2 < k.

Proof. Consider the part-frequency matrix for mk that contains the part my1 . The coefficient

of (mk)x2 in the number of occurrences mx1k+y1 is encoded in the part-frequency matrix for

m in the cells (x1k + y1, x2k) to (x1k + y1, x2k + k − 1). Thus, when we transpose the

base mk matrix, we move the cells (x1k + y1, x2k), . . . , (x1k + y1, x2k + k − 1) to the cells

(x2k + y1, x1k), . . . , (x2k + y1, x1k + k − 1), in that order.

In particular, we move (x1k + y1, x2k + y2) to (x2k + y1, x1k + y2). □

Corollary 2.9. Suppose that s = tk or t = sk for some integer k. Then, for any partition

λ,

(ϕsϕt)
2λ = λ.

Proof. It suffices to consider when s = tk, since (ϕsϕt)
−1 = ϕtϕs.

Consider a part-frequency matrix in base t, and consider the entry starting at the cell

(x1k + y1, x2k + y2), where 0 ≤ y1, y2 < k. By Lemma 2.8, this entry moves as follows:

(x1k + y1, x2k + y2)
ϕt→ (x2k + y2, x1k + y1),

ϕs→ (x1k + y2, x2k + y1)

ϕt→ (x2k + y1, x1k + y2)
ϕs→ (x1k + y1, x2k + y2).

Thus, (ϕsϕt)
2 moves each entry back to its original position. So, it sends λ to itself. ■

We now turn our attention to the more general situation where s | t or t | s.

Theorem 2.10. Suppose s | t or t | s, and for some k,

(ϕsϕt)
kλ = µ,

with λ ∈ RDs,t(n) and µ ∈ RDt,s(n). Then,

(ϕsϕt)
2kλ = λ.

Proof. Consider the case where s | t. The other case follows by swapping s and t and

switching the roles of λ and µ.

Since s | t, λ is t-regular, so ϕt(λ) = λ. Also, s < t, so µ is t-distinct. Thus, ϕt(µ) = µ. So,

we have

(ϕtϕs)
kλ = ϕt(ϕsϕt)

kλ = ϕtµ = µ.
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Thus, λ = (ϕsϕt)
kµ, so

(ϕsϕt)
2kλ = λ. ■

Using both Lemma 2.8 and Theorem 2.10, we can in fact describe the set of partitions

λ ∈ RDs,t(n) which are mapped to a partition in RDt,s(n) by repeatedly applying ϕsϕt in

the case where logs(t) ∈ Q.

In what follows, take s = ma, t = mb, for integers m ≥ 2, and a, b, with gcd(a, b) = 1. As

in the proof of Theorem 2.6, we restrict ourselves to parts in S1.

We first prove some preliminary lemmas.

Lemma 2.11. Suppose we have a partition λ = ((mk)m
ℓ
) ∈ RDs,t(n) where k + ℓ < a + b.

Then, any number of applications of ϕs or ϕt send λ to a partition of the form

((mu)m
k+ℓ−u

),

where min(u, k − ℓ− u) < min(a, b).

Proof. We show this by induction. It suffices to show that for any partition µ = ((mu)m
v
)

with min(u, v) < min(a, b) and u+ v < a+ b, both ϕs(µ) and ϕt(µ) are also of this form.

By Lemma 2.8, the map ϕmk sends the cell (x1k+ y1, x2k+ y2) in the part-frequency matrix

with base m to the cell (x2k + y1, x1k + y2), where 0 ≤ y1, y2 < k.

In particular, when we apply ϕmin(s,t), the induction hypothesis means either x1 = 0 or

x2 = 0, so in the image, one of the coordinates is less than min(a, b).

When we apply ϕmax(s,t), we either have x1 = x2 = 0, in which case nothing happens, or

exactly one of the xi is 1 and the other is 0. In the latter case, one of the coordinates will

be at least max(a, b) in the image, and hence the other coordinate is less than min(a, b), as

we assume u+ v < a+ b.

This completes the induction. ■

Now, consider the labelling used in the proof of Theorem 2.6.

Lemma 2.12. For any diagonal x + y = k, where 0 ≤ k ≤ a + b − 2, the labels of cells

in Rb,a on this diagonal are all distinct, and is the same as the set of labels of cells on this

diagonal in Ra,b.

Proof. By symmetry over the main diagonal, the diagonal x + y = k has an equal number

of cells in both Ra,b and Rb,a. The argument from the proof of Theorem 2.6 that shows all

cells in Ra,b have different labels also shows that all cells in Rb,a have different labels.
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Thus, since the only possible labels are those that occur in the cells in Ra,b (from the way

we defined the labelling), the two sets of labels are the same. ■

Lemma 2.13. For any label ℓ and diagonal x+ y = k, where 0 ≤ k ≤ a+ b− 2, the number

of cells on the diagonal with label ℓ and x < min(a, b) is equal to the number of cells on the

diagonal with label ℓ and y < min(a, b).

Proof. If ℓ does not appear on the diagonal at all, this is clear.

Now, suppose ℓ appears on the diagonal. Then, some cell (x0, y0) ∈ Ra,b has label ℓ, where

x0+ y0 = k. If (x0, y0) ∈ Rb,a, then (x0, y0) is the only cell on this diagonal with label ℓ, and

the result follows.

If not, start from (x0, y0), and alternate applying ϕmin(s,t) and ϕmax(s,t), starting with ϕmin(s,t).

By considering the adjacency graph used in the proof of Theorem 2.6, it is not hard to see

that we do not visit any cell twice in this process unless we reach a cell in Rb,a, which is

fixed by ϕmax(s,t). Thus, the process stops when we reach the cell on the diagonal x+ y = k

in the region Rb,a that has label k.

In fact, appealing again to the graph, this process will visit every cell on the diagonal with

label ℓ where either coordinate is less than min(s, t), since each connected component of the

graph is a path.

Also, note that the final (non-identity) step is ϕmin(s,t), since ϕmax(s,t) fixes all cells in Rb,a.

Hence, there are an odd number of moves, so there are an even number of cells visited.

It is not hard to see that the only cells with x < min(a, b) or y < min(a, b) that are fixed by

either ϕs or ϕt are those in Ra,b or Rb,a. Thus, each application of ϕs or ϕt is a non-trivial

move, and the cells visited are all distinct.

Furthermore, the coordinate which is less than min(a, b) alternates between the x-coordinate

and the y-coordinate. Thus, since this sequence of cells has an even number of cells, and

alternates between x < min(a, b) and y < min(a, b), there are an equal number of cells on

this diagonal with label ℓ in the regions x < min(a, b) and y < min(a, b). ■

Let c(ℓ, k) be the number of cells on the diagonal x+y = k with label ℓ such that x < min(a, b)

and y ≥ min(a, b). Then, let d(u, v) = c(u, u+ v).

Example. Referring back to the labelling from Fig. 3, if we again take the example a = 5,

b = 8, we have

d(3, 4) = c(3, 7) = 0,

and

d(3, 5) = c(3, 8) = 2.
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The following corollary then follows immediately from the above argument.

Corollary 2.14. Suppose 0 ≤ ℓ < a, and ℓ ≤ k < ℓ + b. Then, if λ = ((mu)m
v
), with

λ ∈ RDs,t(m
u+v) (or equivalently (u, v) ∈ Ra,b), we have

(ϕsϕt)
d(u,v)λ ∈ RDt,s(m

u+v).

This corollary allows us to completely characterize the λ ∈ RDs,t(n) that are mapped to

RDt,s(n) by repeatedly applying ϕsϕt.

Theorem 2.15. Consider a partition λ ∈ RDs,t(n). Over all part-frequency matrices with

base m, let R(λ) be the set of cells with non-zero entries in at least one matrix. Let d(λ) be

the set of values d(u, v) over all cells (u, v) ∈ R(λ).

Then, λ maps to RDt,s(n) under some number of iterations of ϕsϕt, i.e. (ϕsϕt)
kλ ∈ RDt,s(n)

for some k, if and only if all non-zero elements of d(λ) have equal ν2, where ν2 is the 2-adic

valuation.

Proof. By Corollary 2.14, each individual cell (u, v) ∈ Ra,b is mapped to Rb,a in d(u, v) steps.

Thus, by Theorem 2.10, the integers k for which (ϕsϕt)
k((mu)m

v
) is s-distinct and t-regular

are exactly those that are d(u, v) modulo 2d(u, v), when d(u, v) ̸= 0.

Thus, (ϕsϕt)
kλ ∈ RDt,s(n) if and only if for each 0 ̸= d ∈ d(λ), we have k ≡ d (mod 2d).

Such a solution exists if and only if ν2(d) is constant over all 0 ̸= d ∈ d(λ). ■

2.3.2 Connection to O’Hara’s Algorithm

As Keith notes in [4], O’Hara [5] gives an algorithm that implies a bijection between RDs,t

and RDt,s. We first explicitly describe this bijection.

With the notation used by O’Hara, we define two sieve-equivalent families of pairwise-disjoint

multisets. For each n > 0:

• if st | n, define An = Bn = {n},

• if s | n and st ∤ n, define An = {n}, and Bn =
{

n
s
, . . . , n

s

}
, where there are s copies of

n
s
,

• if s ∤ n, define An = {n, . . . , n}, where there are t copies of n, and Bn = {tn}.

By definition, both the Ai and Bi are pairwise disjoint families of multisets. Also, for each

i, Ai and Bi have the same sum. Thus, the two families are sieve-equivalent.
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Now, A0 consists of all the s-regular, t-distinct partitions, and B0 consists of all the s-distinct,

t-regular partitions. So, applying O’Hara’s algorithm, which repeatedly replaces multisets

Ai appearing in the partition with the corresponding Bi, we get a bijection from RDs,t(n)

to RDt,s(n).

Theorem 2.16. If (ϕsϕt)
k(λ) = µ for λ ∈ RDs,t(n) and µ ∈ RDt,s(n), then µ is also the

image of λ in O’Hara’s bijection.

Proof. Let µ′ be the image of λ from O’Hara’s bijection. By Lemma 2.5, we can go from µ

to λ using only moves that merge s or t equal parts, or do the reverse.

The swaps in O’Hara’s algorithm are also of this form, so we can then go from λ to µ′ using

moves of this form. So, we can go from µ to µ′ using only moves that merge s or t equal

parts, or the reverse. By Theorem 2.6, this implies µ = µ′. ■

Consider now Lemma 2 from [5], which, in this case, implies that given any partition λ ⊢ n,

there is at most one partition in RDs,t(n) which can be reached by swapping multisets Ai

for Bi or vice-versa.

This is similar to Theorem 2.6, if we take λ ∈ RDs,t(n). In fact, in the second case from the

proof of our theorem, where logs(t) ∈ Q, it is exactly equivalent.

Since we start with an s-regular, t-distinct partition, the sum of parts in S1 of λ is less than

a−1∑
i=0

(t− 1)(mi) < tma = st.

So, we will never reach any multiple of st. Thus, any reachable partitions using our moves

are also reachable making swaps of the form defined by O’Hara.

In particular, we only ever merge t copies of parts that are not divisible by s, or s copies

of parts that are not divisible by t, or perform the inverse operations. To complete the

argument, take λ ∈ RDs,t(n). Since λ is reachable from itself (by doing nothing), no other

µ ∈ RDs,t(n) is reachable.

However, in the first case from the proof, our result is more general. For instance, if we take

s = 6 and t = 4, we may start from the partition λ = (161, 42) ∈ RDs,t(24). Then, in our

proof, we allow the sequence of operations

(161, 42) → (46) → (241).

However, 24 = st is never reachable using swaps in O’Hara’s setup, since multiples of st are

always fixed.

19



Maximus Lu Combinatorial Results in Partition Theory

In fact, for some λ ∈ RDs,t(n), it is possible to reach a partition in RDt,s(n) with iterations

of ϕsϕt even when reaching intermediate partitions unreachable from O’Hara’s algorithm. As

an explicit example, we may take the case of s = 4, t = 6, and λ = (64, 34, 12) ∈ RD4,6(38),

for which

(ϕsϕt)
3(λ) = (241, 26, 12),

which contains 24 = st as a part, and

(ϕsϕt)
10(λ) = (161, 81, 42, 22, 12) ∈ RD6,4(38).

2.4 Small Values of n

We now characterize the behavior of ϕsϕt on RDs,t(n) for n ≤ lcm(s, t) + min(s, t).

Definition. Let P(n) be the set of all partitions of n, and let p(n) = |P(n)|.

In each of the three theorems below, let s, t > 1 be integers such that s ̸= tk and t ̸= sk for

any integer k and gcd(s, t) > 1.

Theorem 2.17. If n < lcm(s, t), ϕsϕt(λ) ∈ RDt,s(n) for all λ ∈ RDs,t(n).

Proof of Theorem 2.17. For λ ∈ RDs,t(n), ϕt(λ) is both s-regular and t-regular. So, ϕsϕt(λ)

is s-distinct.

In particular, µ = ϕsϕt(λ) ̸∈ RDt,s(n) if and only if µ is not t-regular. Since ϕt(λ) is s-

regular, ϕs repeatedly merges s equal parts. So, ϕsϕt(λ) is not t-regular if and only if this

merging creates a part that is a multiple of t. Note that any part created by merging must

also be a multiple of s, and thus any multiple of t is at least lcm(s, t).

So, when n < lcm(s, t), all parts of ϕsϕt(λ) are less than lcm(s, t), and thus ϕsϕt(λ) is

t-regular. ■

Theorem 2.18. If lcm(s, t) ≤ n < lcm(s, t) + min(s, t), all but p(n − lcm(s, t)) partitions

λ ∈ RDs,t(n) satisfy ϕsϕt(λ) ∈ RDt,s(n).

Furthermore, the λ ∈ RDs,t(n) that fail are exactly the partitions such that ϕsϕt(λ) =

(lcm(s, t)1) ∪ µ, where µ ∈ P(n− lcm(s, t)). For these λ, we have (ϕsϕt)
2λ ∈ RDs,t(n).

Proof of Theorem 2.18. Suppose lcm(s, t) ≤ n < lcm(s, t) + min(s, t). As shown above,

lcm(s, t) (or some multiple) must appear in ϕsϕt(λ) if ϕsϕt(λ) ̸∈ RDt,s(n). Since min(s, t) <

lcm(s, t), lcm(s, t) must appear in ϕsϕt(λ) with multiplicity exactly 1.

Let sℓ and tk be the largest powers of s and t, respectively, that divide lcm(s, t).
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Claim. For any µ ⊢ n− lcm(s, t), ϕsϕt(lcm(s, t)1 ∪ µ) ∈ RDt,s(n).

Proof. Since n− lcm(s, t) < t, all parts of µ are less than t, and µ is t-distinct. So,

ϕt(lcm(s, t)1 ∪ µ) =

(
lcm(s, t)

tk

)tk

∪ µ.

This partition is t-regular, since tk is the largest power of t dividing lcm(s, t). It is also

s-regular, since lcm(s, t) < st, so lcm(s,t)
tk

< s. Thus, ϕsϕt(lcm(s, t)1 ∪ µ) is s-distinct.

We now show it is also t-regular. Note that the only part of ϕt(lcm(s, t)1 ∪ µ) that can

appear s or more times is lcm(s,t)
tk

. Also, ϕt(lcm(s, t)1 ∪ µ) is t-regular, since lcm(s, t)1 ∪ µ is

t-distinct.

By the same argument in the proof of Theorem 2.17, ϕsϕt(lcm(s, t)1 ∪ µ) is not t-regular if

and only if it contains lcm(s, t) as a part. Since lcm(s,t)
tk

is the only part that is merged when

we apply ϕs, this is possible only if

sm · lcm(s, t)

tk
= lcm(s, t)

for some m. So, logs(t) ∈ Q. In particular, either s | t or t | s. Rearranging the above

equality, we have
lcm(s, t)

tk
=

lcm(s, t)

sm
.

If s | t, then the LHS is equal to 1, so t = sm. Similarly, if t | s, s = tk. Both these cases are

impossible, by assumption. So, ϕsϕt(lcm(s, t) ∪ µ) ∈ RDt,s(n). □

Note that the partitions λ ∈ RDs,t(n) such that ϕsϕt(λ) ̸∈ RDt,s(n) are exactly those with

ϕsϕt(λ) = lcm(s, t)1 ∪ µ, for some µ ⊢ n− lcm(s, t).

By the above claim (swapping s and t), every such µ gives such a λ. Furthermore, for each

such λ, we have

(ϕsϕt)
2λ = ϕsϕt(lcm(s, t)1 ∪ µ) ∈ RDt,s.

Finally, since there are exactly p(n− lcm(s, t)) choices of µ, there are exactly p(n− lcm(s, t))

choices of λ where ϕsϕt(λ) ̸∈ RDt,s(n). ■

Theorem 2.19. When n = lcm(s, t) + min(s, t), all but p(min(s, t)) − 1 partitions λ ∈
RDs,t(n) satisfy ϕsϕt(λ) ∈ RDt,s(n).

The partitions λ such that ϕsϕt(λ) = (lcm(s, t)1) ∪ µ, for µ ∈ P(min(s, t)) and µ ̸=
(min(s, t)1), (1min(s,t)) satisfy (ϕsϕt)

2λ ∈ RDs,t(n).

Define µ1 = (lcm(s, t)1) ∪ (1min(s,t)) and µ2 = (lcm(s, t)1) ∪ (min(s, t)1). Then,
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• If s < t, ϕsϕt(λ) = µ1 is impossible, and when λ = ϕtϕs(µ2), (ϕsϕt)
kλ ̸∈ RDt,s(n) for

any k.

• If s > t, ϕsϕt(λ) = µ2 is impossible, and when λ = ϕtϕs(µ1), (ϕsϕt)
kλ ̸∈ RDt,s(n) for

any k.

In particular, there is exactly one λ ∈ RDs,t(n) for which iterating ϕsϕt fails to send λ to a

partition in RDt,s(n). For this λ, we have (ϕsϕt)
4λ = λ.

Remark. We can alternatively describe the partition λ ∈ RDs,t(lcm(s, t) + min(s, t)) that

does not map to RDt,s(lcm(s, t) + min(s, t)) as

ϕt

((
lcm(s, t)

sℓ

)sℓ

∪ 1min(s,t)

)
,

where sℓ is the largest power of s dividing lcm(s, t).

Proof of Theorem 2.19. We use the same notation as in the above proofs.

In this case, n = lcm(s, t)+min(s, t). As in the proofs of the previous parts, if lcm(s, t) does

not appear in ϕsϕt(λ), then ϕsϕt(λ) ∈ RDt,s(n).

Furthermore, if ϕsϕt(λ) = lcm(s, t)1 ∪ µ, where µ is not equal to either min(s, t)1 or 1min(s,t),

then µ is s-regular, t-regular, and min(s, t)-distinct, and the argument from the proof of

Theorem 2.18 still works. In particular, in these cases, (ϕsϕt)
2λ ∈ RDt,s(n). There are

p(min(s, t))− 2 such choices of µ, and hence p(min(s, t))− 2 such λ.

Now, recall that we defined above the partitions µ1 = (lcm(s, t)1) ∪ (1min(s,t)) and µ2 =

(lcm(s, t)1) ∪ (min(s, t)1). If s > t, we have

ϕs(µ1) =

(
lcm(s, t)

sℓ

)sℓ

∪ 1t,

ϕs(µ2) =

(
lcm(s, t)

sℓ

)sℓ

∪ t1.

Recall that gcd(s, t) > 1, so lcm(s,t)
sℓ

< t. Thus,

ϕtϕs(µ2) = ϕt

((
lcm(s, t)

sℓ

)sℓ

∪ t1

)
= ϕt

(
lcm(s, t)

sℓ

)sℓ

∪ ϕt(t
1) = ϕt

(
lcm(s, t)

sℓ

)sℓ

∪ 1t,

where the second equality follows since
(

lcm(s,t)
sℓ

)sℓ
and t1 do not have any common parts.

Note that ϕtϕs(µ2) is not t-distinct, and thus ϕsϕt(λ) = µ2 is not possible for λ ∈ RDs,t(n).
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We also have

ϕtϕs(µ1) = ϕt

((
lcm(s, t)

sℓ

)sℓ

∪ 1t

)
.

Since ϕs(µ1) is t-regular, ϕtϕs(µ1) is t-distinct. Using a similar argument as in the proof

of Theorem 2.18, ϕtϕs(µ1) cannot contain lcm(s, t) as a part, and is thus s-regular. So,

ϕtϕs(µ1) ∈ RDs,t(n).

The case when s < t is similar. In this case, we have

ϕs(µ1) =

(
lcm(s, t)

sℓ

)sℓ

∪ s1,

ϕs(µ2) =

(
lcm(s, t)

sℓ

)sℓ

∪ 1s,

so

ϕtϕs(µ1) = ϕt

((
lcm(s, t)

sℓ

)sℓ

∪ s1

)
= ϕt

(
lcm(s, t)

sℓ

)sℓ

∪ ϕt(s
1) = ϕt

(
lcm(s, t)

sℓ

)sℓ

∪ s1

and

ϕtϕs(µ2) = ϕt

((
lcm(s, t)

sℓ

)sℓ

∪ 1s

)
.

Thus, ϕtϕs(µ1) is not s-regular, so ϕsϕt(λ) = µ1 is impossible. Since lcm(s,t)
sℓ

< t, ϕt

(
lcm(s,t)

sℓ

)sℓ
is t-distinct, so ϕtϕs(µ2) is also t-distinct, as lcm(s,t)

sℓ
̸= 1. Note that ϕs(µ2) is s-regular, t-

regular. Again, by the same argument as in Theorem 2.18, lcm(s, t) cannot appear in

ϕtϕs(µ2), so ϕtϕs(µ2) is also s-regular.

Hence, ϕtϕs(µ2) ∈ RDs,t(n).

As mentioned in the remark, the λ mapping to the valid µi in both cases is equal to

ϕt

((
lcm(s, t)

sℓ

)sℓ

∪ 1min(s,t)

)
∈ RDs,t(n).

We show that for this choice of λ, we have (ϕsϕt)
4λ = λ, and (ϕsϕt)

mλ ̸∈ RDt,s(n) for any

m. First, if λ ∈ RDt,s(n), then λ is fixed by both ϕs and ϕt, which is clearly not the case,

since µ1, µ2 ̸∈ RDs,t(n).

23



Maximus Lu Combinatorial Results in Partition Theory

Next, we have

ϕsϕt(λ) = ϕs

((
lcm(s, t)

sℓ

)sℓ

∪ 1min(s,t)

)

= ϕs

((
lcm(s, t)

sℓ

)sℓ
)

∪ ϕs(1
min(s,t))

= lcm(s, t)1 ∪ ϕs(1
min(s,t)).

This is not t-regular, and hence is not in RDt,s(n).

Continuing,

ϕt(lcm(s, t)1 ∪ ϕs(1
min(s,t))) = ϕt(lcm(s, t)1) ∪ ϕtϕs(1

min(s,t))

=

(
lcm(s, t)

tk

)tk

∪min(s, t)1.

So, we have

(ϕsϕt)
2λ = ϕs

((
lcm(s, t)

tk

)tk

∪min(s, t)1

)
.

Note that the argument from above with µ1 and µ2 shows that (ϕsϕt)
2λ ̸∈ RDt,s(n) (where

we need to swap the roles of s and t in the proof).

Claim. The partitions λ and (ϕsϕt)
2λ are both max(s, t)-distinct and max(s, t)-regular.

Proof. First, consider when s < t. Recall that

λ = ϕt

((
lcm(s, t)

sℓ

)sℓ

∪ 1min(s,t)

)
.

We show that (
lcm(s, t)

sℓ

)sℓ

∪ (1min(s,t)) =

(
lcm(s, t)

sℓ

)sℓ

∪ 1s

is t-regular and t-distinct. This then implies that λ is t-regular and t-distinct.

It suffices to show that sℓ < t, since t ∤ lcm(s,t)
sℓ

. If s | t, then lcm(s, t) = t. Since t is not a

power of s, sℓ < t. If s ∤ t, then

lcm(s, t)

s
=

t

gcd(s, t)
,
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which is coprime with s
gcd(s,t)

> 1. So, s2 ∤ lcm(s, t) in this case, so sℓ = s < t. Thus, λ is

t-distinct and t-regular.

Note that lcm(s, t) < st < t2, so k = 1. Recall that

(ϕsϕt)
2λ = ϕs

((
lcm(s, t)

tk

)tk

∪min(s, t)1

)

= ϕs

((
lcm(s, t)

t

)t

∪ s1

)

= ϕs

(
lcm(s, t)

t

)t

∪ ϕs(s
1)

= ϕs

(
lcm(s, t)

t

)t

∪ 1s.

As shown above, this is t-regular, since it does not contain lcm(s, t) as a part. Thus, it

suffices to show that this is t-distinct. If s | t, this is equal to ϕs(1
t) ∪ 1s. Since s | t, the

multiplicity of 1 in this partition is equal to s, and the multiplicity of any other part is at

most t
s
.

If s ∤ t, lcm(s,t)
t

̸= 1. Thus, since s < t, ϕs merges some number of copies of lcm(s,t)
t

, and the

partition is again t-distinct. So, in both cases, (ϕsϕt)
2λ is t-regular and t-distinct.

We now consider the case where s > t. The arguments are similar.

We have

λ = ϕt

((
lcm(s, t)

s

)s

∪ 1t
)
.

If t | s, this equals
ϕt(1

s+t).

As above, s = lcm(s, t) cannot appear in this partition, so this is s-regular. Since t | s and

1 < t < s, all parts have multiplicity at most s+t
t

< s, so this partition is s-distinct as well.

If t ∤ s, lcm(s,t)
s

̸= 1, so

λ = ϕt

(
lcm(s, t)

s

)s

∪ ϕt(1
t) = ϕt

(
lcm(s, t)

s

)s

∪ t1.

Since t < s, ϕt merges some number of copies of lcm(s,t)
s

, and the partition is again s-distinct.

So, λ is s-regular and s-distinct.
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For (ϕsϕt)
2λ, we have

(ϕsϕt)
2λ = ϕs

((
lcm(s, t)

tk

)tk

∪ t1

)
,

so it suffices to show that (
lcm(s, t)

tk

)tk

∪ t1

is s-regular and s-distinct.

By a similar argument as in the other case, we have tk < s, so this partition is s-distinct.

Since lcm(s,t)
tk

, t < s, it is also s-regular, as desired. □

We now show that (ϕsϕt)
4λ = λ. The argument is similar to the one used in the proof of

Theorem 2.10. First, if s < t, then

(ϕsϕt)
2λ = ϕtϕsϕtλ = (ϕtϕs)

2λ,

so λ = (ϕsϕt)
4λ. Similarly, if s > t,

(ϕsϕt)
2λ = ϕt(ϕsϕt)

2λ = (ϕtϕs)
2λ,

and we again have λ = (ϕsϕt)
4λ.

It now only remains to check that (ϕsϕt)
3λ ̸∈ RDt,s(n). First, if s > t, then

(ϕsϕt)
3λ = ϕtϕsλ = ϕtλ =

(
lcm(s, t)

sℓ

)sℓ

∪ 1t,

which is not s-distinct.

If s < t,

(ϕsϕt)
3λ = ϕs(ϕtϕs)

2λ = ϕs(ϕsϕt)
2λ =

(
lcm(s, t)

tk

)tk

∪ s1,

which is again not s-distinct, since t > s.

So, (ϕsϕt)
mλ ̸∈ RDt,s(n) for any m, as desired. ■
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3 Partitions with Designated Summands

We prove the congruences conjectured by Herden et al. at the end of [2], and present some

more general statements.

3.1 Notation

We use the same notation as in [2].

Definition. Let PDk(n) be the number of partitions with designated summands of n where

no part is divisible by k.

Recall that a partition with designated summands is one in which exactly one part of each size

is marked with ’. For example, (4′, 2, 2′, 1′, 1, 1) is counted by PD3(11), but (3
′, 3, 2′, 1, 1′, 1)

is not.

Using this notation, we can now state the congruences listed in Conjecture 1 of [2].

Theorem 3.1 (Conjecture 1, [2]). For n ≥ 0, the following hold:

PD2(16n+ 12) ≡ 0 (mod 4),

PD2(24n+ 20) ≡ 0 (mod 4),

PD2(25n+ 5) ≡ 0 (mod 4),

PD2(32n+ 24) ≡ 0 (mod 4),

PD2(48n+ 26) ≡ 0 (mod 4),

PD9(54n+ 3r) ≡ 0 (mod 3), for r ∈ {5, 11, 15, 17}.

The results presented below are more or less direct consequences of Theorems 10, 11, and

19 given by Herden et al.

We first prove a generalization encompassing the first and fourth congruences, then a gener-

alization of both the second and fifth congruences. Finally, we will prove the third and sixth

congruences separately, and give a slight generalization of the third congruence.
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3.2 Proofs of Congruences

3.2.1 First and Fourth Congruences

Theorem 3.2. Let n be a positive integer that is not the sum of two perfect squares. Equiv-

alently, νp(n) is odd for some p ≡ 3 (mod 4). Then,

PD2(n) ≡ 0 (mod 4).

Proof. We first consider the case where n is even. Write n = 2m. By Theorem 11 of [2],∑
n≥0

PD2(2m)qm ≡ 1 + 2
∑

k≥1, 3∤k

qk
2

+
∑

k,ℓ≥1, 3∤k,ℓ

qk
2+ℓ2 (mod 4).

Note that since m = n
2
, νp(m) is odd for some p ≡ 3 (mod 4), so m is also not the sum of

two squares. Thus, the coefficient of qm in the above series is 0, as desired.

Now, consider the case when n is odd. Write n = 2m+ 1. By Theorem 10 of [2], PD2(n) is

congruent modulo 4 to the number of solutions to

m = 3j(3j − 1) + 3k(3k − 1).

Rearranging, this equation becomes

2n = 4m+ 2 = 36j2 − 12j + 1 + 36k2 − 12k + 1 = (6j − 1)2 + (6k − 1)2.

Since n is not the sum of two squares, 2n is not either, so PD2(n) ≡ 0 (mod 4) in this case

as well. ■

As a corollary, we obtain Theorem 1.2 of Sellers from [6].

Corollary 3.3 (Theorem 1.2, [6]). For all α ≥ 0 and all n ≥ 0,

PD2(2
α(4n+ 3)) ≡ 0 (mod 4).

Taking the special cases α = 2 and α = 3 give the first and fourth congruences conjectured

by Herden et al., respectively.
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3.2.2 Second and Fifth Congruences

Theorem 3.4. Let n be a positive integer such that n is not a perfect square, and n ̸≡ 2

(mod 3). Then,

PD2(2n) ≡ 0 (mod 4).

Proof. We again use Theorem 11 from [2], which states that∑
n≥0

PD2(2n)q
n ≡ 1 + 2

∑
k≥1, 3∤k

qk
2

+
∑

k,ℓ≥1, 3∤k,ℓ

qk
2+ℓ2 (mod 4).

Since n is not a perfect square, the first summation does not contain the term qn. Also, if

3 ∤ k, ℓ, we must have k2 + ℓ2 ≡ 2 (mod 3), so the second summation also does not contain

a term of the form qn.

Thus, the coefficient of qn is 0 mod 4, as desired. ■

This theorem implies the second and fifth congruences conjectured in [2].

Corollary 3.5. We have

PD2(24n+ 20) ≡ 0 (mod 4),

PD2(48n+ 26) ≡ 0 (mod 4).

Proof. Note that 12n+ 10, 24n+ 13 ̸≡ 2 (mod 3). Also, 2 and 5 are not quadratic residues

modulo 4 and 8, respectively, so 12n + 10 and 24n + 13 are not squares. Both results then

follow from Theorem 3.4. ■

3.2.3 Third Congruence

We now prove the third congruence:

PD2(25n+ 5) ≡ 0 (mod 4).

We first prove a preliminary lemma.

Lemma 3.6. Let n be a positive integer. The number of solutions to n = k2+ℓ2 with k, ℓ ∈ Z
is

• 0 if νp(n) is odd for any p ≡ 3 (mod 4),
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• 4
∏

p≡1 (mod 4)(νp(n) + 1) otherwise, where the product is over primes p ≡ 1 (mod 4).

Proof. Since −1 is not a quadratic residue modulo any prime p ≡ 3 (mod 4), we have

p | k2 + ℓ2 if and only if p | k, ℓ when p ≡ 3 (mod 4). Thus, νp(n) must be even for all p ≡ 3

(mod 4).

Now, consider the factorization of n in Z[i], up to units. Recall that Z[i] is a UFD, and

the irreducible elements (up to units) are exactly the primes p ∈ Z with p ≡ 3 (mod 4),

π2 = 1 + i, and pairs of conjugates πp, πp, where p ≡ 1 (mod 4) and |πp| = |πp| =
√
p.

Note that there is a bijection between solutions (k, ℓ) and elements k + ℓi ∈ Z[i] with

|k + ℓi| =
√
n. For each such α with |α| =

√
n, we have αα = n. Thus, each irreducible

factor appears equally often on both sides.

Thus, for each p ≡ 3 (mod 4), p must appear in the factorization of α exactly 1
2
νp(n) times.

Likewise, π2 must appear ν2(n) times. For p ≡ 1 (mod 4), there are νp(n) + 1 possibilities

for the factors πp, πp, namely

πνp(n)
p , πνp(n)−1

p πp, . . . , πp
νp(n).

Since factorizations are unique only up to units, and the units in Z[i] are ±1,±i, we multiply

by another factor of 4. This gives the desired formula. ■

Theorem 3.7. For any prime p ≡ 5 (mod 24) and integer n ≥ 0, we have

PD2(p
2n+ p) ≡ 0 (mod 4).

Note that taking p = 5 gives the third congruence.

Proof. We split into cases based on the parity of n.

Case 1: n is even.

Then, p2n + p is odd. As shown above, by Theorem 10 of [2], PD2(p
2n + p) is equivalent

modulo 4 to the number of integer solutions to

2p(pn+ 1) = 2p2n+ 2p = (6k − 1)2 + (6ℓ− 1)2.

If there are no solutions, we are immediately done. Otherwise, the LHS must be 2 mod 3.

Since p ≡ 2 (mod 3), this implies pn + 1 ≡ 2 (mod 3). Since n is even, pn + 1 is odd. So,

for some odd prime q ̸= p, νq(pn + 1) is odd. If q ≡ 3 (mod 4), there are no solutions, so

assume q ≡ 1 (mod 4).
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Then, since 2p(pn + 1) ≡ 2 (mod 4), all solutions to 2p(pn + 1) = a2 + b2 have a, b both

odd. Furthermore, for a fixed solution (a, b) to a2 + b2 = 2p(pn+ 1), all of

(a, b), (a,−b), (−a, b), (−a,−b)

are also solutions, and exactly one pair has both elements congruent to −1 mod 6.

So, by Lemma 3.6, the number of solutions to

2p(pn+ 1) = (6k − 1)2 + (6ℓ− 1)2,

is equal to
∏

r≡1 (mod 4)(νr(2p
2n+ 2p) + 1).

Note that taking r = p and r = q gives two even terms in the product, so the product is

divisible by 4. Thus, PD2(p
2n+ p) ≡ 0 (mod 4).

Case 2: n is odd.

Then, p2n+ p is even. Note that p2n+p
2

is not a perfect square, since νp

(
p2n+p

2

)
= 1. Thus,

again by Theorem 11 of [2], PD2(p
2n+ p) is equivalent modulo 4 to the number of solutions

to p2n+p
2

= k2 + ℓ2, where 3 ∤ k, ℓ and k, ℓ are positive integers.

If there are no solutions, we are done. Otherwise, by Lemma 3.6, the number of solutions is

∏
r≡1 (mod 4)

(
νr

(
p2n+ p

2

)
+ 1

)
=

∏
r≡1 (mod 4)

(νr(p
2n+ p) + 1),

since we require k and ℓ to be positive and k, ℓ ̸= 0 for any solution (k, ℓ).

Since p2n + p = p(pn + 1), p ∤ pn + 1, and p ≡ 1 (mod 4), this product is even. If it is not

divisible by 4, we must have pn+1 = a2 or pn+1 = 2a2 for some integer a, since νr(pn+1)

is even for all r ≡ 3 (mod 4).

However, recall that 3 ∤ k, ℓ, so p2n+p = 2(k2+ℓ2) ≡ 1 (mod 3). Thus, pn+1 ≡ 2 (mod 3),

so pn+ 1 is not a square.

It remains to show that pn+1
2

is not a square. Since p ≡ 5 (mod 8),(
2

p

)
= (−1)(p

2−1)/8 = −1,

where
(•
p

)
is the Legendre symbol. So, 1

2
is not a quadratic residue modulo p. Hence, pn+1

2

is not a perfect square. Thus, for some odd prime q ≡ 1 (mod 4) with q ̸= p, we must have

νq(p
2n+ p) odd, which finishes. ■
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3.2.4 Sixth Congruence

Finally, we prove the last conjectured congruence.

Theorem 3.8. Let n be a non-negative integer. For r ∈ {5, 11, 15, 17},

PD9(54n+ 3r) ≡ 0 (mod 3).

Proof. By Theorem 19 of [2], PD9(3n) is equivalent modulo 3 to the number of solutions to

n = k2
0 + k′

0
2
+ 3k2

1 + 3k′
1
2
,

where km, k
′
m ∈ Z,N, when km, k

′
m are even or odd, respectively.

Note that the number of odd km, k
′
m has the same parity as n. In particular, for fixed n,

the parity is fixed. Thus, allowing the km, k
′
m to be any integers multiplies the number of

solutions (when considered modulo 3)by 2n.

So, it suffices to show that the number of solutions to

m = a2 + b2 + 3c2 + 3d2

is a multiple of 3, when m ≡ 5, 11, 15, 17 (mod 18) and a, b, c, d ∈ Z.

In the case r = 15, we have 3 | a, b. Writing a = 3e, b = 3f , this reduces to the equation

6n+ 5 = c2 + d2 + 3e+ 3f,

for some n. The cases r = 5, 11, 17 also give m ≡ 5 (mod 6). Thus, it suffices to show that

the number of solutions to the equation

m = a2 + b2 + 3c2 + 3d2

is divisible by 3 when m ≡ 5 (mod 6).

We claim the number of solutions to the above equation is congruent modulo 3 to the number

of ways to write 6n+ 5 as the sum of eight squares.

This follows by considering the generating functions and applying the Frobenius endomor-

phism. We instead present a combinatorial argument. Consider all solutions to

n = a21 + · · ·+ a28,
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and take the multisets S1 = {a1, a2, a3}, S2 = {a4, a5, a6}. Then, define the map

(a1, . . . , a8) 7→ (S1, S2, a7, a8).

Note that for any fixed choice of (S1, S2, a7, a8), the number of solutions (a1, . . . , a8) in

the preimage is a multiple of 3 unless each of S1 and S2 contain three equal elements.

Furthermore, in the case where S1 and S2 both contain three equal elements, there is exactly

one solution in the preimage. This proves the congruence.

Now, a result of Jacobi, stated in [7], states that the number of ways to express a positive

integer m as the sum of eight squares is

16
∑
d|m

(−1)m+dd3.

Setting m = 6n+ 5, all factors of m are odd, so (−1)m+d = 1 for all d | m.

Thus, we have

16
∑
d|m

(−1)m+dd3 ≡
∑
d|m

d3 ≡
∑
d|m

d (mod 3).

Since m ≡ 2 (mod 3), there exists some p ≡ 2 (mod 3) with νp(m) odd. So, 3 | σ(pνp(m)).

We also have σ(pνp(m)) | σ(m), which finishes. ■

33



Maximus Lu Combinatorial Results in Partition Theory

4 A Connection Between the Andrews-Merca Identity

and the Beck Identity of the First Kind

4.1 Definitions and Statement of Result

We generalize some definitions by Herden et al. from [1].

Definition. Let Dk(n) denote the set of all k-distinct partitions of n and Ok(n) denote the

set of all k-regular partitions of n.

Definition. Given two partitions λ ⊢ n and µ ⊢ m, let λ ∪ µ ⊢ m+ n be the partition such

that the multiplicity of any integer k in λ∪µ is the sum of the multiplicities of k in λ and µ.

Definition. Let as,t(n) be the total number of parts (with multiplicity) that are divisible

by s, among all the t-distinct partitions of n.

For example, 3-distinct partitions of 5 are

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1),

so we have

a2,3(5) = 0 + 1 + 1 + 0 + 2 = 4.

Definition. We define the following sets:

• Bs,t,0(n) = {(λ, a, b) | a, b ∈ N, λ ∈ Ot(n− ab), s | a, t | b},

• Bs,t,1(n) = {(λ, a, b) | a, b ∈ N, λ ∈ Ot(n− ab), s | a, t ∤ b},

• Cs,t,0(n) = {(λ, a, b) | a, b ∈ N, λ ∈ Dt(n− ab), t | a, s | b},

• Cs,t,1(n) = {(λ, a, b) | a, b ∈ N, λ ∈ Dt(n− ab), t ∤ a, s | b}.

Then, let bs,t,i(n) = |Bs,t,i(n)| and cs,t,i(n) = |Cs,t,i(n)| for i ∈ {0, 1}. Also, define Bs,t(n) =

Bs,t,0(n) ∪ Bs,t,1(n), and Cs,t(n) = Cs,t,0(n) ∪ Cs,t,1(n)

With these definitions in mind, we now state the main result of this section, generalizing

Theorem 2 of [1].

Theorem 4.1. We have bs,t,0(n) = cs,t,0(n), bs,t,1(n) = cs,t,1(n), and

as,t(n) = bs,t,1(n)− (t− 1)bs,t,0(n) = cs,t,1(n)− (t− 1)cs,t,0(n).
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We show below that this theorem specializes not only to the Andrews-Merca identity gener-

alized by Herden et al., but also to a general form of the Beck identity of the first kind.

Example. Continuing with s = 2, t = 3, n = 5 from above, we have the sets

B2,3,0(5) = ∅,
B2,3,1(5) = {((2, 1), 2, 1), ((1, 1, 1), 2, 1), ((1), 2, 2), ((1), 4, 1)},
C2,3,0(5) = ∅,
C2,3,1(5) = {((2, 1), 1, 2), ((3), 1, 2), ((1), 2, 2), ((1), 1, 4)},

for which bs,t,1 = 4 = cs,t,1 and bs,t,0 = 0 = cs,t,0.

4.2 Generating Function Proof

We first compute the generating function for as,t.

Theorem 4.2. The generating function for as,t(n) is

∞∑
n=1

as,t(n)q
n =

(qt; qt)∞
(q; q)∞

∞∑
n=1

(
qsn

1− qsn
− tqstn

1− qstn

)
,

where we use the q-Pochhammer symbol

(a; q)∞ =
∞∏
i=0

(1− aqi).

Proof. We have

∞∑
n=1

as,t(n)q
n =

 ∏
s∤n,n∈N

1− qtn

1− qn

 ∂

∂z

(
∞∏

m=1

(1 + zqsm + · · ·+ zt−1q(t−1)sm)

)∣∣∣∣∣
z=1

=
∞∏
n=1

1− qtn

1− qn
·

∞∑
m=1

∂

∂z
log(1 + zqsm + · · ·+ zt−1q(t−1)sm)

∣∣∣
z=1

=
(qt; qt)∞
(q; q)∞

∞∑
m=1

qsm + 2q2sm + · · ·+ (t− 1)q(t−1)sm

1 + qsm + · · ·+ q(t−1)sm

=
(qt; qt)∞
(q; q)∞

∞∑
m=1

(1− qm)(qsm + 2q2sm + · · ·+ (t− 1)q(t−1)sm)

1− qstm

=
(qt; qt)∞
(q; q)∞

∞∑
m=1

qsm + q2sm + · · ·+ q(t−1)sm − (t− 1)qstm

1− qstm
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=
(qt; qt)∞
(q; q)∞

∞∑
m=1

(
qsm + q2sm + · · ·+ qstm

1− qstm
− tqstm

1− qstm

)
=

(qt; qt)∞
(q; q)∞

∞∑
m=1

(
qsm

1− qsm
− tqstm

1− qstm

)
. ■

Analytic Proof of Theorem 4.1. We have the generating functions

∞∑
n=1

(bs,t,0(n) + bs,t,1(n))q
n =

(qt; qt)∞
(q; q)∞

∞∑
m=1

qsm

1− qsm
=

∞∑
n=1

(cs,t,0(n) + cs,t,1(n))q
n.

The first equality follows by taking a = sm and choosing a t-regular partition. The second

equality follows by taking a = m, and choosing a t-distinct partition.

By a similar argument, we have

∞∑
n=1

bs,t,0(n)q
n =

(qt; qt)∞
(q; q)∞

∞∑
m=1

qstm

1− qstm
=

∞∑
n=1

cs,t,0(n)q
n.

The result follows. ■

4.3 Combinatorial Proof

We now give a combinatorial argument for Theorem 4.1. The argument is quite similar to

the argument in section 3.3 of [1], but somewhat more direct.

Combinatorial proof of Theorem 4.1. We first show that bs,t,i(n) = cs,t,i(n) for i ∈ {0, 1}.
Fix a and b. Then, by Glaisher’s theorem, |Ot(m)| = |Dt(m)| for all m, so the number of

elements counted by Bs,t,i whose last two entries are (a, b) is equal to the number of elements

counted by Cs,t,i whose last two elements are (b, a). Summing over all (a, b) finishes.

We now show that as,t(n) = cs,t,1(n) − (t − 1)cs,t,0(n). For each tuple (λ, a, b) ∈ Cs,t(n)
consider f(λ, a, b) = λ ∪ (ba) ⊢ n.

Fix µ ⊢ n and b. Consider all choices of λ and a such that (λ, a, b) ∈ Cs,t(n) and f(λ, a, b) = µ.

Such (λ, a, b) exist only if b appears in µ at least once. Furthermore, any k ̸= b must occur

in µ less than t times.

Let ℓ be the multiplicity of b in µ, and write µ = µ′ ∪ (bℓ). Then, the set of (λ, a, b) ∈ Cs,t(n)
with f(λ, a, b) = µ are exactly those such that λ = µ′ ∪ (bi) and a = ℓ − i, for each

0 ≤ i ≤ max(ℓ, t− 1).
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Now, if ℓ ≥ t, exactly one of these will be in Cs,t,0(n), since t divides exactly one element of

the set {ℓ− t+1, . . . , ℓ}, and the others will be in Cs,t,1(n). Thus, the contribution from this

pair (µ, b) to cs,t,1(n)− (t− 1)cs,t,0(n) is zero.

If ℓ < t, all of these tuples are in Cs,t,1(n), and the contribution of this (µ, b) is exactly ℓ,

which is the multiplicity of b in µ.

So, if (µ, b) has nonzero contribution, we have µ ∈ Dt(n). Furthermore, summing over all

(µ, b), the total contribution is exactly the number of multiples of s in partitions in Dt(n).

Thus, we have

cs,t,1(n)− (t− 1)cs,t,0(n) = as,t(n). ■

4.4 Special Cases

We now show that for certain choices of s and t, Theorem 4.1 implies general forms of both

the Andrews-Merca identity and the Beck identity of the first kind.

4.4.1 Andrews-Merca Identity

Consider the case s = t = k. Then, given (λ, a, b) in any of the four classes Bs,t,0, Bs,t,1,

Cs,t,0, or Cs,t,1, we can uniquely recover all three of λ, a, b from the partition λ ∪ (ab), since

there will either be exactly one part appearing more than k times or exactly one part that

is divisible by k.

Furthermore, for (λ, a, b) in Bk,k,i or Ck,k,i, we have λ∪ (ab) in Bk,i or Ck,i, respectively, where

we define Bk,i and Ck,i as in [1].

Thus, Theorem 4.1 specializes to Theorem 2 of [1] when s = t.

4.4.2 Beck Identity of the First Kind

Consider when s = 1. Then, a1,t(n) is the total number of parts in the t-distinct partitions

of n. For each (λ, a, b) ∈ B1,t(n), consider the partition f(λ, a, b) = λ ∪ (ba).

For (λ, a, b) ∈ B1,t,0(n), f(λ, a, b) is a partition with exactly one multiple of t (possibly

repeated). Further, given f(λ, a, b), we can uniquely determine all three of λ, a, b, since b is

the only part of f(λ, a, b) divisible by t.

Furthermore, for any µ ⊢ n with exactly one multiple of t, possibly repeated, there is exactly

one choice of (λ, a, b) ∈ B1,t,0(n) such that f(λ, a, b) = µ. So, b1,t,0(n) is the number of

partitions of n with exactly one multiple of t.

For (λ, a, b) ∈ Bs,t,1(n), we have f(λ, a, b) ∈ Ot(n).

37



Maximus Lu Combinatorial Results in Partition Theory

Lemma 4.3. For any µ ∈ Ot(n), the number of (λ, a, b) ∈ B1,t,1(n) with f(λ, a, b) = µ is

equal to the number of parts of µ.

Proof. Let µ = (µe1
1 , . . . , µem

m ). Then, b must appear in µ. Say b = µi for some i. Since

µ = λ ∪ (ba), 1 ≤ a ≤ ei.

For each such a, we can write µ = µ′ ∪ (ba) for a unique partition µ′ ∈ Ot(n − ab). Hence,

each choice of a gives exactly one tuple (λ, a, b) ∈ Bs,t,1(n). Summing over all b, the number

of possible (λ, a, b) is e1 + · · ·+ em, as desired. ■

Corollary 4.4. The total number of parts in all t-regular partitions of n is equal to bs,t,1(n).

We now make correspondences to the notation defined by Yang in [8]. Yang defines O1,k(n)

as the set of partitions of n with exactly one multiple of k and ℓ(λ) as the number of parts

in a partition λ.

As shown above, we have |B1,t,0(n)| = |O1,t(n)|, and

b1,t,1(n) =
∑

λ∈Ot(n)

ℓ(λ).

Also, by definition,

a1,t(n) =
∑

λ∈Dt(n)

ℓ(λ).

By Theorem 4.1, we have a1,t(n) = b1,t,0− (t−1)b1,t,1. Changing the notation, this is exactly∑
λ∈Dt(n)

ℓ(λ) =
∑

λ∈Ot(n)

ℓ(λ)− (t− 1) |O1,t(n)| ,

which rearranges to Theorem 1.5 of Yang.
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