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1 Abstract

We inspect the power operation of the complex bordism spectrum MU in order to address a recent
conjecture of Robert Burklund, Tomer M. Schlank, and Allen Yuan [BSY22] on chromatic blueshift
in the Chromatic Nullstellenstatz. We show that the conjecture holds in the case k = 1, and we
demonstrate that an algebraic analogue of the conjecture fails for higher values of k.

2 Background

We start with a review of terminology and known results about formal group laws, ring spectra and
generalized cohomology theories, and the complex bordism spectrum which we will use throughout the
paper. At the end, we introduce the chromatic blueshift conjecture.

2.1 Formal Group Laws

We briefly review the notion of formal group laws, taken from Lurie’s Chromatic Homotopy Theory
notes [Lur10].

Definition 2.1. A formal group law on a commutative ring R is a power series F ∈ RJx, yK
satisfying

• F(x,0) = x = F(0,x)

• F(x,y) = F(y,x)

• F(x, F(y,z)) = F(F(x,y),z).

As the name “formal group law” suggests, these objects mimic abelian groups in a convenient way.
To make this obvious, we can define x+F y = F (x, y) and rewrite the above identities as:

• x+F 0 = x = 0 +F x

• x+F y = y +F x

• x+F (y +F z) = (x+F y) +F z.
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In this sense, we can recast the identities above as existence of an identity (0), commutativity, and
associativity of the formal group law. It can additionally be shown that inverses exist: in particular,
that for each x there is some element y such that F (x, y) = 0.

Example. The additive formal group law is F (x, y) = x+ y.

Example. The multiplicative formal group law is F (x, y) = x+ y + xy.

Definition 2.2. A homomorphism between formal group laws F and G is a power series h(t) ∈ tRJtK
such that F (h(x), h(y)) = h(G(x, y)).

As before, we can recast this definition to resemble usual groups: h(x) +F h(y) = h(x +G y). We
give a result from Lurie of the form of such formal group law homomorphisms modulo a prime p, which
we will find useful later:

Proposition 2.3 (Lurie, Lecture 12, Claim 9). Let R be a commutative ring of prime characteristic
p. If h(t) is a homomorphism of formal group laws F,G ∈ RJx, yK, then either h = 0, or there is some
n ≥ 0 and h′(t) ∈ RJtK such that h(t) = h′(tp

n

) and h′(t) = λt+O(t2), λ ̸= 0.

In fact, we will mainly concern ourselves with one particular formal group law homomorphism,
representing the usual group idea of multiplication by an integer.

Definition 2.4. Let F (x, y) be a formal group law on a ring R. The n-series [n](t) is defined to
satisfy

• [0](t) = 0

• [n](t) = F ([n− 1](t), t) = [n− 1](t) +F t.

It isn’t hard to check that the n-series for a formal group law F is a homomorphism from F to
itself. In particular, we can apply Proposition 2.3 to it to gain some insight into its form:

Corollary 2.5. For any formal group law F on a ring R and prime p, we have that [p](t) = λtp
n

+
O(t2p

n

) mod p.

Proof. We descend to R/(p), a commutative ring in which p = 0. By Proposition 2.3, the p-series
takes the form [p](t) = h′(tp

n

) for h′(t) = λt+O(t2). So [p](t) = h′(tp
n

) = λtp
n

+O(t2p
n

).

Observe that [n](t) ∈ tRJtK. Then it makes sense to divide this by t, as below:

Definition 2.6. Let ⟨n⟩(t) be the power series in RJtK defined as:

⟨n⟩(t) = [n](t)

t
(1)

Note that in the proof of Corollary 2.5 we could instead work in R/(p, λ) and reduce the p-series
further to λ′tp

m

for some m > n. This clues us in to the idea that the most important coefficients of
the p-series are those coefficients of tp

n

-terms, and we enshrine this realization in a definition.

Definition 2.7. Let F be a formal group law over a commutative ring R, and let p be a prime number.
We define vn to be the coefficient of tp

n

in the p-series [p](t).

Example. For any formal group law F (x, y), v0 = p. This is because F (x, y) = x+y+O(x2, xy, y2),
so t+F t = 2t+O(t2), and (n− 1)t+F t = nt+O(t2).

Example. (Example 16 in Lurie, Lecture 12 ) For the multiplicative formal group law F (x, y) =
x+ y + xy, the n-series is (1 + t)n − 1. If p = 0, then [p](t) = (1 + t)p − 1 = tp mod p.

Example. (Proposition 2.17) For a generalized cohomology theory E, the E-valued cohomology
of line bundles ξ1, ξ2 satisfy a formal group law relation:

cE1 (ξ1 ⊗ ξ2) = f(cE1 (ξ1), c
E
2 (ξ2))

where f is a formal group law over E∗(∗).
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One may ask the question: what do you need to define a formal group law? Certainly, we must
need to select coefficients ci,j ∈ R, i, j ∈ N, and then we can take

F (x, y) =
∑
i,j∈N

ci,jx
iyj .

In order for F to be a formal group law, we must make sure it satisfies the conditions of Definition
2.6 above. These amount to

• ci,0 = c0,i =

{
1 if i = 1

0 otherwise

• ci,j = cj,i

•
∑

i,j∈N ci,jx
i(
∑

k,l∈N ck,ly
kzl)j =

∑
i,j∈N ci,j(

∑
k,l∈N ck,lx

kyl)izj .

The last of these cases can be, tediously, translated into a relation on the ci,j at each power xiyjzk.
What all this means, then, is that defining a formal group law is equivalent to selecting a sequence of
ci,j which satisfy the above relations. In other words, every formal group law over a ring R comes from
a map Z[ci,j ]/Q −→ R, where Q is the ideal generated by the above relations. This ring Z[ci,j ]/Q is
then the universal ring for formal group laws, which we will name here:

Definition 2.8. The Lazard ring L is the unique ring and formal group law F ∈ LJx, yK with the
universal property that for every formal group law G ∈ RJx, yK, there is a map ϕ : L −→ R such that
G is the image of F under ϕ : LJx, yK −→ RJx, yK. We have that L = Z[ci,j ]/Q and F =

∑
ci,jx

iyj.

It turns out that the Lazard ring L has a much simpler form, although we will omit the (complicated)
proof here.

Proposition 2.9 (Lurie, Lecture 2, Theorem 4). L ∼= Z[t1, t2, . . . ], where each ti has graded degree 2i.

2.2 Spectra

We discuss briefly the notion of spectra, taken largely from Zeshen Gu’s thesis [Gu22].

Definition 2.10. A spectrum is a sequence of based spaces {En}n∈Z along with structure maps
σn : ΣEn −→ En+1, where ΣEn is taken to be the based suspension.

Example. The sphere spectrum S has Sn = Sn and σn : ΣSn −→ Sn+1 the usual identity.

Example. In general, we can take the suspension spectrum Σ∞X for any based space X, with
(Σ∞X)n = ΣnX, and structure maps the obvious identities.

Example. For any abelian group G, we define the Eilenberg-Maclane spectrum HG to have
HGn = K(G,n), with structure maps ΣK(G,n) −→ K(G,n+ 1) coming from the homotopy equiva-
lence K(G,n) ≃ ΩK(G,n+ 1).

It turns out that spectra are extremely important objects, corepresenting generalized cohomology
theories.

Theorem 2.11 (Theorem 2.0.3 in Gu). Let h∗ be a generalized cohomology theory which satisfies the
wedge and Mayer-Vietoris axioms. Then there is some spectrum E such that h∗(X) = [X,En], the
homotopy classes of maps X −→ En.

Definition 2.12. Given a spectrum E, we define the E-cohomology En(X) = [X,En]. We define
the E-homology as En(X) = [Sn, X ∧ En].

Definition 2.13. The homotopy groups of a spectrum E are πn(E) = En(S) = limπn+k(Ek).

Note that for a suspension spectrum E = Σ∞X, the homotopy groups of E are the stable homotopy
groups of X. Observe also that the Eilenberg-Maclane spectrum corepresents usual cohomology:
HG∗(X) = H∗(X;G). This explains how the cohomology groups arise, but not how the usual ring
structure comes from it.
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Definition 2.14. A ring spectrum is a spectrum E, along with a unit map η : S −→ E and a
multiplication map µ : E ∧ E −→ E.

The multiplication map endows E∗ with a multiplication from E∗ ⊗ E∗ −→ E∗E −→ E. From
ring spectra, we can define another important class of spectra, those with complex orientations:

Definition 2.15. Let E be a ring spectrum. A complex orientation of E is a selection of an
element x ∈ E2(CP∞) which restricts to 1 ∈ E2(CP1) = E2(S2) = π0(E) under the usual inclusion
CP1 −→ CP∞.

Proposition 2.16 (Theorem 5.1.2 in Gu). If E is complex oriented, then E∗(CP∞) = E∗(∗)JtK, and
E∗(CP∞ × CP∞) = E∗(∗)Jx, yK.

We will usually write E∗(∗) = E∗ for brevity.

As Lurie explains, this identification of the cohomology rings of CP∞ gives us a connection between
spectra and formal group laws. Because maps to CP∞ classify line bundles, we can pull back our
complex orientation to obtain analogues of Chern classes for generalized cohomology theories. To be
specific, if f : X −→ CP∞ classifies a line bundle ξ −→ X, we obtain a map f∗ : E∗JtK = E∗(CP∞) −→
E∗(X). Then, we can take cE1 (ξ) = f∗(t) ∈ E2(X). Moreover, there is a mapm : CP∞×CP∞ −→ CP∞

which classifies the tensor product ξ ⊗ ξ of the tautological bundle ξ −→ CP∞ with itself. We can
obtain three Chern classes from this map: x ∈ E∗(CP∞ × CP∞) = E∗Jx, yK from the first ξ, y from
the second ξ, and some f(x, y) ∈ E∗Jx, yK as cE1 (ξ ⊗ ξ).

Proposition 2.17 (Lurie, Lecture 1). We can deduce that cE1 (ξ1 ⊗ ξ2) = f(cE1 (ξ1), c
E
1 (ξ2)) for some

function f and any two line bundles ξ1, ξ2 −→ X. Moreover, we can conclude from associativity and
commutativity of the tensor product of line bundles, that f must satisfy exactly the same axioms that
define formal group laws. Therefore, f induces a formal group law over E∗.

In this way, each complex orientable spectrum gives a formal group law.

2.3 The Complex Bordism Spectrum MU

Definition 2.18. We may define a cohomology theory which considers not just maps of simplices
∆n −→ X, but all oriented manifolds Z −→ X. Oriented cobordism classes of these maps give the
MU-cohomology of a space X, written MU∗(X).

One can check that MU∗ is a legitimate cohomology theory. With this conclusion, MU∗ must
come from a spectrum, which we will call MU . It turns out that there is another construction of MU ,
which gives a more clear view of its properties. We will not show these are equivalent, but we give the
construction here, adapted from Gu:

We take the tautological bundle ξn −→ BU(n) and ‘Thomify’ it, to get the bundle Th(ξn) −→
BU(n). We will take MU2n = Th(ξn) and MU2n+1 = ΣMU2n. The structure maps ΣMU2n −→
MU2n+1 are obvious. Recalling that X ∧ Sn ∼= ΣnX, we take

σ2n+1 : Σ2Th(ξn) ∼= Th(ξn) ∧ S2 ∼= Th(ξn ⊕ C) −→ Th(ξn+1).

From this second definition, we obtain a ring spectrum structure on MU : we can take the square

ξn × ξm ξn+m

BU(n)×BU(m) BU(n+m)P̂

and get a map Th(ξn)∧Th(ξm) −→ Th(ξn+m). This map induces the multiplication. In fact, MU
is a so-called E∞ ring spectrum, a commutative algebra object in spectra.

A natural question, now, is to ask whether this ring spectrum has a complex orientation, and
therefore whether we obtain a formal group law on MU∗. The answer, it turns out, is that yes,
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MU has a canonical orientation (and in fact, this is a universal complex orientation). We have that
MU2(CP∞) = [CP∞, Th(ξ1)]. Because CP∞ is, in fact, BU(1), we observe there is a natural map

CP∞ ∼= BU(1) ≃ D(ξ1) −→ D(ξ1)/S(ξ1) ∼= Th(ξ1).

Moreover, as Gu explains, this map is actually a homotopy equivalence. In particular, as we
observed earlier, this complex orientation gives rise to a canonical formal group law F on MU∗. This
formal group law is induced by a map ϕ : L −→ MU∗. Remarkably, this map is an isomorphism:

Proposition 2.19 (Gu, Theorem 5.1.4, from Quillen). The classifying map ϕ : L −→ MU∗ for the
formal group law on MU (from Proposition 2.17) is an isomorphism.

Note that this gives us an isomorphism MU∗ ∼= L ∼= Z[t1, t2, . . . ]. It isn’t clear what each of these
generators means, however, and so we will seek to find a different set of generators. Our first thought
would be taking the classes cn = [CPn] ∈ MU2n(∗). These classes do generate MU∗ rationally, but
unfortunately they fail to do so integrally. Luckily, we can compute Hazewinkel generators from
the classes cn:

Proposition 2.20 (6.2.1 in Gu, from Hazewinkel). MU∗ ∼= Z[x1, x2, . . . ], where the xi are given from
the formula

1

m
v(m)cm−1 = xm−1 +

∑
d |m,d ̸=1,m

µ(m, d)v(m)

v(d)
lm

d −1x
m
d

d−1,

where

v(m) =

{
q if m = qr, r ≥ 1

1 otherwise

and
µ(m, d) =

∏
q |m

c(q, d)

is a product ranging over primes q, with c(q, d) = 1 if v(d) = 1 or q, and otherwise c(q, d) is some
integer ≡ 1 mod q and ≡ 0 mod v(d).

Recall that earlier we mentioned MU is an E∞ ring spectrum. In general, we would like to study
genera: E∞ maps MU −→ R. These maps are usually quite difficult to understand, but we can make
sense of some of their properties with the power operations. The usual pth power operation is a
ring map

R∗ −→ R∗JαK/⟨p⟩(α)

which is induced by the E∞ properties of R. The power operation is natural in the sense that if
MU −→ R is an E∞ ring spectra map, we obtain a commutative square

MU∗ MU∗JαK/⟨2⟩(α)

R∗ R∗JαK/⟨2⟩(α)

P

f

Using this square, then, it is possible to study what sort of coefficient rings these E∞ ring spectra can
have. In general, the power operation is quite complex, but fortunately, we know what it does to the
classes cn = [CPn].

Proposition 2.21 (Gu, Theorem 6.1.3, from Johnson and Noel). Let q∗ be the quotient MU∗JαK/[p](α) −→
MU∗JαK/⟨p⟩(α). We have

q∗χ
2mP (cm) = χ2m+1

m∑
k=0

cm−k coeff((
∑
i≥0

aiz
i)−(m+1), zk),

where
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χ =

p−1∏
i=1

[i](α) ∈ MU∗JαK/[p](α)

x
∑
i≥0

aix
i =

p−1∏
i=0

(x+F [i](α)).

At this point, we have the tools to computationally approach the central conjecture of this paper.

2.4 Chromatic Blueshift Conjecture

Burklund, Schlank, and Yuan make a very general conjecture, outlined in Conjecture 9.9 of [BSY22].
We investigate a subcase, specifically restricting to A = Cp for a prime p, F = ∅, and arbitrary n ≥ 1.

Definition 2.22. The Cp-Tate fixed points R is the ring

RtCp = α−1RJαK/[p](α) (2)

Conjecture 2.23 (case of Chromatic Blueshift Conjecture). If f : MU −→ R is an E∞ map between
ring spectra such that

f(vn)
k = 0 mod (p, v1, . . . , vn−1)

then we have that
v−1
n−1R

tCp/(p, . . . , vn−2) = 0

That is, it is the trivial ring.

For example, at n = 1, this says that if f(v1)
k = 0 mod p, then p−1RtCp is the trivial ring (note

that v0 = p).

Note that we do not attempt to tackle the conjecture in the case of other finite abelian groups A
or other families of subgroups F , and rather restrict to the simplest nontrivial case of A = Cp. We will
show in the following sections that this conjecture holds in the case k = 1, but an algebraic analogue
fails in general for higher values of k. Namely, we demonstrate the following two results:

Theorem 2.24. If f : MU −→ R is an E∞ map between ring spectra and f(vn) = 0 mod (p, v1, . . . , vn−1),
then v−1

n−1R
tCp/(v0, . . . , vn−2) is the trivial ring.

Note that this directly addresses and establishes subcase of the conjecture. The next result we
show is about a purely algebraic analogue of the conjecture, and shows that it fails to hold in general
for higher k.

Theorem 2.25. At p = 2, there exists a ring R, a ring map f : MU −→ R, and an induced ring map
P̂ : R −→ RJαK/⟨2⟩(α) fitting into the commutative diagram:

MU∗ MU∗JαK/⟨2⟩(α)

R RJαK/⟨2⟩(α)

P

f

P̂

(3)

which satisfies f(v1)
2 = 0 mod 2, and yet 2−1RtCp is not the trivial ring.

Note that if R can be realized as the homotopy of a ring spectrum getting its complex orientation
from the prescribed classifying map f : MU∗ −→ R, then this would disprove the conjecture by means
of a counterexample at p = 2, k = 2.
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3 The Case k = 1

We show that the conjecture is true in the simplest cases, where the exponent is 1.

Theorem 3.1. If f : MU −→ R is an E∞ map and f(vn) = 0 mod (p, v1, . . . , vn−1), then v−1
n−1R

tCp/(v0, . . . , vn−2)
is the trivial ring.

Why would we expect this to be true? Based on Gu’s computations, we observe the following
pattern, for p = 2:

P (x1) = x2
1 + x3α+ (x4

1 + x2
1x2 + x1x3)α

2 + · · ·
P (x3) = x2

3 + (x4
1x3 + x1x

2
3 + x7)α+ · · ·

= x2
3 + x7α+ · · · mod x1

...

It turns out that P (x7) = x2
7+x15α+ · · · mod (x1, x3), and we will show that this pattern continues.

There is an analogue for higher primes p, which we will state and prove in Lemma 3.7, from which we
can readily prove the Theorem. We’ll start by building up a series of Lemmas.

Lemma 3.2. We have that [p](α) = vnα
pn

+O(α2pn

) mod (p, v1, . . . , vn−1).

Proof. We make use of Proposition 2.3. In R/(p, v1, v2, . . . , vn−1), we have p = 0, so Proposition
2.3 applies to [p](α). Because vn is the smallest vi which may not be zero, Proposition 2.3 asserts
that [p](α) = h′(αpm

) for m ≥ n, h′(t) = λt + O(t2). Hence it must be the case that [p](α) =
vmαpm

+O(α2pm

) = vnα
pn

+O(α2pn

) mod (p, v1, . . . , vn−1).

Lemma 3.3. cpn−1 = pn−1vn mod v1, . . . , vn−1.

Proof. Recall that Proposition 2.20 states that

1

m
v(m)cm−1 = xm−1 +

∑
d |m,d ̸=1,m

µ(m, d)v(m)

v(d)
lm

d −1x
m
d

d−1,

where

v(m) =

{
q if m = qr, r ≥ 1

1 otherwise

and
µ(m, d) =

∏
q |m

c(q, d)

is a product ranging over primes q, with c(q, d) = 1 if v(d) = 1 or q, and otherwise c(q, d) is some
integer ≡ 1 mod q and ≡ 0 mod v(d).

For m = p, the sum vanishes, and v(p) = p, so we conclude that cp−1 = xp−1 = v1. Taking m = pn,
observe that the sum goes through d = p, p2, p3, . . . , pn−1, and so each term of the sum will have a

factor of x
m
d

d−1 = vp
n−i

i , where i ranges over 1, 2, . . . , n− 1. Operating mod each of v1, v2, . . . , vn−1, we
see that the sum again vanishes, and so we are left with

1

pn
p · cpn−1 = vn mod (v1, . . . , vn−1).

Multiplying by pn−1 gives the desired result.

Lemma 3.4. If pr | k for r ≥ 1, then ck−1 = 0 mod (pr, v1, . . . , vr).
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Proof. We start with r = 1. If k = p, then Lemma 3.3 tells us that cp−1 = v1 = 0 mod (p, v1). We
induct on k: if k > p, assume that the statement holds for all l < k. Then Proposition 2.20, with
m = k, gives

1

k
v(k)ck−1 = xk−1 +

∑
d | k,d ̸=1,k

µ(k, d)v(k)c k
d−1

v(d)kd
x

k
d

d−1.

We multiply through by k
v(k) and get

ck−1 =
k · xk−1

v(k)
+

∑
d | k,d ̸=1,k

d · µ(k, d)c k
d−1

v(d)
x

k
d

d−1.

Consider possible values of d on the sum in the right-hand side. If p | k
d , then c k

d−1 = 0 mod (p, v1)

by our inductive hypothesis, and v(d) | d, so this coefficient is an integer and

d · µ(k, d)c k
d−1

v(d)
x

k
d

d−1 = 0 mod (p, v1).

Otherwise, d is the maximal power of p dividing k. Note that d ̸= k, since the sum forbids this, so we
can safely say that k is not itself a prime power. In this case, k has another prime factor p′, and Gu tells

us that µ(k, d) is divisible by p in this case. Then v(d) = p | d , so the coefficient d·µ(k,d)
v(d) is an integer. So

we see that p | d·µ(k,d)
v(d) , and hence the entire sum vanishes mod (p, v1). Then in fact, ck−1 = xk−1 · k

v(k)

mod (p, v1). But we know that k > p, so either (1) k is a prime power ps, in which case k
v(k) = ps−1;

or (2) k is not a prime power, in which case k
v(k) = k. Either way, p | k

v(k) , and so it vanishes mod (p, v1).

We now turn our attention to the inductive step. Assume that the statement holds for all s < r,
and suppose r > 1. If k = pr, then Lemma 3.3 tells us that

ck−1 = cpr−1 = pr−1vr mod (v1, . . . , vr−1)

= 0 mod (pr, v1, . . . , vr−1, vr).

We will use this as an inductive base case. If k > pr, assume that the statement holds for all l < k.As
before, we first consider values of d in the right-hand sum. If pr | k

d , then c k
d−1 = 0 mod (pr, v1, . . . , vr)

by our inductive hypothesis. If this is not the case, then some maximal power ps divides k
d , where s < r.

If s = 0, then pr | d, whence it follows that d
v(d) = pr−1. Moreover, since d ̸= k, k has another prime

divisor p′, and the formula for µ(k, d) tells us this means p |µ(k, d). So in total, pr = pr−1 · p | d·µ(k,d)
v(d) ,

and so the term in the sum vanishes mod pr.

Finally, if 0 < s < r, our inductive hypothesis tells us that c k
d−1 = 0 mod (ps, v1, . . . , vs). If d is

not a prime power, then pr−s | d
v(d) and so pr divides the entire coefficient. But if d is a prime power

pt, then d
v(d) = pt−1. If k itself is a prime power pq, then our assumption k > pr implies q > r, and

thus t > n− s, so (t− 1) + s ≥ n, in which case pr again divides the entire coefficient. And at last, if
k is not a prime power, then p |µ(k, d), so once more pr divides the whole coefficient. So indeed, the
sum on the right-hand side vanishes mod (pr, v1, . . . , vr).

Now ck−1 = xk−1 · k
v(k) mod (pr, v1, . . . , vr). Again, k > pr, so either (1) k is a prime power ps

for s > r, in which case k
v(k) = ps−1; or (2) k is not a prime power, in which case k

v(k) = k. Either

way, pr | k
v(k) , and so it vanishes mod (pr, v1, . . . , vr), as required.

Lemma 3.5. If p ∤ q′, where p is a prime, and if r ≥ s, then
(
prq
psq′

)
is divisible by pr−s.

Proof. We use the formula
(
prq
psq′

)
= prq

psq′

(
prq−1
psq′−1

)
. The right-hand side simplifies to pr−sq

q′

(
prq−1
psq′−1

)
.

Because p ∤ q′, pr−s | pr−sq
q′

(
prq−1
psq′−1

)
, and hence pr−s |

(
prq
psq′

)
.
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Each of these facts builds up to the following technical Lemma. This is an important result, but
the proof is highly combinatorial, and not at all enlightening. The reader should proceed at her own
risk.

Lemma 3.6. χ2(pn−1)P (cpn−1) = pn−1vnχ
pn−1 mod (pn, v1, . . . , vn−1, ⟨p⟩(α)).

Proof. We begin with a computation from Proposition 2.21, which we recall states that

q∗χ
2mP (cm) = χ2m+1

m∑
k=0

cm−k coeff((
∑
i≥0

aiz
i)−(m+1), zk),

where

χ =

p−1∏
i=1

[i](α) ∈ MU∗JαK/[p](α)

x
∑
i≥0

aix
i =

p−1∏
i=0

(x+F [i](α)).

At m = pn − 1, this evaluates to

χ2(pn−1)P (cpn−1) = χ2pn−1

pn−1∑
k=0

cpn−k−1 coeff((
∑
i≥0

aiz
i)−pn

, zk).

First, write

h :=

∑
i≥0

aiz
i

−1

=
1

a0
+
∑
i≥1

wiz
i

for appropriate coefficients wi. For 0 ≤ k < pn, take any term zk
∏

wbi
i , for

∑
bi = pn and

∑
ibi = k.

Then we must have

coeff(hpn

, zk
∏

wbi
i ) =

(
pn

b0

)(
pn − b0

b1

)
· · ·
(
bk
bk

)
.

Write each bi = priqi for p ∤ qi. Without loss of generality, we assume each bi is nonzero (if some bj = 0
then we can just ignore it, since

(
m
0

)
= 1). Since r0 is not divisible by p, we can apply Lemma 3.5 to learn

that pn−r0 |
(
pn

b0

)
. In fact, at each index i, we know that min(r0, r1, . . . , ri−1) | (pn−b0−b1−· · ·−bi−1).

So

pmax(0,min(r0,r1,...,ri−1)−ri) |
(
pn − b0 − b1 − · · · − bi−1

bi

)
.

In total, this means that the power pM of p dividing coeff(hpn

, zk
∏

wbi
i ) is at least

M ≥ n− r0 +

k∑
i>0

max(0,min(r0, r1, . . . , ri−1)− ri).

We’d like to ignore the indices i where min(r0, r1, . . . , ri−1) − ri ≤ 0, so we index these as r0 =
rj0 , rj1 , . . . , rjN . In particular, if some ri is not among these, then ri ≥ min(r0, r1, . . . , ri−1), so that
min(r0, r1, . . . , ri−1) = min(r0, r1, . . . , ri−1, ri). In other words, at each ji, min(r0, r1, . . . , rji−1) =
min(rj0 , rj1 , . . . , rji−1). Moreover, because rji < min(r0, r1, . . . , rji−1), it must be the case that

min(rj0 , rj1 , . . . , rji−1) = rji−1 . We can thus rewrite the power of p dividing coeff(hpn

, zk
∏

wbi
i ) as at

least

M ≥ n− rj0 +

N∑
i>0

max(0,min(rj0 , rj1 , . . . , rji−1
)− rji)

= n− rj0 +

N∑
i>0

min(rj0 , rj1 , . . . , rji−1)− rji

= n− rj0 +

N∑
i>0

rji−1
− rji

= n− rjN .
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Unraveling the definitions, we have that rjN is the smallest power of p dividing any of the bi’s. So
in fact, prjN divides each bi. This implies that k =

∑
i · bi is divisible by prjN , and then that

coeff(hpn

, zk
∏

wbi
i ) is divisible by pn−rjN . If pr | k, then in any way we decompose k =

∑
i · bi with

rjN ≤ r, we get that pn−rjN divides the zk-coefficient, and pn−r | pn−rjN . So in fact, we have pn−r

always divides the zk-coefficient.

Then, by Lemma 3.4, the term cpn−k−1 = 0 mod (pr, v1, . . . , vr). If k ̸= 0, then we conclude the
zk-term vanishes mod (pn, v1, . . . , vn−1). So the only term that remains in the entire sum is at k = 0.
By Lemma 3.3, this reduces to 1

apn

0

pn−1vn mod (pn, v1, . . . , vn−1). We have shown that χ = a0, so

the desired result follows:

χ2(pn−1)P (cpn−1) = pn−1vnχ
pn−1 mod (pn, v1, . . . , vn−1, ⟨p⟩(α)).

With these tools in hand, we can proceed with the proof of a strong Lemma.

Lemma 3.7.

χ2(pn−1)

α2(pn−1)
P (vn) =

vnχ
pn−1 − χpn−1

αpn−1 ⟨p⟩(α)
α2pn−2

mod

(
p, v1, . . . , vn−1,

[p](α)

αpn

)
Proof. By Lemma 3.6, write

χ2(pn−1)P (cpn−1) = pn−1vnχ
pn−1 mod (pn, v1, . . . , vn−1, ⟨p⟩(α)).

We first inspect the left-hand side. By Lemma 3.3, cpn−1 = pn−1vn mod v1, . . . , vn−1. Then we can
expand

χ2(pn−1)P (cpn−1) = χ2(pn−1)P (pn−1vn) + χ2(pn−1)P (
∑

bi1,i2,...,inv
i1
1 vi22 · · · vinn ).

Assuming inductively that each P (vi) =
viχ

pi−1− χpi−1

αpi−1
⟨p⟩(α)

α2pi−2
mod (p, v1, . . . , vi−1,

[p](α)

αpi
) for i = 1, . . . , n−

1, the denominator powers of the α cancel with the factor α2(pn−1) of χ2(pn−1), and so

χ2(pn−1)P (cpn−1) = χ2(pn−1)P (pn−1vn) +
∑

bi1,i2,...,in−1

n−1∏
i=1

(
viχ

pi−1 − χpi−1

αpi−1
⟨p⟩(α)

)ii

.

Hence, modulo v1, . . . , vn−1, we see that

χ2(pn−1)P (cpn−1) = χ2(pn−1)P (pn−1vn) +
∑

bi1,i2,...,in−1

n−1∏
i=1

(
viχ

pi−1 − χpi−1

αpi−1
⟨p⟩(α)

)ii

= χ2(pn−1)P (pn−1vn) +
∑

bi1,i2,...,in−1

n−1∏
i=1

(
−χpi−1

αpi−1
⟨p⟩(α)

)ii

= χ2(pn−1)P (pn−1vn) mod ⟨p⟩(α).

So we can write

pn−1χ2(pn−1)P (vn) = pn−1vnχ
pn−1 mod (pn, v1, . . . , vn−1, ⟨p⟩(α)),

and dividing by pn−1 we see that

χ2(pn−1)P (vn) = vnχ
pn−1 mod (p, v1, . . . , vn−1, ⟨p⟩(α)). (4)

We also know, by Lemma 3.2, that

[p](α) = vnα
pn

+O(α2pn

) mod (p, v1, . . . , vn−1),

10



so dividing by α we have

⟨p⟩(α) = vnα
pn−1 +O(α2pn−1) mod (p, v1, . . . , vn−1). (5)

Subtracting a multiple of the second equation from the first, we obtain that

χ2(pn−1)P (vn) = vnχ
pn−1 − χpn−1

αpn−1
⟨p⟩(α) = O(α2pn−1) mod (p, v1, . . . , vn−1, ⟨p⟩(α)).

Then indeed, because we’ve shown the right-hand side to be divisible by α2(pn−1), we can take this to

be modulo [p](α)
αpn , which has a nonzero constant term, making α a non-zero divisor. So we divide by

α2(pn−1):

χ2(pn−1)

α2(pn−1)
P (vn) =

vnχ
pn−1 − χpn−1

αpn−1 ⟨p⟩(α)
α2pn−2

mod (p, v1, . . . , vn−1,
[p](α)

αpn ).

Corollary 3.8. At p = 2, P (vn) = vn+1α+O(α2) mod (2, v1, . . . , vn−1,
[2](α)
α2n ).

Corollary 3.9. If f(vn) = 0 mod p, then for i = n+ 1, n+ 2, . . . , f(vi) = 0 mod (p, v1, . . . , vn−1).

Proof. We abuse notation and set vn = 0. By Lemma 3.7, we see that

χ2(pn−1)

α2(pn−1)
P (vn) =

vnχ
pn−1 − χpn−1

αpn−1 ⟨p⟩(α)
α2pn−2

mod (p, v1, . . . , vn−1,
[p](α)

αpn )

0 =
χpn−1⟨p⟩(α)

α3pn−3
mod (p, v1, . . . , vn−1,

[p](α)

αpn ).

We know that

χ =

p−1∏
i=1

[i](α) ∈ MU∗JαK/[p](α).

Also, [i](α) = iα+O(α2), so χ = (p− 1)!αp−1+O(αp). This means that in Lemma 3.7, we could have
divided out further by powers of α: not only does χ2(pn−1) have a factor of α2(pn−1), but it is actually
divisible by α2(pn−1)(p−1). Then our equation becomes

0 =
χpn−1⟨p⟩(α)

α2(pn−1)(p−1)+pn−1
mod (p, v1, . . . , vn−1,

[p](α)

αpn ).

We additionally know ⟨p⟩(α) = vn+1α
pn+1−1 + O(αpn+1

). Now, the previous equation says that
mod (p, v1, . . . , vn−1),

χpn−1⟨p⟩(α)
α2(pn−1)(p−1)+pn−1

= g
[p](α)

αpn

for some power series g. The left hand side reduces to

χpn−1⟨p⟩(α)
α2pn+1−pn−2p+1

=
1

α2pn+1−pn−2p+1

(
(p− 1)!αp−1 +O(αp)

)pn−1
(vn+1α

pn+1−1 +O(αpn+1

))

=
1

α2pn+1−pn−2p+1

(
vn+1(p− 1)!p

n−1α(pn−1)(p−1)+pn+1−1 +O(α(pn−1)(p−1)+pn+1

)
)

= vn+1(p− 1)!p
n−1αp−1 +O(αp).

However, we know that
[p](α)

αpn = vn+1α
pn+1−pn

+O(αpn+1−pn+1),

and the lowest-degree terms don’t match at all. At αp−1, the left-hand side has a coefficient of
(p−1)!p

n−1vn+1, but the right-hand side is zero! So indeed, vn+1 must be zero, or else (p−1)! = p−1
mod p would be a zero-divisor, which is absurd.
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We can continue this argument inductively: after having shown that vn+1, . . . , vn+m−1 = 0, the
left-hand side becomes

χpn−1⟨p⟩(α)
α2pn+1−pn−2p+1

= vn+m(p− 1)!p
n−1αpn+m−pn+1+p−1 +O(αpn+m−pn+1+p),

and the p-series is
[p](α)

αpn = vn+1α
pn+m−pn

+O(αpn+m−pn+1).

As before, we consult the αpn+m−pn+1+p−1-term. We end up with the equality vn+m(p− 1)!p
n−1 = 0,

and therefore vn+m = 0. So indeed, each of vn+1, vn+1, · · · = 0 mod (p, v1, . . . , vn−1).

We finally have enough machinery to catch a much bigger fish, and we prove Theorem 3.1. With
all the work we have done thus far, Theorem 3.1 becomes relatively easy.

Proof of Theorem 3.1. Assume that vn = 0 mod p. As in the n = 1 case, our aim is to show that [p](α)
is a unit in v−1

n−1R
tCp/(p, . . . , vn−2) = v−1

n−1α
−1RJαK/([p](α), p, . . . , vn−2). In RJαK/(p, . . . , vn−2), we

have
[p](α) = vn−1α

pn−1

+O(αpn−1+1).

Then once we invert vn−1 and α, we note

v−1
n−1α

−pn−1

[p](α) = 1 +O(α),

and so we can try to invert it in the usual way. As in the n = 1 case, our only barrier is pow-
ers of vn−1 growing without bound in the denominator. But again, this turns out to be a non-
issue: if we have any term cαn in [p](α) ∈ RJαK/(p, . . . , vn−2), then for some m, pm > n, and
so c = 0 mod p, v1, . . . , vm−1. So c is some linear combination of p, v1, . . . , vm−1 in RJαK, and
hence c is a linear combination of vn−1, . . . , vm−1 in RJαK/(p, . . . , vn−2). But in fact, by Lemma
2, each of vn, vn+1, . . . , vm−1 = 0 mod (p, v1, . . . , vn−1). In other words, in RJαK/(p, . . . , vn−2),
each of vn, vn+1, . . . , vm−1 = 0 mod vn−1. So indeed, c is divisible by vn−1 in RJαK/(p, . . . , vn−2).

We conclude, then, that the p-series is divisible by vn−1 and hence v−1
n−1α

−pn−1

[p](α) is a unit in

RJαK/(p, . . . , vn−2). It follows that [p](α) ∈ v−1
n−1α

−1RJαK/(p, v1, . . . , vn−2) is a unit, and hence

v−1
n−1R

tCp/(v0, . . . , vn−2) is the trivial ring.

4 Higher Values of k

It turns out that if we want to invert the p-series, it is generally necessary to have the ideal (v1, v2, . . . )
N

vanish modulo pN . We show that it is possible for a ring R, endowed with a coherent “power operation”
P̂ , to satisfy (v1, v2, . . . )

N = 0 mod p, but not mod pN . We then show that p−1RtCp is nontrivial,
and we conclude that if R can be written as the homotopy groups of an E∞ ring spectrum E, then E
provides a contradiction to Conjecture 2.23.

Construction 4.1.

We take R = MU [bij ]i≥j≥1/(xixj − 2bij). In order to define a power operation P̂ on R, though,

we need to determine P̂ (bij). Proceeding in the obvious way, we will define P̂ (bij) =
1
2 (f ◦ P )(xixj).

It is not obvious that (f ◦ P )(xixj) is divisible by 2, however. But note: if we write

P (xi) =

∞∑
k=0

γkα
k

P (xj) =

∞∑
k=0

δkα
k

12



we observe that, for grading reasons alone, each γk comes from MU2(k+i), and δk ∈ MU2(k+j). Most
importantly, this ensures that γk, δk ∈ (x1, x2, . . . ). Certainly, then, we must have

2P̂ (bij) = P (xi)P (xj)

=

( ∞∑
k=0

γkα
k

)( ∞∑
k=0

δkα
k

)

=

∞∑
k=0

αk
k∑

l=0

γlδk−l.

Each coefficient γlδk−l must, therefore, come from (x1, x2, . . . )
2. But by construction, this entire

ideal is divisible by 2, so in fact it is no problem to define P̂ (bij). It suffices, then, to determine
commutativity of the diagram

MU∗ MU∗JαK/⟨2⟩(α)

R RJαK/⟨2⟩(α)

P

f

P̂

which is an immediate consequence of commutativity of the obvious diagram

MU∗ MU∗JαK/⟨2⟩(α)

MU∗ MU∗JαK/⟨2⟩(α)

P

1

since MU injects into R.

Theorem 4.2. At p = 2, R defined in Construction 4.1 gives a diagram of the following form:

MU∗ MU∗JαK/⟨2⟩(α)

R RJαK/⟨2⟩(α)

P

f

P̂

(6)

and has f(v1)
2 = 0 mod 2, but 2−1RtCp is not the trivial ring.

Proof. We will show first that the 2-series is not a unit in 2−1α−1RJαK. So suppose for the sake of
contradiction that some α−n2−m

∑
hiα

i is a multiplicative inverse for [2](α). Because the 2-series has
a constant term of 2 and MU∗ has no 2-torsion, we can confidently say [2](α) is not a zero divisor.
What this means is that [2](α) must have a unique multiplicative inverse. The multiplicative inverse
of a power series comes from

1

1 + x
= 1− x+ x2 − x3 + · · ·

and so it satisfies:1 +
∑
i≥1

giα
i

−1

= 1−

∑
i≥1

giα
i

+

∑
i≥1

giα
i

2

−

∑
i≥1

giα
i

3

+ · · ·

Then, it must be that the inverse of the 2-series is

α−n2−m
∑

hiα
i = α−12−1

∑
i≥0

(−1)i
(

1

2α
[2](α)− 1

)i

.

But then we claim the sum on the right-hand side has arbitrarily high powers of 2 in the denominator.

To show this, we look at the sum modulo (v2, v3, . . . ), the term
(

1
2α [2](α)− 1

)i
becomes(

1

2
(−v1α+ 2v21α+ · · · )

)i

.
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So the αj-term of the right-hand side is of the form(
vj1
2j

+
λ1v

j
1

2j−1
+ · · ·+ λj−1v

j
1

2

)
αj ,

for some integers λi, which we simplify to(
1 + 2λ1 + 4λ2 + · · ·+ 2j−1λj−1

2j

)
vj1α

j .

In particular, the numerator is odd and so we cannot cancel any powers of 2 from there. So the
only powers of 2 that cancel are from v21 = 2b11, which removes at most j

2 from the denominator.

Thus, there is an inevitable 2
j
2 in the denominator of each hj , which forces m → ∞. Of course, this

is impossible, so such a multiplicative inverse cannot exist. Because of this, it is not the case that
1 ∈ ([2](α)), and so 1 and 0 are distinct elements of 2−1α−1RJαK/[2](α). So indeed, 2−1RtCp is not
the trivial ring.

On the level of algebra, all E∞ ring maps out of MU must induce a diagram of the form (6) at
p = 2. The counterexample produced only has the structure of a pure ring map equipped with a map
P̂ : R → RJαK/⟨2⟩(α). In order for this to be a true counterexample to Conjecture 2.23, we would
need R to be the homotopy groups of some ring spectrum E, the map f to descend from an E∞ ring
spectrum map between MU and E, and P̂ to be the power operation on the associated cohomology
theory.

Therefore, while the case of k = 2 is still open, there is now a significant barrier to it being true.
That is, any proof of the conjecture would have to also show that the map we constructed can never
come from an E∞ ring map, and that there are additional topological requirements constraining the
kind of algebraic maps allowed in these power operation diagrams in a very subtle way.

5 Further Work

One direction we could take from here would be to construct a counterexample for higher k and
different primes p. In principle, for k ≥ 2 and any prime p, we could inspect the ring R(k,p) =
MU∗[bI ]I∈Zk/(pbI − xi1xi2 · · ·xik). We can again define a coherent power operation, since the ideal
(x1, x2, . . . )

k = 0 mod p, and the p-series will again fail to invert because we won’t be able to cancel
enough factors of p. Note, though, that this proof fails for k = 1; each power vji would be divisible by
pj , and so we could cancel enough powers of p.

Another direction would be to consider what a “minimal counterexample” might look like. What we
mean by this is whether we can shrink the set of relations on R. Particularly, it seems likely that in order

to define a power operation on b11 =
x2
1

2 , for instance, we only need to guarantee that (v1, v2, . . . )
2 = 0

mod 2. Moreover, for any bpi−1,pj−1 =
vivj
2 , we claim that we need only (v1, v2, . . . )

2 = 0 mod 2.
This is actually a consequence of Theorem 9, which states at p = 2 that

P (vn) =
vnα

2n−1 − ⟨2⟩(α)
α2(2n−2)

mod (2, v1, . . . , vn−1,
[2](α)

α2n
).

If we denote the 2-series modulo 2, v1, . . . , vn−1 as ⟨2⟩n(α), we can in fact write

P (vn) =
vnα

2n−1 − ⟨2⟩n(α)
α2(2n−2)

+ 2η0 + v1η1 + · · ·+ vn−1ηn−1 mod
[2](α)

α2n
.

From here, constructing P (bpi−1,pj−1) is straightforward. Recall that every term of the 2-series has
a factor of some vi; so in fact we can write

P (vn) =

∞∑
i=0

viηn,i

14



for some appropriate ηn,i. So in particular, each coefficient of P (vn) is an element of (v0, v1, . . . ).
So every coefficient of P (vi)P (vj) is an element of (v0, v1, . . . )

2. Therefore, it is possible to define
a coherent power operation on MU∗[bij ]/(vivj − 2bij), and this would provide just as effective a
counterexample.

But it’s worth asking, is this the smallest set of relations we need? For example, could we dispose
of the cross-terms (vivj , i ̸= j) and just keep b11, b22, and so on?

It would also be of great interest to determine if the counterexample produced earlier can truly come
from an E∞ ring map, as if it did, that would complete a counterexample to the original conjecture
in its most general form.
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