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Abstract

We describe a method to lift L-polynomials of smooth plane quartics from their mod-p reduction
using Jacobian arithmetic. We discuss a number of intricacies of implementation, particularly Jaco-
bian arithmetic in the case of atypical divisors. We discuss curves which do not intersect a line at
four rational points.

1 Introduction

Let C/Q be a smooth projective curve of genus g over Q. For each prime of good reduction p, the
reduction of C mod p is a smooth projective curve C/Fp which has an associated zeta function

Z(C/Fp;T ) = exp

( ∞∑
k=1

#(C/Fpk)T k/k

)
=

Lp(T )

(1− T )(1− pT )

where Lp(T ) is a polynomial of degree 2g called the L-polynomial of C/Fp. The zeta function of the curve
records important geometric information, such as the group order of the associated Jacobian varieties,
which is useful for cryptographic applications. The curve C/Q also has an associated L-function

L(C/Q; s) =
∏
p

Lp(p−s)−1

where Lp is the L-polynomial of C/Fp when p is a prime of good reduction. Thus the L-polynomial
Lp(T ) describes important number-theoretic information relevant to the Sato-Tate conjecture, which
discusses the distribution of coefficients of Lp(T ) in the L-function. We are interested in the case when
C is a nonhyperelliptic curve of genus 3; equivalently, C is a smooth plane quartic.

For smooth plane quartics, it has been suggested that it is possible to determine Lp(T ) from its
reduction mod p in O(p1/4) time using a baby-steps giant-steps algorithm.1 There is an unpublished
algorithm to compute the coefficients of Lp(T ) mod p,2 with both an O(p1/2) version for a single prime
and an average polynomial time algorithm all p ≤ B.

In order to compute the L-polynomial Lp(T ) of a nonhyperelliptic curve, we will use Jacobian arith-
metic. The Jacobian J(C) is a group of order #J(C) = Lp(1), and the Jacobian J2(C) over a degree two
extension satisfies #J2(C) = Lp(1)Lp(−1). Furthermore, there are bounds on the coefficients of Lp(T )
(see Section 3 for more details) which together with Lp(T ) mod p reduce to O(p1/2) possibilities for
the L-polynomial Lp(T ). A baby-steps giant-steps search may thus compute Lp(T ) using only O(p1/4)
operations in J(C) and J2(C).

[FOR08] describe algorithms for arithmetic in the Jacobian of a smooth plane quartic C with a k-
rational point. Of most interest to us is that if there is a tangent line `∞ which intersects C at four
rational points, counting multiplicity (and which exists for p ≥ 662 + 1), and if two divisors are “typical”
(satisfy specific asymptotically favorable criteria), then [FOR08] provide an algorithm to compute the
sum of these divisors in a fixed number of field operations–roughly 200 multiplications and a couple of
inversions.

Thus Jacobian arithmetic in the typical case has the same asymptotic complexity as an inversion mod
p, which is (log p)(log log p)2 time. However, atypical divisors might appear when running the baby-step
giant-step algorithm.

Since only (heuristically) O(1/p) divisors are atypical and we need just O(p1/4) operations, it might
seem that we could try applying baby-steps giant-steps to different starting divisors until we find one for

1See https://web.maths.unsw.edu.au/~davidharvey/talks/ntdu.pdf
2See Sutherland et. al. in https://math.mit.edu/~drew/Oldenburg2017.pdf
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which no atypical divisors appear. However, we will see that atypical divisors occur not just randomly
but also systemically; for instance, the identity divisor is always atypical. Should the baby-steps giant-
steps algorithm require computation of a divisor which is atypical regardless of the starting divisor, we
will need to work with atypical divisors.

We will describe how to handle efficient hashing of atypical divisors (necessary to create a table
of baby-steps with fast lookups, since representations of atypical divisors as a linear combination of
points may be nonunique). We will also show that most of [FOR08]’s algorithm may be applied in the
tangent case to atypical divisors using a fixed number of field operations. Though the casework is not
yet complete, there do not seem to be any significant difficulties beyond one feature of the resultant that
does not seem to appear in the literature–see Conjecture 2.1–and the remaining pieces of casework may
be performed through the use of polynomial factorization over the base field, which requires more than a
fixed number of field operations. We use an implicit representation of divisors that extends the Mumford
representation, and we examine how to apply [FOR08]’s algorithms with this new form.

In Section 3, we discuss the baby-steps giant-steps algorithm and the lifting of Lp(T ). In Section 4
we discuss Jacobian arithmetic. In Section 5 we discuss some of the practicalities of implementation. In
Sections 6 and 7 we discuss the generic algorithms for divisor arithmetic. In Sections 8-14 we describe the
handling of atypical divisors. In Section 15 we describe group inversions in the Jacobian. In Section 16
we discuss the existence of lines which intersect C at k-rational points only.
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2 Preliminaries

Let k be a field. The projective plane P2 = P2(k) is the set of triples (x : y : z), x, y, z ∈ k under
the equivalence relation (x : y : z) ∼ (λx : λy : λz) for λ ∈ k×. A plane curve C = C(x, y, z) is a
homogeneous polynomial in x, y, and z. A point p ∈ P2(k) is on a plane curve C if C(p) = 0. A
singularity on a plane curve C is a point on C where all the partial derivatives of C vanish. A plane
curve is smooth if it has no singularities.

A divisor D =
∑
niPi with ni ∈ Z, Pi ∈ P2(k) on a smooth plane curve C = C(x, y, z) is a formal

linear combination of points on C over k such that D is fixed by Gal(k, k). The degree of a divisor
D =

∑
niPi is

∑
ni. The divisors of degree zero form an abelian group Div0(C).

Let f be a homogeneous polynomial in x, y, and z with coefficients from k. Then f = 0 defines a
plane curve (not necessarily smooth). Suppose C and f do not share a common component. Then C and
f intersect in finitely many points, and for each point P in the intersection we may assign an intersection
multiplicity ordP (C, f). For affine points P , we define ordP (C, f) to be the dimension of the k-module
k[x, y]P /(C|z=1, f |z=1). We may then form the intersection divisor

(f · C) =
∑
P

ordP (C, f)P,

and by Beźout’s theorem we have deg(f · C) = deg(f) deg(C). Since C and f were defined over k, the
intersection divisor will be closed under Galois conjugation.

We also have (see Lemma 6.1) that

ord(0:0:1)(C, f) ≥ n ⇐⇒ f(x, y, 1) ∈ 〈x, y〉n + 〈C(x, y, 1)〉.

Let deg(C) = d and deg(f) = e, so that C =
∑d

i=0 aiz
i and f =

∑e
i=0 biz

i for some ai, bi ∈ k[x, y].

Then there is a homogeneous polynomial resz(C, f) = det(M |N) with M = (ai−j)
d+e,e
i,j=1,1 and N =

(bi−j)
d+e,d
i,j=1,1. Furthermore, resz(C, f) ∈ 〈C, f〉.

Suppose that (0 : 0 : 1) is not on the intersection of f and C. Then resz(C, f) ∈ k[x, y] is homogeneous
of degree (f · C) = deg(C) deg(f) and

resz(C, f) =
∏

(xi:yi)∈P1

∏
(xi:yi:zi)∈P2

(yix− xiy)ord(xi:yi:zi)
(C,f).
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Note that although the resultant may be computed for any curves f and C, the link between mul-
tiplicities and factors of the resultant depends on (0 : 0 : 1) not being on the intersection of the curves.
We will need to consider the resultant resz(C, f) in the case where (0 : 0 : 1) is on the intersection of f
and C. This case does not seem to appear in the literature; however, we have Conjecture 2.1.

The issue with (0 : 0 : 1) is that while each other point (x0 : y0 : z0) appears as a factor of (y0x−x0y)
in the resultant, it is not clear what factor (0 : 0 : 1) should appear as. We expect that (0 : 0 : 1) appears
in the resultant as a combination of the resultant having lower degree than the expected deg((f · C))
and the resultant having factors corresponding to the projection of (0 : 0 : 1) to the line z = 0 along the
tangent to C at (0 : 0 : 1).

Let π : P2 → P1 be the map sending (x : y : z) to (x : y). If we consider P1 to be embedded in P2

as the line z = 0, this corresponds to projection of (x : y : z) down to z = 0 along the line through
(0 : 0 : 1) and (x : y : z). We may extend π to P = (0 : 0 : 1) by projection along the tangent line to C
at P , so that π(P ) = (TP (C) · C).3 Given a point (x0 : y0) in P1, we let (x0 : y0)∗ be the homogeneous
polynomial (y0x− x0y), so that when (0 : 0 : 1) is not in the intersection of f and C, we have

resz(C, f) =
∏
P∈P2

(π(P )∗)ordP (C,f).

Conjecture 2.1. Let C = C(x, y, z) be a smooth plane curve and let f = f(x, y, z) be a homogeneous
polynomial. Suppose P = (0 : 0 : 1) lies on both C and f . Let (f ·C) = nP +

∑
niPi. Then the resultant

resz(C, f, z) has degree r < deg(C) deg(f) and we have

resz(C, f, z) = (π(P )∗)n−deg(C) deg(f)+r
∏

(π(Pi)
∗)ni .

Note that when n = 1, the tangent lines to C and f at P need not match and exponent of π(P )∗ is zero.

Conjecture 2.1 may be proven in cases when there are no additional factors corresponding to π(P ) =
π((0 : 0 : 1)) by the usual proof that the resultant respects multiplicities: noting (through looking at
localizations) that that the resultant cannot underestimate factors corresponding to points other than
P = (0 : 0 : 1).4 However, while it is not clear how to prove it in general, it might be possible to use
some kind of continuity argument.

We may extend intersection divisors to rational functions by ((f/g) · C) = (f · C) − (g · C). A
divisor is principal if it is the intersection divisor of some rational function of degree 0. Principal
divisors form an abelian subgroup of Div0(C). We say that two divisors D1, D2 are linearly equivalent,
D1 ∼ D2, if there is a function f with D1 = D2 + (f · C). We set J(C), the Jacobian of C, to be
J(C) = J(C/k) = Div0(C)/ ∼. When k is a finite field Fp, we set Jn(C) = J(C/Fpn).

Let D be a divisor. The set of degree zero rational functions f with D + (f · C) ≥ 0, along with
f = 0, form a k-vector space L(D) of dimension `(D).

Theorem 2.2 (Riemann-Roch). There is a canonical divisor κ and an integer g (the genus) such that
for every divisor D, we have

`(D) = deg(D)− g + 1 + `(K −D).

A smooth plane quartic has genus 3. A curve is said to be hyperelliptic if it has a degree two morphism
to P1. The genus three curves which are not hyperelliptic are precisely the smooth plane quartics.

Let P be a point on C. Then L(P ) contains the constant functions, so `(P ) ≥ 1. If we have a
nonconstant function in L(P ) then we have a map from C to P1 and the genus of C is zero. Thus for
points P on smooth plane quartics, L(P ) consists of the constant functions.

3 The L-polynomial

In this section we will discuss the lifting of the L-polynomial of a smooth plane quartic over a finite field
Fp from its reduction mod p. Select a base field k = Fp for some prime p ∈ Z. Let C : C(x, y, z) = 0 be

3This extension was suggested by Dr. Edgar Costa.
4See discussion in https://math.stackexchange.com/questions/3446833/does-each-factor-of-the-resultant-correspond-to-

exactly-one-intersection-point
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a nonhyperelliptic curve of genus g = 3 over k = Fp. Equivalently, C(x, y, z) is a smooth plane quartic.
The zeta function of C is

Z(C/Fp;T ) = exp

( ∞∑
k=1

#(C/Fpk)T k/k

)
=

Lp(T )

(1− T )(1− pT )

where
Lp(T ) = 1 + a1T + a2T

2 + a3T
3 + a2pT

4 + a1p
2T 5 + p3T 6

for some a1, a2, a3 ∈ Z. Furthermore (see [KS08]), we have

|ai|p−i/2 ≤
(

2g

i

)
and

−g + 2 +

a2
1

p − δ
2

2
≤ a2

p
≤ g +

(
g − 1

2g

)
a21
p

where δ is the distance from a1√
p to the nearest multiple of 4 (so δ < 2).

Substituting g = 3 and rearranging gives

−6
√
p ≤ a1 ≤ 6

√
p

−p+
1

2

(
a21 − pδ2

)
≤ a2 ≤ 3p+

1

3
a21

−20p3/2 ≤ a3 ≤ 20p3/2

Let Lp(T ) be the reduction of Lp(T ) mod p. Then Lp(T ) = 1 + a1T + a2T
2 + a3T

3 where ai is the

reduction of ai mod p. Therefore, if we know Lp(T ), then there are p times fewer possibilities for each
ai.

When p > 144, we have
√
p > 12 and then p > 2 · 6√p, so that a1 is determined uniquely. We have

δ2 < 4, so that the range of possible values for a2 has size as most

3p+
1

3
a21 + p− 1

2
(a21 − pδ2) = 4p− a21

6
+
pδ2

2
< 6p

and given a1, there are at most 6 values for a2 (compare [KS08], which notes that a2/p is constrained to
an interval of radius 3). Finally, there are 40

√
p possible values of a3.

Lemma 3.1. Let p > 12. Let Lp(T ) be the reduction of Lp(T ) mod p. Then Lp(T ), Lp(1), and Lp(−1)
uniquely determine Lp(T ).

Proof. Suppose we know Lp(1) and Lp(−1). Then

Lp(1) = (p3 + 1) + a1(p2 + 1) + a2(p+ 1) + a3

Lp(−1) = (p3 + 1)− a1(p2 + 1) + a2(p+ 1)− a3

Suppose there are two different possibilities for (a1, a2, a3), say (a1, a2, a3) and (a′1, a
′
2, a
′
3). Substituting

these values into Lp(1) + Lp(−1) gives a2 = a′2. Substituting into Lp(1)− Lp(−1) gives

a1(p2 + 1) + a3 = a′1(p2 + 1) + a′3 (1)

so a1 = a′1 =⇒ a3 = a′3. Thus a1 6= a′1, so |a1 − a′1| ≥ p. Let p ≥ 12, so that p(p2 + 1) > 40p3/2. Then

|a1 − a′1|(p2 + 1) ≥ p(p2 + 1) > 40p3/2 ≥ |a3 − a′3|

which contradicts (1).
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Remark 3.2. Lemma 3.1 is nonconstructive. To determine a1, a2, a3 from Lp(T ), Lp(1), and Lp(−1) we
first note that

a2 =
Lp(1) + Lp(−1)− 2(p3 + 1)

2(p+ 1)

and

a1
p

+
a3

p(p2 + 1)
=
Lp(1)− Lp(−1)

2p(p2 + 1)
. (2)

Let Lp(t) = 1 + a1t+ a2t
2 + a3t

3. Then a1 = p
⌊
a1

p

⌋
+ a1 and a3 = p

⌊
a3

p

⌋
+ a3, so rearranging (1) gives

⌊
a1
p

⌋
+

⌊
a3

p

⌋
p2 + 1

=
Lp(1)− Lp(−1)

2p(p2 + 1)
− a1

p
− a3
p(p2 + 1)

. (3)

Since p > 12 and |a3| < 20p3/2, we see that

∣∣∣∣b a3
p c

p2+1

∣∣∣∣ < 1
2 and thus

⌊
a1

p

⌋
is the nearest integer to the right

hand side of (3). Then a1 = p
⌊
a1

p

⌋
+a1 and a3 =

Lp(1)−Lp(−1)
2 −a1(p2 +1) are determined. These values

for a1, a2, a3 are consistent with the known values of Lp(T ), Lp(1), and Lp(−1), so by Lemma 3.1 we
must have the correct values.

3.1 Baby-Steps Giant-Steps

Here we discuss the details of the baby-steps giant-steps search necessary to determine Lp(T ) from Lp(T ),
Lp(1), and Lp(−1).

For p > 12, we may apply the following baby-steps giant-steps algorithm. Recall that Lp(1) = #J(C).

Fix some r ≈
√

20p1/2 and let s ≈
√

20p1/2 be the least integer with sr > 20p1/2.

Algorithm 3.3. Baby-steps giant-steps search.

1. Select a divisor D ∈ J(C).

2. Compute the baby steps pD, 2pD, . . . , rpD and store them in a hash table using a hashing function.

3. For each of the finitely many possible values of a1 and a2, let

` = (p3 + 1) + a1(p2 + 1) + a2(p+ 1)− p
⌊
−20p3/2

p

⌋
+ a3

and compute the giant steps `D, (`+ rp)D, (`+ 2rp)D . . . , (`+ srp)D.

4. Look up each giant step in the hash table of baby steps. If the giant step (`+jrp)D agrees with the
baby step ipD, then ` + (jr − i)p is a possible value for Lp(1) and the corresponding possibilities
for the ai are a1 = a1, a2 = a2, and a3 = ` + (jr − i)p. Otherwise, |D| 6 |` + (jr − i)p is not a
possible value for Lp(1).

If this algorithm outputs only a single possibility for Lp(1), then we may take the corresponding
possibilities for the ai’s. If this algorithm outputs multiple possible values of a1, a2, a3 such that the
corresponding values of #J(C) have different radicals, or such that the corresponding values of #J2(C)
have different radicals, then we may use the following algorithm to narrow down the possibilities.

Algorithm 3.4. Let A1(T ) . . . , An(T ) be distinct possibilities for Lp(T ). So long as not all of the
radicals Ai(1) are distinct:

1. Select a divisor D ∈ J(C).

2. For each Ai, compute Ai(1) ·D.

3. If Ai(1) ·D 6= 0, discard Ai(T ).
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If there is only one Ai remaining, then Lp(T ) = Ai. If all of the remaining Ai’s have the same radicals,
we perform the same procedure with J2(C):

1. Select a divisor D ∈ J2(C).

2. For each Ai, compute Ai(−1) ·Ai(1) ·D.

3. If Ai(−1) ·Ai(1) 6= 0, discard Ai(T ).

If there is only one Ai remaining, then Lp(T ) = Ai. Otherwise, this method is not able to determine
Lp(T ).

The only case where the above methods do not suffice are when there are at least two distinct
triples (a1, a2, a3) for which the corresponding Lp(1) values have the same radical and the corresponding
Lp(1)Lp(−1) values also have the same radical. This situation is both rare and hard to analyze, so we
will not study it further. However, generic group algorithms exist which can probabilistically determine
the structure of a group given possibilities for the order, so this case may still be handled through other
methods.

4 Jacobian Arithmetic

Fix a smooth plane quartic C = C(x, y, z) over a finite field Fp, p prime.
We say that a curve E passes through an effective divisor D if D ≤ (E ·C). Similarly, we say that E

passes through P1, . . . , Pn if E passes through D =
∑
Pi, where the sum counts points with multiplicity.

We say that points P1, . . . , Pn are colinear if there is a line ` that passes through them. For instance,
3P is colinear if and only if P is a flex point (or hyperflex).

In order to perform Algorithm 3.3, we need:

1. Arithmetic in the Jacobian J(C/Fp).

2. Arithmetic in the Jacobian J(C/Fp2).

3. Unique representation of degree zero divisors on C, to be used for the hash table.

For 1 and 2, we may use the algorithms of Flon et. al. in [FOR08]. Flon et. al. describe both a generic
geometric algorithm5 and a number of broadly applicable special cases requiring a fixed number of field
operations, which we will review at the end of the section. For 3, we have the following lemma:

Lemma 4.1. Let C be a smooth plane quartic over a field k. Fix an effective divisor D∞ = P∞1 +
P∞2 + P∞3 of degree g = 3. Let D be a divisor of degree zero. Then there exists an effective divisor
D+ = P1 + P2 + P3 of degree 3 with

D ∼ D+ −D∞.

Furthermore, exactly one of the following holds:

• There is a unique effective divisor D+ = P1 + P2 + P3 of degree 3 with P1,P2,P3 not colinear and

D ∼ D+ −D∞.

• There is a unique k-rational point P with

D ∼ (−P )−D∞.

Proof. We see thatD+D∞ is a divisor of degree 3. By Riemann-Roch we have `(D+D∞) = 1+`(κ−D) ≥
1, so there is a nonzero function f ∈ L(D). Then D+ = D+D∞+ div(f) is an effective divisor of degree
3, so D ∼ D+ −D∞.

5The most general algorithm in[FOR08] requires a rational point on C, which is the case if p > 29 (see [HLT04]). If
p ≤ 29 and there is no rational point on C, then this approach is not applicable. Fortunately, such situations are rare and
do not happen if C/Q has a rational point.
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Let D ∼ (−P )−D∞. Let ` be any line through P . Then D+ = (` · C)− P is an effective divisor of
degree 3, so D ∼ (−P )−D∞ ∼ (` ·C)+(−P )−D∞ ∼ D+−D∞. Alternatively, let D ∼ D+−D∞ where
D+ is colinear, say D+ ≤ (` · C) for some line `. Then D+ = (` · C) − P ∼ −P , so D ∼ (−P ) −D∞.
Therefore, D ∼ (−P )−D∞ if and only if there is some colinear D+ with D ∼ D+ −D∞.

Suppose D ∼ D+ − D∞ for some D+ = P1 + P2 + P3 with P1,P2,P3 not colinear. Then [FOR08],
Section 3.1 notes that D+ is unique. Then there is no D+ colinear with D ∼ D+ −D∞, so there is no
P with D ∼ (−P )−D∞.

If there is no such D+, then D ∼ D+ − D∞ for some D+ colinear. Then D ∼ (−P ) − D∞ where
D + P = (` · C). Suppose (−P )−D∞ ∼ (−Q)−D∞. Then P ∼ Q =⇒ P + (f · C) = Q ≥ 0 for some
function f ∈ L(P ). As noted in Section 2 the only elements of L(P ) are constants, so (f · C) = 0 and
P = Q. Thus P is unique.

Thus after fixing D∞, we may represent divisors by the corresponding D+ = P1 + P2 + P3, and in
order to obtain a unique representation of a divisor,

• If P1,P2,P3 are not colinear, then D+ is unique and we may hash the multiset {P1,P2,P3}.

• If P1,P2,P3 are colinear, then we may compute the line ` through D and hash the unique additional
k-rational point P on the intersection divisor (` · C), that is, the unique P with D + P = (` · C).

In the second case (with Pi’s colinear), we must take care to count points with the appropriate multi-
plicity. Details of efficient computation of unique representation are discussed in Section 10.

4.1 Typical Divisors

In addition to generic geometric algorithms, [FOR08] give algebraic algorithms for several broad special
cases. The more special the choice of D∞, the faster the algorithm will be. The most broad case is the
tangent case, which is what we will focus on.

Given a line `∞ that intersects C at four rational points, we may change coordinates so that `∞ is
the line z = 0 at infinity and set (` · C) = P∞1 + P∞2 + P∞3 + P∞4 . If ` is a tangent line, then we may
take P∞1 = P∞2 = (0 : 1 : 0) and P∞4 = (1 : 0 : 0), then set D∞ = P∞1 + P∞2 + P∞3 in Lemma 4.1 and
[FOR08].

We say that a divisor D = P1 +P2 +P3 is typical if it is the sum of distinct noncolinear affine points
with distinct x coordinates. In this case, we may represent D as a pair of univariate polynomials (u, v)
of degrees 3 and 2, where u is monic and simple with roots the x coordinates of the Pi’s and v is such
that if Pi = (xi : yi : 1) then v(xi) = yi. This is the Mumford representation of a divisor.6 [FOR08]
give algorithms to compute the sum of two typical divisors D1 and D2, provided that all intermediate
divisors are typical and all intersection divisors have distinct affine points; specifically, there are

1. a cubic E and a typical divisor D3 with (E · C) = D1 +D2 + P∞1 + P∞2 + P∞4 +D3

2. a conic Q and a typical divisor D4 with (Q · C) = D3 + P∞1 + P∞2 +D4

and then D1 +D2 ∼ D4.
We will need to handle atypical divisors. Note that while every divisor may be unique represented as

D+ −D∞ or as (−P )−D∞ and every typical divisor will have the form D+ −D∞, not every divisor of
the form D+ −D∞ is typical–for instance, three distinct affine points, exactly two of which share an x
coordinate, will always be represented as D+ −D∞ yet will never be typical. The precise criteria for an
atpyical divisor D = P1 + P2 + P3 are the following.

• Not all of the Pi’s are the same; D has a double point or a triple point.

• Two of the Pi’s share an x coordinate; such an x coordinate must be k-rational, but the other
coordinates need not be.

• The Pi’s are colinear.

6In the hyperelliptic case, all divisors have a Mumford representation. This is not the case with nonhyperelliptic curves.
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5 Implementation Discussion

What we have described in Sections 3 and 4 is an algorithm which can lift the L-polynomial of a smooth
plane quartic using O(p1/4) additions in J(C) and J2(C), usually with proof. In order to implement
this algorithm, we need to be able to perform Jacobian arithmetic. While [FOR08] describes heavily
optimized algorithms which require a fixed number of field operations, these algorithms (specifically
Algorithm 1) are not applicable in all cases, even assuming prerequisites like a rational flex point.

For instance, it is possible for the sum of two typical divisors to be atypical, in which case the
algorithm will fail. This is quite rare when p is large, so it might seem reasonable to select a new divisor
and restart the algorithm. However, it is possible for one of the giant steps to be an exact multiple of
the order of J(C). Since the zero divisor 0 ∼ −(`∞ · C) = (−P∞4 )−D∞ is atypical, the algorithm will
always fail that this step.

This suggests a possible fallback: if we repeatedly encounter an atypical divisor at a particular giant
step nD, this might be indicative that nD ∼ 0 and n is a multiple of #J(C). However, there are other
reasons why a particular multiple nD might be atypical for all D. If J(C) ' Cn1

× Cn2
is a product of

cyclic groups where n1, n2 are relatively prime, then there are n1 elements of order dividing n1, and if all
are atypical then n2D will be atypical for all D. Thus we will eventually need to perform computations
with atypical divisors. Furthermore, if we can do computations with atypical divisors efficiently this will
be much faster than restarting the entire algorithm with a new choice of D.

Fortunately, we can find a variant of Mumford representation to include all divisors, and we will
provide algorithms for arithmetic of atypical divisors. Although these algorithms do not completely
reduce the problem to a fixed number of field operations (a polynomial factorization may be required in
some branches), most cases are quite efficient.

Efficient algorithms for the typical case are described in [FOR08]. We will discuss generic algorithms
which apply in all cases and then describe how to refine these into fast algorithms for atypical divisors
in the tangent case. By [OR10], Theorem 2, all curves with p sufficiently large have a tangent line which
intersects the curve at four (counting multiplicity) rational points. Furthermore, [OR10] Proposition 2
provides a lower bound of p + 1 − 66

√
p such tangent lines,7 and since there are at most 28 bitangents

and 24 flex points, it is reasonable to randomly search for tangent lines when p is sufficiently large. Thus
for atypical divisors, we will focus on the tangent case.

6 Interpolation

First, we recall the following result about intersection multiplicity.

Lemma 6.1. Let P = (x0, y0) be an affine point on a curve C. Then the ideal of plane curves which
intersect C with multiplicity at least n at P is

〈x− x0, y − y0〉n + 〈C(x, y)〉.

Proof. Let E be a plane curve which intersects C at P . Change coordinates so that P becomes P ′ = (0, 0),
E becomes E′(x, y), and C becomes C ′(x, y). The intersection multiplicity E′ and C ′ at P ′ is the least
n with

E′ ∈ 〈x, y〉nk[x, y]P ′/〈C ′〉.
Then the result follows from changing coordinates back.

Now interpolation may be done easily–we change to affine coordinates, compute the ideal in the
lemma for each point in the divisor, compute the intersection of these ideals using Gröbner basis tech-
niques, select an element of the intersection of the desired degree, and then change coordinates back and
homogenize.

However, computing Gröbner bases and ideal intersections is rather slow. The ideal 〈x− x0, y− y0〉n
has a reasonably special form, and it turns out that we can reduce the problem to linear algebra over a
fixed dimension.

Select a positive integer d. For the rest of this section, given a smooth plane curve C(x, y, z), let E
be the vector space of homogeneous degree d curves over k[x, y, z], and given a divisor D on C, let EC,D
be the subspace of E of curves which pass through D.

7counting bitangents twice
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Lemma 6.2. Fix a positive integer n. Let P = (0 : 0 : 1) be a point on a curve C(x, y, z). Let
T = k[x, y]/〈x, y〉n be the k-vector space spanned by monomials in x and y of degree less than n, where x
and y act on T by x(iyj) = xi+1yj and y(xiyj) = xiyi+1 for deg(xiyj) < n−1 and x(xiyj) = y(xiyj) = 0
for deg(xiyj) = n − 1. Let C = C(x, y, 1) mod 〈x, y〉n be the dehomogenization of C reduced into T .
Then EC,nP spanned by the degree d homogenizations (with respect to z) of

xiyj · C

for all i, j < n.

Now interpolation through a divisor D on C is straightfoward: for each term nP in D, we change
coordinates and use Lemma 6.2 to compute a basis for EC,nP . Then, we use standard linear algebra to
determine the intersection of all of these spaces and choose any element of this intersection. In more
detail:

Algorithm 6.3. Let C be a plane curve. Fix a positive integer d and let E be as earlier. Let D =
∑
niPi

be a divisor on C. We will find a degree d curve E with (E · C) ≥ D or reject if there is no such curve.

1. For each niPi in D:

(a) Change coordinates so that Pi = (0 : 0 : 1). Let C ′ be C after changing coordinates.

(b) Compute the spanning set S of EC′,niPi
as in Lemma 6.2.

(c) From S, compute a basis B′i for EC′,niPi
.

(d) Change coordinates back so that B′i becomes a basis Bi for EC,niPi
.

(e) Construct a basis B>i for the orthogonal complement E>C,niPi
of EC,niPi .

2. Let N be the matrix whose rows are the elements of B>i for all i, so that

kerN =
⋂
i

EC,niPi
= EC,D

3. Select an element E of the kernel of N . If the kernel of N is empty, reject.

Output E, a degree d curve with (E · C) ≥ D.

Remark 6.4. If d is at least the degree of C, then the methods in this section may return a multiple of
C. This is not a concern for our purposes (since we will always have C a quartic and d = 2, 3) but in
general it may be useful to exclude such curves.

Our methods for handling atypical divisors will frequently use specialized versions of this algorithm
for specific situations.

7 Intersection

We summarize the classical algorithm for computing the intersection divisor of two curves.8

Let C1 and C2 be two curves of degreesm and n, not necessarily smooth, with no common components.

1. Factor the resultant resy(C1, C2) factors as a product of linear factors of the form (bx− az).

2. For each distinct linear factor (bx− az) of the resultant and each root yi of

gcd(C1(a, y, b), C2(a, y, b)),

the point P = (a : yi : b) is on the intersection of C1 and C2. If the gcd is zero, then C1 and C2

share the common component (bx− az).

3. The distinct points in the intersection divisor are precisely the points (a : yi : b) determined in the
previous step and possibly the point (0 : 1 : 0) (which may be checked by substitution into C1 and
C2).

8See for instance http://www.math.chalmers.se/~stevens/bezout.pdf.

9

http://www.math.chalmers.se/~stevens/bezout.pdf


4. To determine the multiplicities, we first change coordinates so that (0 : 1 : 0) is not on the
intersection and not on any line containing any two distinct intersection points. There are finitely
many such lines, so such a change of coordinates exists (possibly requiring a field extension).

5. The resultant resy(C1, C2) (note that we have changed coordinates) factors as a product

resy(C1, C2) =
∏

(bix− aiz)ni .

By our change of coordinates, gcd(C1(ai, y, bi), C2(ai, y, bi)) has a unique root yi (since otherwise
we would have two intersection points on the veritcal line bix−aiz, which passes through (0 : 1 : 0)).

6. Finally,

(C1 · C2) =
∑

ni(ai : yi : bi).

When working with atypical divisors, we prefer to avoid polynomial factorizations, so we will have to
use other means to determine the distinct points in the intersection. However, once we have a descrip-
tion of the distinct points in the intersection, we will use the resultant to determine the corresponding
intersection multiplicities (and we will need Conjecture 2.1 to avoid changes of coordinates).

8 Atypical Divisor Arithmetic

In order to compute with atypical divisors efficiently, we would like a way to describe these divisors over
the base field. For Sections 8-14, we take `∞ = z to be the line at infinity and which is tangent to C at
P∞1 = P∞2 = (0 : 1 : 0), intersects C at P∞4 = (0 : 0 : 1), and intersects C at one addition point P∞3
which is distinct from the other P∞i ’s.

Definition 8.1. Let u, v, w ∈ k[x] and a ∈ k. Set

(u, v) =
∑

u(x0)=0

(x0 : v(x0) : 1)

and
[a,w] =

∑
w(y0)=0

(a : y0 : 1).

We require that u and w are monic of degree at least two, with simple roots and deg(v) < deg(u). Note
that u and w may be reducible.

An effective divisor of degree at most 3 on a curve may be (nonuniquely) represented by a sum of
divisors of the following form.

1. D = (x0 : y0 : 1), a k-rational affine point.

2. D = P∞i , a point at infinity. For us, all points at infinity will be k-rational.

3. D = (u, v), precisely deg(u) distinct points with distinct x coordinates, possibly k-rational but
possibly defined over an extension field.

4. D = [a,w], precisely deg(w) distinct points sharing an x coordinate a ∈ k, possibly k-rational but
possibly defined over an extension field.

To see this, write the divisor as a sum of Galois orbits and note that the only possible issue is that the
first coordinates of a Galois orbit might not be distinct (preventing a representation as (u, v)) while the
first coordinates might not all be defined over k (preventing a representation as [a,w]). Then there is a
strict inclusion of fields k2 ⊃ k1 ⊃ k where k1 contains the first coordinates and k2 contains the second
coordinates. Then [k2 : k] ≥ 4, so our divisor has degree at least 4, so for divisors of degree at most 3
this cannot happen.

Similar to the Mumford representation, this representation of effective divisors provides enough infor-
mation to reconstruct the original divisor while allowing convenient implicit descriptions. For instance,
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we do not require the divisor to be decomposed down to Galois orbits, thus avoiding the need to check
for irreducibility later on.

Every effective divisor of degree 3 is uniquely represented by one of the following ten possible config-
urations.

1. D = (u, v) with deg(u) = 3. Three distinct points with distinct x coordinates. When deg(v) = 2,
we have the typical case.

2. D = (u, v) + P∞i with deg(u) = 2. Two distinct points with different x coordinates and a point at
infinity.

3. D = [a,w] with deg(w) = 3. Three distinct points sharing an x coordinate.

4. D = [a,w] + (x0 : y0 : 1) where deg(w) = 2 and x0 6= a. Three distinct affine points, two of which
share an x coordinate.

5. D = [a,w] +P∞i where deg(w) = 2. Two distinct affine points sharing an x coordinate and a point
at infinity.

6. D = 2(x0 : y0 : 1) + (x1 : y1 : 1) where (x0 : y0 : 1) and (x1 : y1 : 1) are distinct affine points.
Double point with another affine point.

7. D = 2(x0 : y0 : 1) + P∞i . Double point with a point at infinity.

8. D = 3(x0 : y0 : 1). Triple point.

9. D is the sum of two points at infinity and one k-rational affine point.

10. D is the sum of three points at infinity.

Note that although this represents effective divisors of degree three uniquely, this does not uniquely
represent the corresponding elements of J(C). This is discussed in Section 10.

9 Linear Interpolation

We will need to determine when the points of a divisor lie on a line. We will first need to determine how
to interpolate through a degree two effective divisor.

Let D be a degree two effective divisor. Then it is always possible to find a line ` through D. We do
so as follows.

1. D = (u, v) with deg(u) = 2. Then ` = y − v.

2. D = [a,w] with deg(w) = 2. Then ` = x− az.

3. D = (x0 : y0 : z0)+(x1 : y1 : z1) is the sum of two distinct affine points with different x coordinates.
Then ` = (y0z1 − y1z0)x+ (x1z0 − x0z1)y + (x0y1 − x1y0)z.

4. D = 2P = 2(x0 : y0 : z0). Then ` = ∂C
∂x

∣∣
P
x+ ∂C

∂y

∣∣∣
P
y + ∂C

∂z

∣∣
P
z.

Now let D be a degree three effective divisor. We will determine if the points of D are colinear, and
if they are, find the line ` with D ≤ (` · C) and the point P with D + P = (` · C).

1. D = (u, v) with deg(u) = 3. Then the curve y − v passes through D, so the points are colinear if
and only if deg(v) ≤ 1 and in this case ` = y − v. Then ` does not contain P∞1 , and ` contains
P∞4 if and only if deg(v) = 0, in which case P = P∞4 . Otherwise, P = (x0, y0, 1) where x0 is the
unique root of resx(C, `)/u = C(x, v, 1)/u and y0 = v(x0).

2. D = [a,w] with deg(w) = 3. Then the points of D are always colinear and ` = x− az. The fourth
point is P = P∞1 .
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3. In the remaining cases, D = D + P ′ is the sum of a degree two effective divisor D and some k-
rational point P ′. We may interpolate a line ` through D as in earlier in the section, and it suffices
to determine if ` passes through P ′ (with the appropriate multiplicity, if P ′ occurs in D).

(a) If P ′ does not occur in D, then we may substitute P ′ into `, and D is colinear if and only if `
contains P ′.

(b) If D = P ′ + P ′′, then D is colinear if and only if ` is the tangent line to C through P ′ (and
thus intersects P ′ with multiplicity at least 2).

(c) If D = 2P ′, then D = 3P ′ and the points of D are colinear if and only if P ′ is a flex point of
C, which is the case if and only if the determinant of the hessian of C (which is a degree 6
curve) vanishes at P .9

10 Linear Intersection

In the later sections, when handling degenerate curves, we will frequently encounter a line ` and an
effective divisor D ≤ (` ·C) and need to compute the effective divisor (` ·C)−D. We are concerned with
the cases where D has degree 1, 2, or 3. In particular, when D has degree 3, the methods in this section
allow us to determine the unique point P with D+P = (` ·C), which resolves the issue of efficiently and
uniquely identifying elements of the Jacobian.

Let ` be a line. We may determine (` · C) as follows.

• If ` = z, then (` · C) = P∞1 + P∞2 + P∞3 + P∞4 and (` · C)−D may be computed directly.

• If ` = x − az, then since ` does not contain (1 : 0 : 0), we may take the resultant with respect to
x to obtain the multiplicities of the (y : z) ratios in (` · C). We have resx(C, `) = C(az, y, z) is
a homogeneous quartic in y and z. Furthermore, since P∞1 (0 : 1 : 0) is the only point on ` and
P∞1 is on C, we see that z|C(az, y, z) and the multiplicity of P∞1 in (` · C) is equal to the number
of factors of z which divide C(x, az, z). Then setting z = 1 in the resultant yields a polynomial
w(y) = C(a, y, 1) whose roots are the y coordinates of (` · C), counting multiplicity. If degw ≤ 1
or there are repeated roots, then we may find all roots yi explicitly and the affine points on the
divisor are (a : yi : 1). Otherwise, w(y) is a monic simple polynomial of degree at least two and the
affine points on the divisor are [a,w]. Then computation of (` ·C)−D is straightforward, since the
only case where we might not use direct compartison of points is when (` ·C) has an [a,w(y)] term
and D has an [a, w̃(y)] term with w̃|w, in which case we may use [a,w]− [a, w̃] = [a,w/ gcd(w, w̃)].

• If ` = y − ax− bz, then since ` does not contain (0 : 1 : 0) we may take the resultant with respect
to y to determine the (x : z) ratios in (` · C). For each of the possibilities for terms in a divisor
(affine point, infinite point, (u, v), [a,w]) the multiplicity of each (x : z) ratio is known, so we have
a homogeneous polynomial u(x, z) in x and z whose roots are the multiplicity of (x : z) ratios in
(` · C) −D and which thus has degree at most 3. There is at most one distinct point at infinity,
which may be determined by substitution into `, and its multiplicity in (` ·C)−D is the number of
factors of z in u(x, z). Then u = u(x, 1) has roots which are the multiplicities of the x coordinates
of the affine points of (` ·C)−D and we may either determine the x coordinates xi explicitly (and
the y coordinates are then yi = axi + b) and proceed as in the previous case, or u is irreducible of
degree at least 2 and the affine points of (` · C)−D are represented by (u, ax+ b).

In the case where D has degree 3, we may determine as in Section 9 whether or not there is a line `
through D, and if there is, we may use the above methods to compute the unique point P such that
D + P = (` · C), which was what we needed for unique identification of elements of the Jacobian.

11 Conic Interpolation

Given a divisor D described in the above form, we need to find a conic Q with (Q ·C) ≥ D+P∞1 +P∞2 .
If the points of D are colinear, say D ≤ (` · C) for some line `, then ` may be computed as in Section 9
and we may take Q = `∞`. Otherwise, there are 8 cases.

9See [FOR08], Proposition 6.
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1. D = [a,w] + (x0 : y0 : 1). Then Q = (x− az)(x− x0z).

2. D = 2(x0 : y0 : 1) + (x1 : y1 : 1). If the tangent TP to C at (x0 : y0 : 1) is vertical (intersects P∞1 ),
we may take Q = (TP )(x− x1z). Otherwise, the relations ∂C

∂x
∂Q
∂y = ∂C

∂y
∂Q
∂x at x = x0, y = y0, z = 1

and requiring (x0, y0) and (x1, y1) to be affine points on Q(x, y, 1) give a system of linear equations
in the coefficients of the conic Q = y + ax2 + bx+ c whose solution is the desired curve.

3. D = 3(x0 : y0 : 1). If the tangent Tp to C at (x0 : y0 : 1) is vertical (intersects P∞1 ), we may take
Q = T 2

p . Otherwise, let C ′ = C(x+ x0, y + y0, 1). Then

C ′ ≡ f1x+ f2y + f3x
2 + f4xy + f5y

2 mod 〈x, y〉3

with f2 nonzero. Set

Q′ = f2y +

(
f3 −

f1f4
f2

+
f21 f5
f22

)
x2 + f1x

≡ C ′ − f5
f2
yC ′ −

(
f4
f2

+
f1f5
f22

)
xC ′ mod 〈x, y〉3

∈ 〈x, y〉3 + 〈C ′〉

and we may take Q to be the homogenization with respect to z of Q′(x− x0, y − y0, 1).

4. D = (u, v) with deg(u) = 3 and deg(v) = 2. This is the typical case.

5. D = P∞3 + D or D = P∞4 + D, where D is a degree two effective divisor. Then we may select a
line ` through D as in Section 9 and take Q = `∞`.

Let C = y3 + y2(gx2 + hx + i) + y(jx3 + kx2)+ lower terms. Let Q = yz + gx2 + bxz + cz2. Then
resy(C,Q) has degree 6, so Q passes through P∞1 with multiplicity at least 2.

Also, if a 6= 0 then Q cannot pass through P∞3 or P∞4 , so each factor of z in resy(C,Q) must
correspond to an additional copy of P∞1 in (Q ·C). Thus in order to interpolate through nP∞1 it suffices
to ensure that a 6= 0 and that the first n− 2 coefficients of resy(C,Q) are 0, so that zn−2| resx(C,Q).

6. D = P∞1 + (u, v) with deg(u) = 2. Let Q = yz + ax2 + bxz + cz2. Then the coefficient of x6 in
resy(C,Q) is

a3 − ga2 = (−1)(−a+ g)a2.

Since (0 : 1 : 0) is not a flex, g 6= 0. Then we may take Q = y + gu− v.

7. D = 2P∞1 + (x0 : y0 : 1). Let Q = yz+ gx2 + bxz+ cz2, so that the coefficient of x2 in Q is nonzero
and the coefficient of x6 in resy(C,Q) is zero. The coefficient of x5z in resy(C,Q) is

bg2 − g2h+ gj = g2(b− (h− j/g)).

Then we may take Q = y + gx2 + (h− j/g)x− (y0 + hx20 + (h− j/g)x0).

8. D = 3P∞1 . Let Q = yz + gx2 + (h− j/g)xz + cz2, so that the coefficient of x2 in Q is nonzero and
the coefficients of x6 and x5z in resy(C,Q) are zero. The coefficient of x4z2 in resy(C,Q) is

cg2 − g2i− hj + gk + j2/g = g2(c− (g3i+ ghj + g2k + j2)/g3).

Then we may take Q = y + gx2 + (h− j/g)x+ (g3i+ ghj − g2k − j2)/g3.

12 Conic Intersection

Recall that Q is a conic with (Q ·C) = P∞1 +P∞2 +D3 +D, with D3 known and P∞1 = P∞2 = (0 : 1 : 0).
In particular, since the tangent line to C at P∞1 is z = 0, the tangent line to Q at P∞1 is also z = 0. In
particular, the only nonzero terms in Q are yz, x2, xz, and z2.
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If Q has no x2 term, then Q = `∞` for some line ` and we may determine (Q ·C) = (` ·C) + (`∞ ·C)
as in Section 10. (The difficulty that D3 is not necessarily contained in (` ·D) may be easily handled,
since this is only possible if D3 contains P∞4 .)

The remaining cases are Q = y − v where v = ax2 + bx + c and Q is a homogeneous quadratic in x
and z.

Let Q = y−v. Note that P∞3 and P∞4 are not on Q. By Conjecture 2.1 we see that copies of (0 : 1 : 0)
correspond to factors of z in the resultant resy(Q,C) (since the tangent line to C and Q at (0 : 1 : 0) is
z = 0, which intersects y = 0 at (1 : 0 : 0), which corresponds to factors of z) or to missing factors in the
resultant resy(Q,C) (which has degree 8).

Let r(x) be the resultant r(x) = resy(Q,C)|z=1 = C(x, v, 1). Then the x coordinates of affine points
of (Q · C) are given with multiplicity by the roots of r(x), and the number n of copies of P∞1 in the
intersection is n = 8− deg(r) since both missing terms in the resultant and factors of z in the resultant
will disappear from r. We may then determine the number of copies of P∞1 by removing the two copies
known copies and any copies from D3. Suppose there are m copies of P∞1 left. Then D = mP∞1 + D,
where the points of D are all affine.

The x coordinates of affine points of (Q · C) are given with multiplicity by the roots of r(x) =
resy(Q,C)|z=1 = C(x, v, 1). We may thus determine the x values of the divisor D by dividing r by terms
corresponding to the affine x values of D3. These terms are determined as follows.

1. (x0 : y0 : 1) corresponds to x− x0.

2. (u, v) corresponds to u. This (when deg(u) = 3) is the typical case.

3. [a,w] corresponds to (x− a)deg(w).

After removing these terms from r, we see that the x coordinates the points of D are precisely the roots
of r, counting multiplicity. Since Q is linear in y, we see that each x coordinate determines a unique y
coordinate, that is, if D contains two points sharing an x coordinate then they are the same point. We
may determine D as follows.

1. If gcd(r, r′) = 1, then D = (r, v). When n = 0 and D = D, this is the typical case.

2. If gcd(r, r′)) 6= 1, then D has a double point or a triple point and the roots of r may be recovered
directly. Then D is just the sum over ni(xi : v(xi) : 1), where ni is the multiplicity of xi as a root
of r(x).

Thus we have determined D = mP∞1 +D.
Suppose Q has no y term. Then Q is a polynomial in x of degree at most 2. If Q is at most linear

in x, then Q factors as `∞` for some line ` and we may use the methods of Section 10. Otherwise, Q
factors as a product Q = (x − az)(x − bz) of lines; however, we might not know what these lines are
(without a polynomial factorization, which we avoid). We will show how to determine a and b, and then
the methods of Section 10 may be applied.

If a = b, then Q = (x− az)2 and we may determine a. Let a 6= b. The only infinite points on (Q ·C)
are two copies of P∞1 , so the points of D3 are all affine and have x coordinates a or b. Since degD3 = 3,
we see that D3 has a shared x coordinate or a double point, and looking at the cases for atypical divisors
in Section 8, we see that the x coordinates of points of D3 are always known. Thus we may determine
a and b and apply the methods of Section 10 to the lines x− az and x− bz.

13 Cubic Interpolation

In Section 11, we described a procedure for computing a conic passing through P∞1 + P∞2 + D3. That
procedure required a different case for each possible configuration of D3. For the cubic, we need to
interpolate through two divisors D1 and D2, which results in a dramatically greater number of configu-
rations. Instead of treating each configuration separately, we will instead show how to convert each of
the possible terms in a divisor (k-rational affine point, infinite point, (a, u), or [a,w]) into linear relations
in the coefficients of the cubic. It is possible that some conditions will overlap, in which case there will
be more than one cubic E and there will be multiple (linearly equivalent) possibilities for D3.
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One point that requires special care is that D1 and D2 might have a point in common without it being
clear–for instance, if u(x) = (x−2)(x−3)(x−9), v(x) = 1+(x−2)(x−4), and w(y) = (y−1)(y−5)(y−7),
then D1 = (u, v) and D2 = [2, w] will both contain (2 : 1 : 1) since u(2) = 0, v(2) = 1, and w(2) = 0. If
we were to convert (u, v) and [a,w] into linear relations directly, we would only interpolate once through
(2 : 1 : 1) instead of twice.

In order to avoid this, it is necessary to compare each term in D1 with each term in D2 to check for
points in common. There are several cases to consider, all of which are straightforward (for instance,
(u, v) and a,w share a point if and only if u(a) = 0 and w(v(a)) = 0, in which case the shared point is
(a : v(a) : 1)). Thus we may efficiently write D1 + D2 as a sum of terms which are one of a k-rational
affine point, an infinite point, (a, u), or [a,w], such that the supports of each term are disjoint or equal.

Once we have written D1 + D2 in this form, we may to convert to linear criteria and solve for the
cubic E.

A general cubic E has the form

f1y
3 + f2xy

2 + f4x
3 + ry2 + sy + t

where f1, f2, f3, r ∈ k, s, t ∈ k[x], and deg(s),deg(t) ≤ 2. Let s = s2x
2 + s1x+ s0 and t = t2x

2 + t1x+ t0.
As noted in [FOR08], Lemma 1, interpolation through P∞1 +P∞2 +P∞4 is equivalent to f1 = f2 = f4 = 0.
Thus we must show how to convert each Di into linear relations in r, s2, s1, s0, t2, t1, and t0.

Note that if an affine point occurs more than twice, then it must be a double point in either D1 or D2

and we will know its coordinates directly. Thus we only need to consider interpolation through divisors
of the forms [a,w], 2[a,w], (u, v), 2(u, v), nP , or mP∞i where a ∈ k, u, v, w ∈ k[x] u,w are monic and
simple of degree 2 or 3, deg v < deg u, P is an affine point, n ≤ 6, and m ≤ 8.

1. [a,w] becomes w(y)|(ry2 + s(a)y + t(a)). When deg(w) = 3, this gives three linear relations
r = s(a) = t(a) = 0. When deg(w) = 2, this gives ry2 + s(a)y + t(a) = rw, which corresponds to
two linear relations, one in the constant coefficients and one in the y coefficients.

2. (u, v) becomes u|E(x, v, 1). Suppose deg u = 3. Let u = x3+u2x
2+u1x+u0 and v = v2x

2+v1x+v0.
This gives

rv2 + sv + t = (rv22x− rv22u0 + 2rv2v1)u

which corresponds to three linear relations upon looking at the coefficients of 1, x, and x2. Suppose
deg u = 2. Then deg v ≤ 1 and we have rv2 + sv + t = rv21u, which gives two linear relations, one
in the constant coefficients and one in the x coefficients.

To handle 2[a,w] and 2(u, v), it suffices to describe the conditions for agreement of the tangent lines to
E and C at the corresponding points in addition to the criteria for [a,w] and (u, v).

3. 2[a,w] becomes w|(∂C
∂x

∂E
∂y −

∂C
∂y

∂E
∂x )x=a,z=1.

4. 2(u, v) becomes the second collection of equations in the doubling step of [FOR08], specifically (in
[FOR08]’s notation) 2v1 + s ≡ rδ1 [u1]. When deg u = 3, this is the typical case.

5. For points with known coordinates (affine or infinite), we may change coordinates to put the point
at (0 : 0 : 1), apply Lemma 6.2, take the orthogonal complement, and change coordinates back.
All arithmetic will be done over the base field, and this procedure only requires linear algebra
with fixed dimension. For affine points, the highest dimension necessary is 15 (in the case where
D1 = D2 = 3P for some affine point P ). For points at infinity, the highest dimension would be 28
(in the case where D1 = D2 = P∞1 ) but the relevant equations may be precomputed.

14 Cubic Intersection

The casework for this section is not yet complete. However, here is a brief discussion of the relevant
techniques which we expect will suffice.

We have a cubic E and two divisors D1 and D2, and we want to compute the divisor D3 which
satisfies (E · C) = P∞1 + P∞2 + P∞4 +D1 +D2 +D3.

Using Lemma 6.2, we may determine the multiplicities of infinite points on D3. We may construct
polynomials whose roots are the x coordinates or the y coordinates of (u, v) or [a,w], counting multiplicity.
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Then using resultants and Conjecture 2.1, and removing the factors corresponding to P∞1 +P∞2 +P∞4 +
D1 + D2, we may construct polynomials whose roots are the x and y coordinates of the affine part of
D3, counting multiplicity. Note that since the tangent lines to C and E at P∞4 are not constrained in
any way, we might need Conjecture 2.1 to remove the factors from resx(C,E) which correspond to extra
copies of P∞4 .

The hope is that in typical or close to typical cases the methods used in [FOR08] will be applicable,
while in the more atypical cases, the information described above will suffice. For instance, if there is only
one affine point in D3 then its coordinates may be determined from resy(C,E)|z=1 and resx(C,E)|z=1

by removing factors corresponding to points of P∞1 + P∞2 + P∞4 +D1 +D2 and taking the roots of the
unique remaining factors to find the x and y coordinates.

15 Jacobian Inversions

We would like an efficient algorithm to compute a group inversion in the Jacobian. This is handled by
[FOR08] in the case of a flex point (as part of their ordinary algorithm) but the tangent case is different.

Proposition 15.1. Let D be a divisor. Let Q be the conic passing through D + 2P∞4 . Then Q passes
through an additional three points which form the divisor which is the inverse of D.

Proof. Let (Q · C) = 2P∞4 +D +D′ for some effective divisor D′ of degree 3. Then

(D −D∞) + (D′ −D∞) ∼ −2P∞4 − 2D∞ = −2(`∞ · C) ∼ 0

and D′ is the additive inverse of D in the Jacobian.

Lemma 15.2. The conic Q from the proposition is generically of the form

y2 + ax

(
y +

n

j

)
+ by + c

where n is the coefficient of x3z in C and j is the coefficient of x3y in C.

Note that since we are in the tangent case, P∞4 is different from P∞3 , the tangent line to C at P∞4 is
not `∞ = z, and j is nonzero.

It should be feasible to extend the work with atypical divisors to perform inversions in the Jacobian
in a fixed number of field operations.

16 Rational Lines and Tangent Lines

From [OR10], we see that if p ≥ 127 then there must always exist a line ` with (` ·C) = P1 +P2 +P3 +P4

and the Pi’s all k-rational. Recall that when such a line exists, we may perform our algorithm with all
computations over the base field. Oyono and Ritzenthaler note that their bound of p ≥ 127 may not be
optimal, and also that by [HLT04] there are curves with p = 29 with no rational points, hence no line
`. We suggest that it is practical to find all smooth plane quartics C/Fp with such a line ` for p > 29
prime up to linear change of coordinates via brute force search.

Let C/Fp be a smooth plane quartic, p > 29 prime, and suppose there is no line ` where (` · C) =
P1 + P2 + P3 + P4 with the Pi’s all k-rational. By [HLT04], C has a rational point P . After a linear
change of coordinates, we may assume P = (0 : 1 : 0) and the tangent line to C at P is the line `∞ = z.
Then C has neither a y4 nor an xy3 term, so C has the form ax2y2 + bx3y+ cx4 + z(degree ≤ 3 terms).
The line `∞ = z cannot intersect C at four rational points, so we must have ay2+bxy+cx2 an irreducible
conic and a is nonzero. Fix some nonsquare element α ∈ Fp. Then after transforming y → y − b

2ax we
may take b = 0, and after rescaling the x axis we may assume that a = 1 and c = −α. Thus C has the
form x2y2 − αx4 + z(k1xy

2 + k2x
2y + other degree ≤ 3 terms). We may transform x → x − k1

2 z and

y → y − k2

2 z to eliminate the xy2z and x2yz terms. Finally, since C is smooth and the tangent line to
C at (0 : 1 : 0) is z, we see that C has a zy3 term. Then rescaling the z axis, we may assume that the
coefficient of zy3 is 1. Thus C has the form

y3 + x2y2 − αx4 + c1x
3 + c2y

2 + c3yx+ c4x
2 + c5y + c6x+ c7 (4)
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Furthermore, such a representation is unique up to linear change of coordinates, the choice of the initial
rational point P on C, and the choice of α.

Thus we need to check no more than p7 possibilities for C. The largest value of p with which we
are concerned is 113 (the largest prime less than 127). If a single processor core can check each curve
in under 100 nanoseconds on average (which we will show is reasonable), then the search with p = 113
will conclude within a year (less if multiple cores are used, since parallelizing this brute force search is
trivial).

Let C have the form (4), and suppose there is no line ` which intersects C at four rational points.
Then the only infinite point on C is (0 : 1 : 0). Let (x0 : y1 : 1) and (x0 : y2 : 1) be two affine points on
C with the same x coordinate. Then the line x− x0z passes through three rational points on C, hence
passes through a fourth rational point, a contradiction. Thus C has at most p affine points, no two of
which share an x coordinate. This leads to the following algorithm.

Algorithm 16.1. Precompute a table of all monic cubics and their distinct roots. Precompute a table
of all quadratics and their distinct roots. Precompute a table of inverses mod p. Then for each curve C
in the form of (4)

1. For each x0 in Fp, compute the coefficients of the monic cubic f(y) = C(x0, y, 1). Look up f in the
table of monic cubics. If f has multiple roots, then there are multiple points with x coordinate x0
and we reject C. If f has one root y0, then (x0 : y0 : 1) is the unique point on C with x coordinate
x0. If f has no roots, there is no point with x coordinate x0 on C.

2. For each x0 in Fp such that there is a y0 with P = (x0 : y0 : 1) on C, compute the tangent line ` to
C at P . If ` = 0, reject C. If ` is vertical, reject C. Let r(x) = resy(C, `)/(x− x0)2. If deg(r) < 2,
reject C. Look up r in the table of quadratics. If r has at least one root, reject C.

3. For each x1 6= x2 in Fp such that there are y1, y2 with P1 = (x1 : y1 : 1), P2 = (x2 : y2 : 1) on C,
compute the line ` through P1 and P2. Let r(x) = resy(C, `)/(x−x1)(x−x2). If deg(r) < 2, reject
C. Look up r in the table of quadratics. If r has at least one root, reject C.

4. Use a computer algebra system to check if C is smooth and irreducible. If not, reject C.

5. Output C.

While step 4 may take much longer than 100 nanoseconds, step 1 only requires a handful of operations
and array lookups, and in practice most curves are eliminated in step 1. When p = 31, we find that
183 536 curves reach step 4, and when p = 37 we find that only 49 282 curves reach step 4. The number
of curves that reach step 4 seems to drop off quite rapidly–with p = 41 the number is 17 342, and with
p = 43 the number is 8 830. The author’s current implementation is able to achieve an average of 100
nanoseconds per curve, and has found curves with no line ` for p as high as 73.

A similar search approach could be used to look for curves with no rational tangent, but the bound
for the existence of such a tangent is much larger (p ≥ 662 + 1) and we would not expect to find all such
curves in a reasonable amount of time.
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