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Abstract

In this paper we consider the problem of density estimation for mixtures of high-dimensional

elliptical distributions. We prove that Õ
(
k(d2+logM)

ε2

)
samples are required for learning the

distribution of a mixture of k many d-dimensional elliptical distributions to total variation
distance ε with density functions drawn from a known set of size M .

1 Introduction

Learning mixtures of probability distributions is an important problem in unsupervised machine
learning. While there are known algorithms for learning mixtures of multivariate Gaussians in
polynomial time and sample complexity, less is known about the time and sample complexity for
learning the broader class of multivariate elliptical distributions, defined as follows.

Definition 1.1 (Elliptical distributions). A d-dimensional elliptical distribution with center µµµ,
shape matrix Σ, and radial density function g : R→ R has density function f : Rd → R such that

f(xxx) =
Γ(d/2)

2πd/2|Σ|1/2
g((xxx−µµµ)TΣ−1(xxx−µµµ)).

Examples of elliptical distributions include multivariate Gaussians, multivariate t distributions,
Cauchy distributions, and the multivariate logistic distribution. In particular, elliptical distributions
include heavy-tailed distributions, whose tails decay at a slower than exponential rate.

Definition 1.2 (Mixtures). A mixture of k distributions D1, D2, ..., Dk can be expressed as D =∑k
i=1 wiDi where the mixing weights w1, w2, ..., wk sum to 1. To sample from D, we randomly

choose distribution Di with probability wi, and then choose a sample xxx ∼ Di.
We will denote by k-mix(F ) the set of all possible mixture distributions D =

∑k
i=1 wiDi where

D1, D2, ..., Dk are contained in a class F .

We will prove a sample complexity upper bound for density estimation for a mixture of high-
dimensional elliptical distributions. Given samples from a mixture D =

∑k
i=1 wiDi where Di are

elliptical distributions contained in a class F , our goal is to output a distribution that is close in
total variation distance to D. Additionally, if we are given samples from a distribution Q that is
close to D, our algorithm should output a distribution that is close in total variation distance to Q
relative to k-mixtures of distributions in F .

Let TV (f, g) denote the total variation distance between two distributions f and g. We formally
define agnostic PAC-learning of a distribution as follows.
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Definition 1.3 (Agnostic PAC-learning). A C-agnostic PAC-learner for a class F with sample
complexity mC

F (ε, δ) is a function which takes as input mC
F (ε, δ) i.i.d. samples from an arbitrary

distribution g, and outputs a distribution ĝ ∈ F such that

TV (ĝ, g) ≤ C · inf
f∈F

TV (f, g) + ε

with probability at least 1− δ.
Note that if g ∈ F , the realizable case, then inff∈F TV (f, g) = TV (g, g) = 0 so the above

inequality becomes
TV (ĝ, g) ≤ ε.

Note that our goal for this paper is only to prove a sample complexity bound for density
estimation of the entire mixture. This is an easier task than estimating the weights and density of
each component distribution separately. The benefit of this approach is that it does not require any
separation conditions between the centers of the distributions, or conditions on the minimal weight
or maximal variance for each component distribution. No sample complexity bound was previously
known for learning mixtures of elliptical distributions. Our main result is the following theorem.

Theorem 1.4. Let Fd(φ1, φ2, . . . φM ) be the class of d-dimensional elliptical distributions with
characteristic function contained in the finite set {φ1, φ2, . . . φM}. Let fd(φ1), fd(φ2), . . . fd(φM ) be
the corresponding radial density functions. Let R1 and R2 be finite constants (that may depend on
d and the functions φi) such that for all 1 ≤ i ≤M ,

Px∼Ed(000,Id,φi)(‖x‖
2
2 ≥ R1d) ≤ 0.025, (1)

and Px∼E1(0,1,φi)(|x| ≤ R2) ≤ 0.05. (2)

If fd(φi) are monotonic decreasing for all d and all 1 ≤ i ≤ M , then k-mix(Fd(φ1, φ2, . . . φM ))
can be 12-agnostic PAC learned with sample complexity

Õ

(
k(d2 log(R1/R2) + logM)

ε2

)
.

The sample complexity is, up to a polylogarithmic factor, the same as the sample complexity
for learning a mixture of Gaussians. Unfortunately, the time complexity for our algorithm is
exponential.

To prove our main theorem, we rely on the sample compression method developed by Ashtiani
et. al. in [2]. In particular, the authors showed that if any distribution in a class F can be encoded
using a small number of samples and a short sequence of bits, then k-mix(F ) can be learned in time
linear in k and the number of samples and bits.

1.1 Related Work

There is a large body of work on learning mixtures of Gaussians. There has been some work in
clustering mixtures of heavy-tailed distributions, though no time or sample complexity bounds have
been proven for learning mixtures of elliptical distributions in general.

Learning mixtures of Gaussians.Learning mixtures of Gaussians.Learning mixtures of Gaussians. Spectral approaches for clustering mixtures of Gaussians [12, 1]
relied on principal components analysis, projecting samples onto a lower-dimensional subspace and
then clustering the samples using distance concentration. These methods require that the means
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of the Gaussians are sufficiently well-separated. Parameter estimation methods seek to find the
mean, covariance and weight of each individual component in the mixture. For example, [8] proves
an algorithm for learning the mixture of two Gaussians using random projections to one dimension
and applying the method of moments to learn the mixture parameters, using polynomial time and
polynomial samples. Other algorithms for learning the component Gaussians include the k-means
algorithm [11, 3] and expectation maximization [13], but they are not guaranteed to converge at
a global optimum. Most relevant to our approach, [2] used robust sample compression to show
a sample complexity upper bound of Õ(kd2/ε2) for learning mixtures of k distinct d-dimensional
Gaussians, as well as a matching lower bound (up to a polylogarithmic factor).

Learning mixtures of heavy-tailed distributions.Learning mixtures of heavy-tailed distributions.Learning mixtures of heavy-tailed distributions. [5] showed a sample complexity upper bound
of Õ(dk) for clustering mixtures of heavy-tailed symmetric distributions with independent coor-
dinates under separation conditions between the distribution centers. [4] gave a polynomial-time,
polynomial sample complexity algorithm for clustering mixtures of heavy-tailed product distribu-
tions. However, elliptical distributions do not have independent coordinates in general. In fact, the
only elliptical distributions that are also product distributions are Gaussians.

Another clustering approach uses list decodable mean estimation [7], which views samples from
a mixture as samples from a single distribution with a large fraction of the points contaminated. A
polynomial time algorithm outputs a list of the possible means for the contaminated distribution
and clusters the samples using the means. This approach requires bounded mean and covariance
for each mixture component.

There are also iterative reweighting algorithms (related to expectation maximization) that opti-
mize a non-convex potential to find mixture parameters [10]. Recently, [9] proposed using gradient
descent on Riemannian manifolds to optimize the parameter estimates. There have been empirical
demonstrations for these algorithms, but no sample complexity or convergence guarantees.

1.2 Organization

The rest of the paper is structured as follows. In section 2, we review the basics of elliptical
distributions and total variation distance. In section 3, we outline the method in [2] for using
sample compression schemes to prove sample complexity upper bounds for learning mixtures of
distributions. In section 4, we apply the sample compression method to prove our upper bound for
learning mixtures of elliptical distributions.

2 Preliminaries

In this section, we review the basics of elliptical distributions and total variation distance.

2.1 Elliptical distributions

Elliptical distributions are symmetric about their center µµµ. The mean of an elliptical distribution,
if it exists, is equal to µµµ. The covariance of an elliptical distribution, if it exists, is a scalar multiple
of the shape matrix Σ. However, some important classes of elliptical distributions (such as Cauchy
distributions) do not have a mean or covariance.

We denote by Ed(µµµ,Σ, φ) an elliptical distribution with center µµµ, shape Σ, and characteristic
function φ. By definition, φ is the Fourier transform of the probability density function of the

distribution. Thus, if the radial density function of Ed(µµµ,Σ, φ) is f , then φ(xxx) = eixxx
Tµµµψf (xxxTΣxxx)
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where ψf is the Fourier transform of f . We will use the following well-known properties of elliptical
distributions.

Lemma 2.1 (Affine transformations of elliptical distributions are elliptical). Let A be a k × d
matrix and let bbb be a k × 1 vector. If xxx ∼ Ed(µµµ,Σ, φ), then Axxx+ bbb ∼ Ek(Aµµµ+ bbb, AΣAT , φ).

Lemma 2.2 (Sums of elliptical vectors with the same shape matrix are elliptical). Suppose x1x1x1 ∼
Ed(µµµ1,Σ, φ1) and x2x2x2 ∼ (µµµ2,Σ, φ2). If x1x1x1 and x2x2x2 are independent, then x1x1x1 + x2x2x2 ∼ Ed(µµµ1 +
µµµ2,Σ, φ1φ2).

2.2 Total variation distance

Definition 2.3. The total variation distance between two distributions with density functions
functions f : Rd → R and g : Rd → R is

TV (f, g) =

∫
Rd

|f(xxx)− g(xxx)|dxxx =
1

2
‖f − g‖1.

where ‖f − g‖1 =
∫

Rd |f(xxx)− g(xxx)|dxxx is the L1 distance between functions f and g.

Given samples from a mixture of elliptical distributions with density f , we wish to construct
a mixture of elliptical distributions with density f̂ such that f and f̂ are close in total variation
distance. Density estimation for a mixture of distributions under total variation distance does
not require structural assumptions on the minimal mixture weight, minimal separation between
distribution centers, or maximal variance of a distribution in any direction. By contrast, under
other models such as parameter estimation, density estimation under KL divergence, or density
estimation under Lp distances (for p ≥ 1), even learning a mixture of Gaussian distributions would
require additional assumptions on the mixture weights and separation between the Gaussian means
[2].

There are known upper and lower bounds for the total variation distance between two multi-
variate Gaussians in terms of their covariance matrices and the difference between their means [6].
However, we are not aware of such bounds for elliptical distributions in general.

3 Sample compression schemes for learning mixtures of dis-
tributions

In this section we describe the sample compression schemes developed by Ashtiani et. al. in [2]. A
sample compression scheme for a class of distributions F on domain Z consists of an encoder and
a decoder.

• The encoder wishes to encode a distribution f ∈ F . Given a set of m samples from f , the
encoder chooses a representative subset of τ samples (in Zτ ) and a sequence of t bits (in
{0, 1}t) to send to the decoder.

• The decoder receives the τ samples and t bits and outputs a distribution f̂ ∈ F such that
TV (f, f̂) is small. Thus, the decoder is formally defined as a family of deterministic functions
of the form JF : ∪τn=0Z

n × ∪tn=0{0, 1}n → F where τ and t can range from 0 to ∞.
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The goal of the encoder is to represent the distribution in as few samples and bits as possible while
still ensuring that the decoder can output a good approximation for the distribution with high
probability.

Under non-robust compression, the encoder receives samples from f ∈ F and sends a sequence
of bits and a “representative” subset of the samples. The decoder outputs a distribution that is
close to f with high probability.

Definition 3.1 (Non-robust compression schemes). We say that a class F admits (τ(ε), t(ε),m(ε))
non-robust compression if there exists a decoder JF such that the following holds for any f ∈ F :

If a sample S is drawn from fm(ε), then with probability at least 2/3, there exists a subset

L ⊂ S of at most τ(ε) samples and a sequence B of at most t(ε) bits such that ‖JF (L,B)− f̂‖1 ≤ ε.

Under r-robust compression, the encoder receives samples not from f ∈ F but from another
distribution q that is within r total variation distance of f . Now, the encoder must represent f
using a subset of the samples from q and a sequence of bits, such that the decoder can output a
distribution that is close to f with high probability.

Definition 3.2 (Robust compression schemes). We say that a class F admits (τ(ε), t(ε),m(ε))
r-robust compression if there exists a decoder JF such that the following holds for any f ∈ F :

Suppose ‖q − f‖1 ≤ r. If a sample S is drawn from qm(ε), then with probability at least 2/3,
there exists a subset L ⊂ S of at most τ(ε) samples and a sequence B of at most t(ε) bits such that

‖JF (L,B)− f̂‖1 ≤ ε.

[2] showed that if there exists a non-robust sample compression scheme for F , then F is learnable
in the realizable setting. If there exists a robust sample compression scheme for F , then F is
learnable in the agnostic setting.

Lemma 3.3 (Theorem 4.5 in [2]). If class F admits (τ(ε), t(ε),m(ε)) r-robust compression, then
F can be max{3, 2/r}-learned in the agnostic setting with sample complexity

Õ

(
m(ε/6) +

(τ(ε) + t(ε/6)) logm(ε/6)

ε2

)
.

If F admits (τ(ε), t(ε),m(ε)) non-robust compression, then F can be learned in the realizable setting
with the same sample complexity.

Suppose there exists a non-robust sample compression scheme (τ, t,m) for F . Then there exists
a non-robust sample compression scheme for k-mix(F ).

Lemma 3.4 (Lemma 4.8 in [2]). If class F admits (τ(ε), t(ε),m(ε)) non-robust compression, then

k-mix(F ) admits (k · τ(ε/3), k · t(ε/3) + k log(3k/ε), 48k log(6k)
ε ·m(ε/3)) non-robust compression.

Combining Lemmas 3.3 and 3.4, we conclude that there exists an algorithm for learning any
finite mixture of distributions from F in the realizable setting, with sample complexity log-linear in
τ , t, and m.

Lemma 3.5. If class F admits (τ(ε), t(ε),m(ε)) non-robust compression, then k-mix(F ) admits
learning in the realizable setting with sample complexity

Õ

(
km(ε/18)

ε
+
k(τ(ε/18) + t(ε/18)) logm(ε/18)

ε2

)
.
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Similarly, finding a robust sample compression scheme (τ, t,m) for a class F of distributions
guarantees an algorithm for learning any finite mixture of distributions from F in the agnostic set-
ting, with sample complexity log-linear in τ , t, and m. We will use the following sample complexity
bound in our proofs for agnostic learning of mixtures of elliptical distributions.

Lemma 3.6 (Lemma 4.9 in [2]). If class F admits (τ(ε), t(ε),m(ε)) r-robust compression, then
k-mix(F ) admits 3

2 (1 + 2/r)-agnostic learning with sample complexity

Õ

(
km(ε/10)

ε
+
k(τ(ε/10) + t(ε/10)) logm(ε/10)

ε2

)
.

However, the time complexity of the algorithm in [2] for learning mixtures using sample com-
pression schemes is exponential. The algorithm exhaustively tries every possible way of splitting the
set m of samples into k subsets. The algorithm also exhaustively guesses the weights w1, w2, . . . , wk
by constructing a fine mesh over [0, 1]k. Then, since there are finitely many sets of samples L
and sequences of bits B in ∪τn=0Z

n × ∪tn=0{0, 1}n, the algorithm can calculate all of the possible
candidate distributions JF (Li, Bi) for each subset i. It is then shown that one may use this list of
candidate distributions to output a mixture of k candidate distributions JF (Li, Bi) with weights
ŵi that is close in total variation distance to the actual mixture distribution, with high probability.

4 Upper bound for learning mixture of elliptical distribu-
tions

In this section, we prove a sample complexity upper bound of O(kd2/ε2) for learning mixtures of k
elliptical distributions of dimension d. An outline of the proof is as follows.

First, we give an algorithm for encoding a single elliptical distribution f
d
= Ed(µµµ,Σ, φ). We

initially assume that φ is known and fixed. We show that we can encode approximations for µ̂µµ and

Σ̂ using O(d) samples and O
(
d2 log

(
R1d
R2ε

))
bits. Next, we show that if µµµ and µ̂µµ are close and Σ

and Σ̂ are close, then Ed(µµµ,Σ, φ) and Ed(µ̂µµ, Σ̂, φ) are close in total variation distance.
The above results allow us to prove that if φ is drawn from a known finite set of candidate

characteristic functions, then our sample compression scheme correctly encodes a single elliptical
distribution. Finally, we apply Lemma 3.6 to prove our sample complexity bound for learning
mixtures of elliptical distributions.

Throughout the proof, we will use the following notation for balls in Rd.

Definition 4.1 (Balls in Rd). Let Bd(r) denote the ball of radius r centered at the origin in Rd.
Let Bd(r,µµµ) denote the ball of radius r centered at µµµ.

4.1 Encoding a single elliptical distribution

Our goal in this section is to encode µµµ and Σ for an elliptical distribution with known characteristic
function φ. Suppose we are given m samples. An overview of the encoding algorithm is as follows.

Let Σ =
∑d
i=1wiwiwiwiwiwi

T , which is always possible because it is a positive-semidefinite matrix. First,
we encode ŵiwiwi. In Lemma 4.2, we show that with high probability, the 1/20 radius ball centered at
the origin is contained in the convex hull of samples. In Lemma 4.3, we show that this allows us
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to express each vector wiwiwi as a linear combination of samples where each coefficient is in [−20, 20].
We construct a net for [−20, 20]m and encode the point in the net closest to the coefficient vector.

Next, we encode µ̂µµ. With high probability, some sample is close to the actual center µµµ. We
create a discrete net around the sample using the estimated ŵiwiwi vectors and encode the element of
the net closest to the mean. The next two lemmas are based on Lemmas 5.6 and 5.7 from [2]. Let
conv(T ) denote the convex hull of the set T .

Lemma 4.2. Suppose q1q1q1, ..., qmqmqm are i.i.d. samples from a d-dimensional distribution Q such that
TV (Q,Ed(000, Id, φ

2)) ≤ 2/3 where φ is as in Theorem 1.4. Let T = {±qiqiqi : ‖qiqiqi‖2 ≤
√
R1d}. There

exists an absolute constant C such that if m ≥ Cd, then

P [Bd (2R2) ⊆ conv(T )] ≥ 5/6.

Proof. For each yyy ∈ Sd−1, let

Hyyy = {xxx ∈ Rd : ‖xxx‖2 ≤
√
R1d, |〈xxx,yyy〉| ≥ 2R2}

Let U = {q1q1q1, q2q2q2, ..., qmqmqm}. It is necessary and sufficient to show that with probability at least 5/6,

U ∩Hyyy 6= ∅ ∀yyy ∈ Sd−1.

Let H = {Hyyy : yyy ∈ Sd−1}. By the Vapnik-Chervonenkis inequality, for some constant c,

E

[
sup
H∈H

∣∣∣∣Q(H)− |U ∩H|
m

∣∣∣∣] ≤ c
√

VC-dim(H)

m
. (3)

Note that VC-dim(H) is at most the VC dimension of {xxx ∈ Rd : |〈xxx,yyy〉| ≥ 2R2}. The family of
pairwise unions of half-spaces has VC dimension at most 4(d+ 1) log2 6. So VC-dim(H) = O(d).

Let ggg ∼ Ed(000, Id, φ2). By Lemma 2.2, we have ggg ∼ x1x1x1 + x2x2x2 where x1x1x1,x2x2x2 are i.i.d. samples from
Ed(000, Id, φ). By triangle inequality, ‖x1x1x1 + x2x2x2‖2 ≤ ‖x1x1x1‖2 + ‖x2x2x2‖2. By union bound, we have

P (‖ggg‖2 ≥ 2
√
R1d) ≤ P (‖x1x1x1‖2 + ‖x2x2x2‖2 ≥ 2

√
R1d)

≤ P (‖x1x1x1‖2 ≥
√
R1d) + P (‖x2x2x2‖2 ≥

√
R1d)

≤ 0.05

where the last inequality follows from Equation 1. By Lemma 2.1, for any yyy ∈ Sd−1, 〈ggg,yyy〉 ∼
E1(0, 1, φ2), so that 〈ggg,yyy〉 ∼ x1 + x2 where x1 and x2 are i.i.d. samples from E1(0, 1, φ). By the
triangle inequality and union bound,

P [|〈ggg,yyy〉| < 2R2] = P [|x1 + x2| < 2R2]

≤ P [|x1|+ |x2| < 2R2]

≤ P [|x1| < R2] + P [|x2| < R2]

≤ 1

10
,

where the last inequality follows from Equation 2 in Theorem 1.4.
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By union bound, for any yyy ∈ Sd−1 we have

P [ggg ∈ Hyyy] ≥ 1− P
[
‖ggg‖2 ≥

√
R1d

]
− P [|〈ggg,yyy〉| < 2R2]

≥ 1− 0.05− 1

10
= 0.85.

Because TV (Q,Ed(000, Id, φ
2)) ≤ 2/3 we have Q(H) ≥ 0.85− 2/3 > 0.18 = Ω(1) for any H ∈ H.

Let p = infH∈HQ(H). Let sample size m = 144c2 · VC-dim(H)/p2. Note that m = O(d), since we
have shown above that p = Ω(1) and VC-dim(H) = O(d). Then Equation 3 becomes

E

[
sup
H∈H

∣∣∣∣Q(H)− |U ∩H|
m

∣∣∣∣] ≤ p/12.

By Markov’s inequality, this implies that with probability at least 5/6,

Q(H)− |U ∩H|
m

≤ p/2 ∀H ∈ H.

Then, since Q(H) ≥ p for all H ∈ H,

|U ∩H|
m

≥ Q(H)− p/2 ≥ p/2 > 0.

This proves |U ∩H| 6= ∅ for all H ∈ H as desired.

Suppose Σ is full-rank and Σ =
∑d
i=1wiwiwiwiwiwi

T . As in [2], the case where Σ has rank p < d can be
reduced to the full-rank case since a significant fraction of the samples will lie in an affine subspace
S of dimension p with high probability. We can encode S using the samples that lie in it.

Lemma 4.3. Let x1x1x1,x2x2x2, ...,x2mx2mx2m be i.i.d. samples from a fixed d-dimensional distribution Q satisfy-
ing TV (Q,Ed(µµµ,Σ, φ)) ≤ 1/3. There exists an absolute constant C such that if m ≥ Cd, then with
probability at least 2/3, one can encode vectors ŵ1w1w1, ..., ŵdwdwd, µ̂µµ ∈ Rd satisfying

‖Σ−1/2(ŵjwjwj −wjwjwj)‖2 ≤
ε

6
d−5/2 ∀j and

‖Σ−1/2(µ̂µµ−µµµ)‖2 ≤
ε

2

using O(d2 log(Rd/ε)) bits and the 2m samples.

Proof. Let zizizi = Σ−1/2(xixixi − µµµ) for 1 ≤ i ≤ 2m. By Lemma 2.1, the distribution of zizizi has TV
distance at most 1/3 from Ed(000, Id, φ). Let qiqiqi = z2iz2iz2i − z2i−1z2i−1z2i−1 for 1 ≤ i ≤ m. Then the distribution
of qiqiqi has TV distance at most 2/3 from Ed(000, Id, φ

2).
Let T = {±qiqiqi : ‖qiqiqi‖2 ≤

√
R1d} and E denote the event Bd (2R2) ⊆ conv(T ). By Lemma 4.2,

P (E) ≥ 5/6. We assume E occurs for the rest of the proof. The rest of the proof is similar to the
proof of Lemma 5.7 in [2], up to a constant factor (since we use

√
Rd instead of 4

√
d). We outline

the proof below for completeness.
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Encoding ŵ1, ŵ2, ..., ŵd:Encoding ŵ1, ŵ2, ..., ŵd:Encoding ŵ1, ŵ2, ..., ŵd: Let C ≥ 1
2R2

. For each 1 ≤ j ≤ d, note that Σ−1/2wjwjwj/C has norm
1/C and is thus contained in Bd (2R2) ⊆ conv(T ). Then

Σ−1/2wjwjwj
C

=

m∑
i=1

θj,iqiqiqi

for some vector θjθjθj ∈ [−1, 1]m. We discretize θjθjθj using a ε
6R1Cmd3

-net for [−1, 1]m. Since m = O(d),

any element of the net can be encoded in O
(
d log

(
R1Cd
ε

))
= O

(
d log

(
R1d
R2ε

))
bits. The encoder

chooses the element θ̂ĵθĵθj in the net that is closest to the true θjθjθj .
Let I = {i : qiqiqi ∈ T}. The decoder can calculate the estimated vectors as

ŵjŵjŵj = C
∑
i∈I

θ̂ĵθĵθj(x2ix2ix2i − x2i−1x2i−1x2i−1).

Then

‖Σ−1/2(ŵjŵjŵj −wjwjwj)‖2 = C‖
∑
i∈I

(θ̂j,i − θj,i)qiqiqi‖2

≤ Cm ε

6R1Cmd3
(
√
R1d)

≤ ε

6
√
R1

d−5/2

≤ ε

6
d−5/2

where the last inequality is due to R1 ≥ 1.
Encoding µ̂:Encoding µ̂:Encoding µ̂: Recall from the beginning of the proof that zizizi has TV distance at most 1/3 from

Ed(000, Id, φ). By Equation 1,

P (‖zizizi‖2 ≥
√
R1d) ≤ 0.05 + 1/3 ≤

√
1/6.

Then P
(
min{‖z1z1z1‖2, ‖z2z2z2‖2} ≤

√
R1d

)
= 1−P

(
‖zizizi‖2 ≥

√
R1d

)2 ≥ 5/6. Assume the event min{‖z1z1z1‖2, ‖z2z2z2‖2} ≤√
R1d occurs for the rest of the proof.

Assume without loss of generality that ‖z1z1z1‖2 ≤
√
R1d. Then z1z1z1 =

∑d
j=1 λj

wjwjwj

‖wjwjwj‖2 for some vector

λλλ = (λ1, ..., λd) ∈ Bd(
√
R1d). We have

µµµ = x1x1x1 − Σ1/2z1z1z1 = x1x1x1 −
d∑
j=1

λjwjwjwj .

We discretize λλλ using a ε
3d -net forBd(

√
R1d). An element of this net can be encoded inO(d log(d/ε)).

Choose the element λ̂ closest to λ. The decoder calculates

µ̂µµ = x1x1x1 −
d∑
j=1

λ̂jŵjŵjŵj .
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Then

‖Σ−1/2(µ̂µµ−µµµ)‖2 ≤
d∑
j=1

‖λ̂j(Σ−1/2wjwjwj − Σ−1/2ŵjŵjŵj) + (λj − λ̂j)Σ−1/2wjwjwj‖2

≤ d(
√
R1d ·

ε

6
√
R1

d−5/2 +
ε

3d
· 1)

≤ ε

2
.

4.2 Bounding total variation distance under parameter estimates

Next we show that our estimates of µµµ and Σ are accurate enough to guarantee that the encoded
distribution is close in total variation distance to the original distribution. Our main result for this
section is the following.

Lemma 4.4. Let Σ =
∑
iwiwiwiwiwiwi

T and Σ̂ =
∑
i ŵiwiwiŵiwiwi

T . Suppose that

‖Σ−1/2(ŵjwjwj −wjwjwj)‖2 ≤
ε

12d2
≤ 1

6d
∀1 ≤ j ≤ d and (4)

‖Σ−1/2(µ̂µµ−µµµ)‖2 ≤
ε2

16d2
. (5)

Then
TV (Ed(µ̂µµ, Σ̂, φ), Ed(µµµ,Σ, φ)) ≤ ε.

We express the L1 distance between two probability density functions as the integral over s of
the volume of the symmetric difference between the shadows of the “caps” of the the two density
function above height s. The next lemma is easily proved using Fubini’s theorem.

Lemma 4.5. Let h, g be two nonnegative functions. Then

‖h− g‖1 =

∫ ∞
0

vol
(
h−1([s,∞)

)
∆ g−1([s,∞)))ds,

where A∆B denotes the symmetric difference between two sets A,B.

To find the total variation distance between Ed(µ̂µµ, Σ̂, φ) and Ed(µµµ,Σ, φ), we split into two cases.
First, we find the total variation distance between two elliptical distributions with the same shape
matrix but different centers. Then, we find the total variation distance between two elliptical
distributions with the same center but different shape matrices. We can then use the triangle
inequality to bound the total variation distance between two elliptical distributions with different
centers and different shape matrices.

We first find the total variation distance between two spherical distributions with the same
shape matrix Id but different centers. We use the following inequality.

Equation 4.6. Suppose δ ≤ ε
2d . Then (1 + δ)d − 1 ≤ ε.

10



Lemma 4.7 (Same shape matrix case). Let f : R≥0 → R≥0 be a monotone decreasing function,
and let g denote the corresponding radial function on Rd. Let h(x) = g(x− δ) for δ ∈ Rd. If d = 1,

let ε ≤ 8
f(0) . If d > 1, let ε be small enough that εd−1 ≤ 1

24f(0) . Finally assume ‖δ‖2 ≤ ε2

16d2 Then

we have
‖h− g‖1 ≤ ε.

Proof. First consider the case d = 1. We have

‖h− g‖1 =

∫ ∞
0

vol
(
h−1([s,∞)

)
∆ g−1([s,∞)))ds

=

∫ ∞
0

vol
(
[−f−1(s), f−1(s)] ∆ [−f−1(s) + δ, f−1(s) + δ]

)
ds

≤
∫ f(0)

0

2δds

≤ 2 · ε
2

16
· f(0)

≤ ε.

Now suppose d > 1. We break the integral over [0,∞) into the intervals [0, f(ε)] and (f(ε),∞).
We have

‖h− g‖1 =

∫ ∞
0

vol
(
h−1([s,∞)

)
∆ g−1([s,∞)))ds

=

∫ ∞
0

vol
(
Bd
(
f−1(s)

)
∆Bd(f

−1(s), δδδ)
)
ds

=

∫ f(ε)

0

vol
(
Bd
(
f−1(s)

)
∆Bd

(
f−1(s), δδδ

))
ds+

∫ f(0)

f(ε)

vol
(
Bd
(
f−1(s)

)
∆Bd

(
f−1(s), δδδ

))
ds

=
1

2

∫ f(ε)

0

[
vol
(
Bd
(
f−1(s)

)
∆Bd

(
f−1(s), δδδ

))
+ vol

(
Bd
(
f−1(s)

)
∆Bd

(
f−1(s),−δδδ

))]
ds

+

∫ f(0)

f(ε)

vol
(
Bd
(
f−1(s)

)
∆Bd

(
f−1(s), δδδ

))
ds

≤
∫ f(ε)

0

vol
(
Bd
(
f−1(s)

)
∆Bd

(
f−1(s) + ‖δδδ‖2

))
ds+

∫ f(0)

f(ε)

vol
(
Bd(f

−1(s))∆Bd
(
f−1(s), δδδ

))
ds.

To see that the last inequality holds, note that Bd
(
f−1(s)

)
, Bd

(
f−1(s), δδδ

)
, and Bd

(
f−1(s),−δδδ

)
are

all contained in Bd
(
f−1(s) + ‖δδδ‖2

)
. This implies that half of Bd

(
f−1(s)

)
∆Bd

(
f−1(s), δδδ

)
is con-

tained inBd
(
f−1(s) + ‖δδδ‖2

)
but not inBd

(
f−1(s)

)
. Similarly, half ofBd

(
f−1(s)

)
∆Bd

(
f−1(s),−δδδ

)
is contained in Bd

(
f−1(s) + ‖δδδ‖2

)
but not in Bd

(
f−1(s)

)
.

If s ∈ [0, f(ε)], then s ≤ f(ε) < f( ε4d ). Since f is monotone decreasing, this implies f−1(s) > ε
4d .

Then f−1(s) + ‖δδδ‖2 ≤ f−1(s) + ε2

16d2 < (1 + ε
4d )f−1(s).

If s ∈ (f(ε), f(0)), then f−1(s) < ε. Then the volume of the symmetric difference of two
d-dimensional balls with radius f−1(s) is less than twice the volume of Bd(ε).
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Thus

‖h− g‖1 <
∫ f(ε)

0

vol
(
Bd
(
f−1(s)

)
∆Bd((1 +

ε

4d
)f−1(s))

)
ds+

∫ f(0)

f(ε)

2 vol (Bd(ε)) ds

≤ [(1 +
ε

4d
)d − 1]

∫ ∞
0

vol
(
Bd
(
f−1(s)

))
ds+ 2εdf(0) · vol (Bd(1))

≤ ε

2
+
ε

2
≤ ε.

Next we find the total variation distance between two elliptical distributions with the same
center but different shape matrices. We use the following inequality in our proof.

Equation 4.8. Suppose λ ≤ ε
2d . Let 1 + δ = 1

1−λ . Then (1 + δ)d/2 − (1− δ)d/2 ≤ ε.

Lemma 4.9 (Same center case). Let f : R+ → [0, 1] be a monotone decreasing function, and let
g denote the corresponding radial function on Rd. Let h(xTx) = 1

|Σ|1/2 g(xTΣ−1x). Suppose the

eigenvalues of Σ−1 are in [1− λ, 1 + λ]. If λ ≤ ε
4d , then ‖h− g‖1 ≤ ε.

Proof. Let g2(xxx) = g(xxxTΣ−1xxx) = |Σ|1/2h(xxxTxxx). Let 1 + δ = 1
1−λ .

Using Inequality 4.8,

‖h− g2‖1 =

∫
Rd

∣∣∣h(xxxTxxx)− |Σ|1/2h(xxxTxxx)
∣∣∣ dxxx

=
∣∣∣1− |Σ|1/2∣∣∣ ∫

Rd

h(xxxTxxx)dxxx

=
∣∣∣1− |Σ|1/2∣∣∣

≤
(

1

1− λ

)d/2
− 1

= (1 + δ)d/2 − 1

≤ (1 + δ)d/2 − (1− δ)d/2

≤ ε

2

12



where we used
∫

Rd h(xxxTxxx)dxxx = 1. We also have

‖g2 − g‖1 =

∫ ∞
0

vol
(
g−1

2 ([s,∞)
)

∆ g−1([s,∞)))ds

≤
∫ ∞

0

vol

(
Bd

(
(

1

1− λ
)1/2f−1(s)

)
∆Bd

(
(

1

1 + λ
)1/2f−1(s)

))
ds

≤
∫ ∞

0

vol
(
Bd

(
(1 + δ)1/2f−1(s)

)
∆Bd((1− δ)1/2f−1(s))

)
ds

=

∫ ∞
0

vol (Bd(1)) f−1(s)d[(1 + δ)d/2 − (1− δ)d/2]ds

≤ ε

2

∫ ∞
0

vol (Bd(1)) f−1(s)dds

=
ε

2

where the last line is true because
∫

Rd g(xTx)dx =
∫∞

0
vol (Bd(1)) f−1(s)dds = 1. By triangle

inequality, ‖h− g‖1 ≤ ‖h− g2‖1 + ‖g2 − g‖1 ≤ ε
2 + ε

2 = ε.

Finally, we can prove Lemma 4.4. We use the following lemma from [2] in our proof.

Lemma 4.10 (Lemmas 5.8 and 5.9 in [2]). Suppose ‖Σ−1/2(ŵjwjwj−wjwjwj)‖2 ≤ ρ. Then ‖Σ−1/2Σ̂Σ−1/2−
Id‖op ≤ 3dρ.

Proof of Lemma 4.4. Let µµµ′ = Σ−1/2(µ̂µµ − µµµ) and Σ′ = Σ−1/2Σ̂Σ−1/2. By Equation 5, we have

‖µµµ′‖2 ≤ ε2

16d2 . Thus, Lemma 4.7 implies that

TV (Ed(000, Id, φ), Ed(µµµ
′, Id, φ)) ≤ ε/2.

By Equation 4 and Lemma 4.10, we have ‖Σ′−Id‖op ≤ 3d · ε
12d2 = ε

4d ≤
1
2 . Then the eigenvalues

λ1, λ2, ..., λd of Σ′ fall in [1− ε
4d , 1 + ε

4d ]. By Lemma 4.9, we have

TV (Ed(µµµ
′, Id, φ), Ed(µµµ

′,Σ′, φ)) = TV (Ed(000, Id, φ), Ed(000,Σ
′, φ)) ≤ ε/2.

By triangle inequality,

TV (Ed(µ̂µµ, Σ̂, φ), Ed(µµµ,Σ, φ)) = TV (Ed(000, Id, φ), Ed(µµµ
′,Σ′, φ))

≤ TV (Ed(000, Id, φ), Ed(µµµ
′, Id, φ)) + TV (Ed(µµµ

′, Id, φ), Ed(µµµ
′,Σ′, φ))

≤ ε/2 + ε/2

= ε.

4.3 Robust compression of a single elliptical distribution

Lemma 4.11. Suppose the characteristic functions φ1, φ2, . . . φM satisfy the conditions of 1.4.

Then Fd(φ1, φ2, . . . φM ) admits a
(
O(d), O

(
d2 log

(
R1d

3

R2ε2

)
+ logM

)
, O(d)

)
2/3-robust compression

scheme.
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Proof. Let f ∈ F . We can write f = Ed(µµµ,Σ, φi) where 1 ≤ i ≤ M . Let g be a distribution such
that ‖g − f‖1 ≤ 2/3. Then TV (g, f) = 1

2‖g − f‖1 ≤ 1/3 so we can apply Lemma 4.3.

Let δ = ε2

8d2 . By Lemma 4.3, if the characteristic function φi is fixed, one can useO
(
d2 log

(
R1d
R2δ

))
=

O
(
d2 log

(
R1d

3

R2ε2

))
bits and O(d) samples from g to encode vectors ŵ1̂w1̂w1, ..., ŵdwdwd, µ̂µµ ∈ Rd satisfying

‖Σ−1/2(ŵjwjwj −wjwjwj)‖2 ≤
δ

6d2
=

ε2

48d4
∀j and

‖Σ−1/2(µ̂µµ−µµµ)‖2 ≤
δ

2
=

ε2

16d2

with probability at least 2/3. Thus by Lemma 4.4, we have

TV (Ed(µ̂µµ, Σ̂, φi), f) = TV (Ed(µ̂µµ, Σ̂, φi), Ed(µµµ,Σ, φi)) ≤ ε.

The desired result follows from the fact that we can use an additional logM bits to encode the
identity of the characteristic function φi.

4.4 Agnostically learning a mixture of elliptical distributions

We prove our main theorem.

Proof of Theorem 1.4. Lemma 4.11 gives us τ(ε) = O(d), t(ε) = O(d2 log(Rd3/ε2)+logM), m(ε) =
O(d), and r = 2/3 for r-robust sample compression of the class Fd(φ1, φ2, . . . φM ). Plugging these
values into Lemma 3.6, we have that k-mix(Fd(φ1, φ2, . . . , φM )) admits 3

2 (1 + 2/r) = 6-agnostic

learning with sample complexity Õ
(
k(d2 log(R1/R2)+logM)

ε2

)
.

5 Conclusion

We have shown a sample complexity upper bound of Õ(k(d2 + logM)/ε2) for density estimation of
k-mixtures of d-dimensional elliptical distributions with radial density functions contained in a finite
set of size M . Unlike previously known algorithms for clustering heavy-tailed distributions, we do
not require independent coordinates, bounded covariance, conditions on the minimal distribution
weight, or separation conditions between distribution centers.

Possible future research directions include the following.
Learning mixture components and weights.Learning mixture components and weights.Learning mixture components and weights. We know how to output a mixture of elliptical dis-

tributions that is close in total variation distance to the actual mixture we hope to learn. However,
it would be a more challenging task to learn the mixture weights and the centers and shape matri-
ces of the k component distributions in the mixture. One approach could be to use list-decodable
mean estimation to cluster the sample points with o(1) error, and then use robust estimators to
approximate the center and shape matrix for each cluster.

Sample complexity lower bounds for density estimation.Sample complexity lower bounds for density estimation.Sample complexity lower bounds for density estimation. [2] proves a matching sample complex-
ity lower bound (up to a poly-logarithmic factor) of Ω̃(kd2/ε2) for learning mixtures of Gaussians.

Their proof constructs 2Ω(d2) d-dimensional Gaussians that are pairwise close in KL divergence
but pairwise far in total variation distance, and then applies Fano’s inequality. We would like to
know whether there is a matching sample complexity lower bound for learning mixtures of elliptical
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distributions. However, it is more challenging to bound the KL divergence and total variation for
pairs of elliptical distributions, since there are no closed-form formulas for these distance metrics
in general.

Polynomial time algorithms.Polynomial time algorithms.Polynomial time algorithms. Our polynomial sample complexity upper bound corresponds to
an exponential-time algorithm for density estimation of mixtures. Polynomial-time algorithms are
known for learning mixtures of Gaussians, but none are currently known for learning mixtures of
elliptical distributions.
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