
An Exploration into Local Sparse Spanning Graph Algorithms

UROP+ Final Paper, Summer 2021
Jeffery Li∗

Mentor/Coauthor: Aaron Berger†

Project Suggested by: Aaron Berger

September 2, 2021

Abstract

In this paper, we examine the problem of “computing” a sparse spanning subgraph in a connected
graph with constant bounded degree in sublinear time with respect to the number of vertices n. Finding
a spanning tree in a graph with constant bounded degree in linear time is straightforward and can be
done with simple algorithms like BFS or DFS; determining whether an edge belongs to a specific sparse
subgraph in sublinear time in a way that is consistent across queries is more challenging, even if we are
allowed to add up to εn more edges, as we’re not allowed to construct the entire subgraph. We summarize
some known results, such as an algorithm that achieves complexity n1/2+O(1/ log d) when the graph has
expansion close to its max degree d, and a more general Õ(n2/3) algorithm, examining some of the
bottlenecks that restrict the algorithm to specific cases or prevent the algorithm from achieving a lower
runtime. We then discuss a different approach involving another search method involving examining
truncated likelihoods of a random walk process, in hopes of using a more symmetrical search method to
solve the general sparse spanning subgraph problem in faster time.

1 Intro

One well-studied problem in graph theory is finding a sparse subgraph, with some properties such as connect-
edness and low number of edges, in a connected graph. The most basic version of this problem is to compute
a spanning tree, which can be solved in time linear in the number of edges, using algorithms like BFS and
DFS. However, when the graph that we’re dealing with is especially large even a runtime that is linear in the
number of edges may be too high. To achieve a sublinear runtime, we use the Local Computation model,
introduced by Rubinfeld, Tamir, Vardi, and Xie in 2011 [5].

In this model, we must give an algorithm that provides oracle access to a sparse spanning subgraph in
the form of edge membership queries. A local computation algorithm is constrained to be globally consistent
and memoryless. That is, if one were to ask the algorithm to provide membership information on every
edge, the combined output should with high probability satisfy the problem constraints. Moreover, if the
algorithm is called multiple times in sequence, it cannot use previous outputs when performing subsequent
computations, and instead must recompute any such information it needs. As each edge is surely contained
in some sparse subgraph, global consistency prevents us from simply answering positively for every edge.
The memoryless condition prevents us from running, for example, Kruskal’s algorithm one edge at a time,
and ensures that we produce the same output even when edges are queried in a different order.

One can show that a local computation algorithm is not feasible if we require our sparse subgraph to
have the minimum number of edges possible. For example, it is impossible to distinguish between a path on

∗jeli@mit.edu
†bergera@mit.edu

1

n vertices and a cycle on n vertices without looking at every edge, and in order for the global output to be
a spanning tree, we must answer positively for every edge on the path but negatively for exactly one edge
on the cycle. Therefore, any LCA which produces a spanning tree must first distinguish between these two
cases, which takes linear time. As such, we allow for some leniency - instead of requiring our subgraph to
have exactly n − 1 edges, we allow for it to have n(1 + O(ε)) edges, for some small parameter ε. This lets
us answer positively on more queries without having to worry as much about the overall global structure of
the graph (such as distinguishing between a path versus a cycle).

With this motivation, in 2014 Levi, Ron, and Rubinfeld [3] gave the following definition.

Definition 1.1. An algorithm is a Local Sparse Spanning Graph (LSSG) algorithm if, given n ≥ 1,
ε > 0, a sequence of random bits r ∈ {0, 1}∗, and query access to a connected graph G = (V,E), in incidence-
lists representation, with n vertices, will provide oracle access to a subgraph G′ = (V,E′) of G such that G′

is connected, |E′| ≤ (1 + ε)n with high probability, and E′ is determined by G and r. Note that G′ has to be
consistent across queries.

We assume that the degrees of the vertices in our graph are bounded by some constant ∆. We are
interested in LSSG algorithms that achieve a time complexity of o(n), either in specific cases (such as the
case where our graph has high expansion throughout, or is itself sparse), or in the general case.

Following this definition, Levi, Ron, and Rubinfeld [3] showed that the complexity of any LSSG algorithm
must be Ω(

√
n) in the general case, and gave two algorithms, one which achieves complexity n1/2+O(1/ log ∆)

in the case where there is high expansion, and another which achieves complexity O(∆ρ(ε)) in the case where
our graph is ρ-hyperfinite (in other words, the graph can be partitioned into subsets of size ρ(ε) such that
at most εn edges pass between partitions), which is independent of n. Work on this problem has since
expanded, particularly in the case of minor-free graphs (which is related to hyperfiniteness), and further
relaxation of the number of edges in the spanning subgraph to Õ(n1+1/k) for some positive integer k, where
the key improvement is maintaining a bound on the stretch factor of the subgraph [4]. Lenzin and Levi [2]
achieved a runtime of Õ(n2/3) in the general case, expanding on the ideas in the n1/2+O(1/ log ∆) algorithm
presented earlier, and including an algorithm of Elkin and Neiman [1] to deal with the cases where the
neighborhood around a vertex is sparse.

The structure of this paper is as follows. In Section 2, we will examine the algorithm introduced by Levi,
Ron, and Rubinfeld in 2014 that achieves complexity n1/2+O(1/ log ∆) in the case where there is high expansion,
and discuss some of the bottlenecks that prevent this algorithm from being applicable in the general case.
In Section 3, we will examine the algorithm introduced by Lenzin and Levi in 2018 that achieves Õ(n2/3)
in the general case, along with the main bottlenecks that prevent the algorithm from achieving a better
time complexity in its current form. Lastly, in Section 4, we discuss a new approach involving examining
truncated likelihoods of a random walk process, with the hope of using a more symmetric search method to
achieve a better time complexity in the general case.

2 Algorithm for High-Expansion Graphs

We first consider the case where the graph has fairly high expansion, following the notation and the algorithm
presented by Levi, Ron, and Rubinfeld [3].

2.1 High-Expansion Case

We use a slightly modified version of an expander graph: we say that a graph G is an (s, h)-expander if
|N(S)| ≥ h|S| for all subsets S ⊆ V of size at most s, where N(S) denotes the set of vertices either in
S or adjacent to a vertex in S. From this, we can also define hs(G) to be the largest h such that G is a
(s, h)-expander, given s and G.

2

We will describe a global algorithm, and then describe how to implement the global algorithm locally.
We first define a few terms which we will be working with for these algorithms:

• Let s = 2
√

2n/ε lnn = Õ(
√
n/ε),

• Let ` =
√
εn/2, and

• Let t be a number such that between (1−ε/(2∆))n and (1−ε/(4∆))n vertices v have at least s vertices
that are within distance t of v. One can show that random sampling can find such a value with high
probability, and that t ≤ log s

log hs(G) + 1, so that if hs(G) is large, i.e. ∆Ω(1), then t = O(log∆ n).

We now introduce the global algorithm:

Algorithm 1: High-Expansion Global Algorithm

Input : Graph G = (V,E), parameter t and ε > 0, sequence of random bits r ∈ {0, 1}∗
Output: Outputs a subgraph G′ = (V,E′) of G such that G′ is connected and |E′| ≤ (1 + ε)n with

high probability.
1 Select ` centers uniformly and independently at random from V (based on r); call these σ1, . . . , σ`.
2 Make all vertices unassigned initially. Then, for i ∈ {0, 1, . . . , t} and j ∈ {1, 2, . . . , `}:
3 Letting Lij denote the vertices at the ith level of the BFS tree of σj , assign all currently

unassigned vertices in Lij to σj .

4 Now we have sets S(σj) of vertices assigned to each center σj , along with a set of singletons S′.
Now, we construct G′ = (V,E′):

5 For j ∈ {1, 2, . . . , `}, find the BFS tree with root σj spanning S(σj); add all of the edges E′(σj)
of the BFS tree into E′.

6 For each pair of centers σj1 and σj2 , find the shortest path P (σj1 , σj2) between the centers, with
minimum lexicographic order (determined by ids). If all vertices in P (σj1 , σj2) belong in either
S(σj1) or S(σj2), then add to E′ the single edge (v1, v2) such that v1 ∈ S(σj1) and v2 ∈ S(σj2)
(otherwise, do nothing).

7 For each w ∈ S′, add all edges incident to w to E′.
8 Return G′ = (V,E′).

The output satisfies the following properties.

Theorem 2.1 ([3, Lemma 2, Lemma 3]). The output graph G′ = (V,E′) is connected, and |E′| ≤ (1 + ε)n
with high probability.

Proof. To prove the first part, we first note that all vertices within each S(σj) are connected via the BFS
trees. It thus suffices to show that all the centers are connected to each other, and all the singletons are
connected to some center.

To show that all the centers are connected, we proceed by induction based on the distance between the
two centers, d = d(σi, σj). The base case, d = 1, is clear, as we would simply add the edge connecting the
two centers.

For the inductive step, consider the path P (σi, σj). If all the vertices are contained in S(σi)∪S(σj), then
we would’ve added the edge bridging the two, and thus connected the centers.

Otherwise, if there is some vertex v′ that belonged to some other non-singleton set S(σk), then note that
v′ is closer to σk than to σi and σj (or has lower id). This means that, since P (σi, σj) is the shortest path
between σi and σj , the distances d(σi, σk) and d(σk, σj) are both upper-bounded by d, and if they are equal
to d, then k has a lower id. This allows us to invoke the inductive hypothesis and note that, since σi and σk
are connected and σk and σj are connected, σi and σj are connected.

3

Otherwise, there are only singletons along this path, besides vertices in S(σi)∪S(σj). In this case, since
we took all edges incident to singletons, these edges would bridge between the two sets, and thus connect
the centers.

This finishes the inductive step and shows that all the centers are connected to each other.

To show that each singleton is connected to some center, we induct on the distance d to the nearest
center, where the base case d = t+ 1 is clear (we connect to a vertex of distance t from the nearest center,
which in turn is connected to the center), and the inductive step follows similarly (connect to a vertex of
distance d− 1 from the nearest center, which in turn is connected to the center). Thus, G′ is connected, as
desired.

To show that |E′| ≤ (1 + ε)n with high probability, note that the number of edges added by the BFS
trees is bounded above by n and the number of edges added by the shortest paths is bounded above by
`2 = εn/2. We can then show that each vertex v ∈ Vt,s = {v | v has at least s vertices within t of it} has a
(1 − s/n)` < 1/n2 chance of being a singleton, so all v ∈ Vt,s are assigned to some center with probability
at least 1− 1/n (i.e. with high probability). This means that there are at most εn/2∆ singletons, and thus
at most εn/2 additional edges, with high probability. Thus, adding these all up, we get that |E′| ≤ (1 + ε)n
with high probability.

Thus, our algorithm has the intended behavior.

It now suffices to implement the algorithm locally, in what Levi, Ron, and Rubinfeld call the Centers’
Algorithm.

Algorithm 2: Centers’ Algorithm [3, Algorithm 1]

Input : Edge (u, v) ∈ E of graph G = (V,E), with parameter t and ε > 0 and choice of centers
σ1, . . . , σ` that is fixed over all queries

Output: Outputs whether or not (u, v) ∈ E′.
1 Perform a BFS from both u and v to depth t, in G, to find out if u and v belong to some center

(which can be verified using, say, a hash table). If at least one of u and v is a singleton, then return
YES. Otherwise, let σ(u) and σ(v) denote the centers closest to u and v.

2 If σ(u) = σ(v) = σ, then note that |d(u, σ)− d(v, σ)| ≤ 1 (as (u, v) is an edge in G), and do the
following:

3 If d(u, σ) = d(v, σ), then return NO.
4 If d(u, σ) = d(v, σ) + 1, then look at all neighbors of u. If there exists a neighbor w 6= v such that

d(w, σ) = d(v, σ) (can be verified via BFS) and id(w) < id(v), then return NO. Otherwise, return
YES.

5 Otherwise, if σ(u) 6= σ(v), then perform a BFS to depth t from σ(u) and σ(v) to try to find the
shortest path P (σ(u), σ(v)) (by incrementing the depth from both sides and checking if and when
the BFS’s meet). If both u and v belong to P (σ(u), σ(v)), then return YES. If either one doesn’t
belong, or the BFS from both sides fails to find P (σ(u), σ(v)) after t steps from both sides, return
NO.

It’s clear how this is a local implementation of the global algorithm, as all of the computations are
done within the neighborhood of u and v. Running through the analysis, the query complexity is mostly
determined by the BFS’s, which cause the runtime to be

O(∆t+1) = O(∆2sloghs(G) ∆)

(using the fact alog b = blog a). In the case where hs(G) is very close to ∆ (i.e. there is high expansion at
every vertex, up to a neighborhood of size s), then the query complexity is

O(∆2s) = n1/2+O(1/ log ∆).

The running time has an extra log n factor due to the length of the id’s of the vertices. The amount of
randomness needed here is O(

√
εn log n), for the centers σ1, . . . , σ`.

4

2.2 Guess for General Case

With the Centers’ Algorithm in mind, we now consider what happens in the general case, where there may
be areas of low expansion throughout the graph. We first analyze what happens when we try to use the
ideas from the Centers’ Algorithm in the general case.

Once again, we start with presenting the global algorithm, with some slight modifications:

Algorithm 3: General Global Algorithm (Centers)

Input : Graph G = (V,E), ε > 0, sequence of random bits r ∈ {0, 1}∗
Output: Outputs a subgraph G′ = (V,E′) of G such that G′ is connected and |E′| ≤ (1 + ε)n with

high probability.
1 Select ` =

√
εn/2 centers uniformly and independently at random from V (based on r); call these

σ1, . . . , σ`.
2 Make all vertices unassigned initially. Then, for each vertex v, run BFS until s vertices have been

explored, and assign v to the first center that is hit, or let it be a singleton otherwise.
3 Now we have sets S(σj) of vertices assigned to each center σj , along with a set of singletons S′.

Now, we construct G′ = (V,E′):
4 For j ∈ {1, 2, . . . , `}, find the BFS tree with root σj spanning S(σj); add all of the edges E′(σj)

of the BFS tree into E′.
5 For each pair of centers σj1 and σj2 , find the shortest path P (σj1 , σj2) between the centers, with

minimum lexicographic order (determined by ids). If all vertices in P (σj1 , σj2) belong in either
S(σj1) or S(σj2), then add to E′ the single edge (v1, v2) such that v1 ∈ S(σj1) and v2 ∈ S(σj2)
(otherwise, do nothing).

6 For each w ∈ S′, add all edges incident to w to E′.
7 Return G = (V,E′).

This global algorithm still works, with the proof being similar to the proof of why the global algorithm
works in the high-expansion case. But is it possible to implement locally? We need to be able to answer
three questions locally:

1. Given a vertex v, what is its center?

2. Given u, v with the same center, does (u, v) lie on the BFS tree from σ(u)?

3. Given u, v with different centers, does (u, v) lie on the shortest path between σ(u) and σ(v)?

The first question is fairly straightforward to answer - we can run BFS until s vertices have been explored
like in the global algorithm.

For the second question, we can always find the answer; there are a few possible ways to proceed (here
we assume that d = d(u, σ(u)) = d(v, σ(u))− 1):

1. One way, which isn’t too different from the method used in the high-expansion algorithm, is still to
run a BFS from σ(u) outwards until we find out whether or not (u, v) lie on the BFS tree, but we
prune any part of the search that goes outside of the set of vertices searched through during the BFS
from vertex v. This still allows us to look at the relevant parts of the BFS tree with root σ(u), but we
reduce the set of vertices that we look at by ignoring vertices that lie outside the original search.

2. Another way, which flips which vertex we start our BFS from, is to use the fact that, for any arbitrary
vertex v with center σ(v), all vertices along the shortest path from v to σ(v) also have center σ(v)
(which can be seen via a proof by contradiction). This means that we could BFS from each of the
neighbors of v to depth d to see which neighbors of v are on a shortest path from v to σ(v) = σ(u) (as
a neighbor of v is on a shortest path iff it is of distance d away from σ(u)), and then see if u has the
smallest id out of these neighbors that are of distance d from σ(u).

5

3. Yet another way changes which edges we keep in E′ - instead of keeping the edges of the BFS trees, we
do the following: for each vertex u with center σ(u), find the shortest path, with minimum lexicographic
order, from u to σ(u), and keep the first edge in that shortest path. It’s clear that this keeps a spanning
tree, as each non-center vertex contributes exactly one edge and has a unique parent with depth that
is one smaller than its depth. This also allows us to determine whether or not (u, v) is in E′ relatively
easily - find the the shortest path, with minimum lexicographic order, from u to σ(u) via BFS, and see
if (u, v) is in this path.

The third question seems much harder to answer, even if we are allowed to err on the side of caution for
up to εn vertices. The main issue is that the sizes of the clusters may vary a lot due to the expansion of the
graph at various regions - we may consider, for example, the case where our graph contains a substructure
consisting of a binary tree on n1/4 vertices, where each leaf vertex then has a distinct path of length θ(n1/2)
connected to it. Note that if the root vertex of this substructure were to be a center, all of the vertices would
be able to find the root vertex as the center, but this would mean that the set of vertices assigned to this
center is θ(n3/4), which makes searching via BFS very costly. Of course, we may not end up in the scenario
where all the vertices are assigned to the root vertex, because we would expect θ(n1/4

√
ε) vertices in this

substructure to be centers, but the imbalance in expansion at various regions of our graph may still cause
some issues.

3 Refined algorithm for general case

Since the third question seems to be extremely difficult to remedy, at least using our guess for the global
algorithm, we consider a modified version of the global algorithm. Here, we follow the notation and algorithms
presented by Lenzin and Levi [2].

3.1 Algorithm with a Promise

For this “algorithm with a promise,” still consider the cases where expansion is relatively high (i.e. we can
reach n1/3 vertices within log(n)/ log(1 + ε) steps of every vertex - more precisely, k = cn1/3 log n · `∆/ε
vertices within a neighborhood of depth ` ∈ [b log n/ log(1+ε), b log n/ log(1+ε)+∆/ε]); the general algorithm
involves combining this algorithm with an algorithm for ultra-sparse graphs by Elkin and Neiman [1], along
with a little bit more work.

The initial set-up is similar in concept, but with slightly different settings: pick r = Θ(εn2/3/ log n)
centers, and assign each vertex to the closest center. However, we now call these groupings Voronoi cells,
to distinguish these from clusters, which we can define in the following way: if a Voronoi cell has less than
k vertices, then it is its own cluster. Otherwise, consider the BFS tree from the center of the Voronoi cell,
and consider some vertex v. If the subtree with root v has at least k vertices, then v is in its own cluster.
Otherwise, it belongs to the cluster whose “center” is the highest ancestor (potentially itself) with at most k
vertices in its subtree. Another way to think about this construction is, we consider the clustering starting
from the clustering given by Voronoi cells, along with their BFS trees, and then repeatedly do the following
until all clusters have at most k vertices: pick a cluster, make the center of the cluster its own center, and
split up the subtrees into their own clusters.

This way of defining clusters ensures that we have an upper bound on the sizes of the clusters. It’s
possible that some Voronoi cell will have a lot of vertices even though the expected number of vertices is
Θ(n1/3 log n), an issue that came up in our guess for the general case, so that’s why we perform some more
splitting of these cells like the above. This size bound is useful as it allows us to compute the entire cluster
that we are in fairly quickly.

It turns out that the number of clusters is also bounded fairly well.

6

Lemma 3.1 ([2, Lemma 1]). We have the following bound: s ≤ r + n`(∆ + 1)/k = O(εn2/3/ log n).

Proof. We bound the number of singletons that are created due to a vertex having at least k vertices in its
subtree. Define a vertex to be special if its subtree has at least k vertices, but none of its children have
at least k vertices in their subtrees. Note that every singleton created must be the ancestor of a special
vertex - either all of its children have less than k vertices in their subtrees, in which case the vertex itself is
special, or some child has at least k vertices in its subtree, in which case we can use an inductive argument
downwards through that child. Furthermore, each special vertex has at most ` ancestors, and the subtrees
corresponding to special vertices are vertex-disjoint, as they cannot be children of each other (as then some
child of some special vertex has at least k children). This means that there are at most n/k special vertices,
and thus at most n`/k ancestors of special vertices, or at most n`/k singletons created.

From this, we can also bound the number of clusters who has a vertex whose parent is a singleton (i.e.
has at least k vertices in its subtree) - since the degrees are bounded by ∆, and there are at most n`/k
singletons, the number of such clusters is bounded by n`∆/k.

Finally, the last set of clusters to consider are those that are entire Voronoi cells. This is bounded by the
total number of Voronoi cells, which is r.

Combining all of these together, we get the bound s ≤ r+n`(∆ + 1)/k = O(εn2/3/ log n), as desired.

Now we consider the edge set of our sparse subgraph. As before, we include the BFS trees of all of the
Voronoi cells. What we do to connect these Voronoi cells is slightly different, however. We first mark each
center independently and at random, with probability p = n−1/3. If a center is marked, then we also say
that the Voronoi cell is marked, along with all clusters inside the Voronoi cell. Then, roughly speaking, we
do the following:

1. We connect each cluster to all adjacent marked clusters,

2. We connect an unmarked cluster with no neighboring marked clusters to all adjacent cells, and

3. We connect all unmarked clusters A with any neighboring unmarked cluster B that is adjacent to
a marked Voronoi cell Vor(C), under certain conditions (such as Vor(B) having the minimum rank
among all Voronoi cells adjacent to both A and C, and the edge of minimum rank between A and
Vor(B) being between A and B) to trim down the number of edges added.

Here, by “connecting” two clusters, we mean add the edge with smallest rank between the two clusters
(and similar for “connecting” a cluster to a cell).

We now have the following two lemmas, regarding the sparse subgraph that is formed.

Lemma 3.2 ([2, Lemma 2]). The expected number of edges in E′ is (1 +O(ε))n. In fact, |E′| = (1 +O(ε))n
with large constant probability.

Proof. For the first step, notice that the expected number of marked cells is sp, as there are s clusters and
each has probability p of being marked. Thus, the expected number of edges added in the first step is
s2p = O(εn/ log n).

For the second step, note that if a cluster A has at least 3 lnn
p neighboring cells, then the probability

that all neighbors of A are unmarked is at most (1 − p)3 ln(n)/p ≤ 1
n3 ; since there are at most n such cells,

the probability that some cluster with at least 3 lnn
p neighboring cells has no marked neighboring cluster

is at most 1
n2 by the union bound, and so the expected number of edges added due to these clusters is at

most |E|/n2 < 1. Now, for the clusters that have at most 3 lnn
p neighboring cells, these will add at most

7

3s lnn
p = O(εn) edges regardless, meaning that expected number of edges added in the second step is at most

3s lnn
p + 1 = O(εn).

For the third step, notice that for any arbitrary cluster A and arbitrary marked cluster C, there can
only be at most 1 edge connecting A to an unmarked neighboring cluster B of C, as otherwise we get a
contradiction, either from the minimality of the rank of one of the edges or from the minimality of the rank
of one of the Voronoi cells. Thus, since there are s clusters in total and expected sp marked clusters, the
expected number of edges added in the third step is s2p = O(εn/ log n).

Therefore, the expected number of edges added between clusters is at most O(εn); using Markov’s
inequality, we can say that with constant probability, the number of edges added between clusters is at most
O(εn). Adding in the edges added through the BFS trees gives us the (1 +O(ε))n edges, as desired.

As a remark, notice that when looking at the number of extra edges added, the first and third step
produce O(s2p) edges in expectation, and the second step produces O(s lnn/p) edges in expectation. These
two combined give us our first “bottleneck” of the algorithm - if we want both of these to be O(εn), then we
need s3 = (s2p)(s/p) = O(ε2n2), or s = O((εn)2/3). Thus, we can’t have more than n2/3 clusters, at least in
this set-up, or our clusters can’t have size less than n1/3 (otherwise we are very likely to create more edges
than we want).

Lemma 3.3 ([2, Lemma 3]). The resulting graph G′ = (V,E′) is connected.

Proof. Since the vertices in each Voronoi cell are connected via the BFS trees in each cell, and the original
graph itself is connected, it suffices to show that every pair of adjacent Voronoi cells (Vor1,Vor2) is connected.
Now, there are multiple cases to consider:

1. At least one of (Vor1,Vor2) is marked. Then, by the first step above (connecting clusters to all adjacent
marked clusters), the two cells are connected.

2. Neither of (Vor1,Vor2) are marked, and there is some pair of adjacent clusters (A,B) ∈ (Vor1,Vor2)
such that both clusters are not adjacent to any marked clusters. Then, by the second step above
(connecting all pairs of adjacent unmarked clusters where both have no neighboring marked clusters),
the two clusters are connected, and so the two cells are connected.

3. Neither of (Vor1,Vor2) are marked, and there is no pair of adjacent clusters (A,B) ∈ (Vor1,Vor2) such
that both clusters are not adjacent to any marked clusters. In this case, consider the edge of minimum
rank between (Vor1,Vor2); WLOG let it be between (A,B) with B adjacent to some marked cluster C
in a marked Voronoi cell Vor3 (the argument works the same if A is adjacent to some marked cluster).
Then, there are two sub-cases here:

• Vor2 has the minimum rank among all Voronoi cells adjacent to both A and C. In this case, we
would add this edge in our third step, meaning that (A,B) are connected, and so the two cells
are connected.

• Vor2 does not have the minimum rank among all Voronoi cells adjacent to both A and C. Suppose
Vor4 is the cell of minimum rank among all Voronoi cells adjacent to both A and C; in particular,
note that it has lower rank than Vor2. Now, because Vor3 is marked, and Vor3 is adjacent to
both Vor2 and Vor4, it suffices to show that Vor1 and Vor4 are connected. This is because there
would be a path from Vor1 to Vor4 to Vor3 to Vor2, and so Vor1 and Vor2 would be connected.
However, because Vor4 has lower rank than Vor2, we can induct downwards to show that Vor1

and Vor4 are connected, and thus Vor1 and Vor2 are connected.

Thus, in all cases, the pair of adjacent Voronoi cells are connected, and so the graph is connected.

8

3.2 General Algorithm

Now that we have the algorithm that works under a promise regarding the expansion around vertices, we
describe the general algorithm. We first give an overview of the other ingredient needed for the general
algorithm, an algorithm for ultra-sparse spanners given by Elkin and Neiman.

Algorithm 4: Elkin-Neiman Algorithm [1, Section 2]

Input : Connected graph G = (V,E), integer h, parameter δ controlling success probability,
sequence of random bits r ∈ {0, 1}∗

Output: Outputs a subgraph G′ = (V,E′) of G such that G′ is connected and the expected number
of edges is at most n · (n/δ)1/h.

1 Each vertex u samples a value ru from an exponential distribution EXP(ln(n/δ)/h).
2 Then, each vertex v receives all ru from every vertex u such that d(u, v) ≤ h, and stores all

mu(v) := ru − d(u, v) along with a neighbor nu(v) on the shortest path from u to v.
3 Lastly, for all vertices v, add all edges in C(v) := {(v, nu(v)) | mu(v) ≥ max

w∈V
(mw(v)− 1)} to E′.

4 Return G′ = (V,E′).

One way we can think of this is that each vertex will generate a random signal from an exponential
distribution, whose support (i.e. probability density function is greater than 0) is the set of positive real
numbers and whose cumulative density function is 1− e−βx, for x ≥ 0 and a parameter β. This distribution
has the memoryless property - that is, if X ∼ EXP(β), then P(X ≥ a + b | X ≥ a) = P(X ≥ b) (one can
think of this as a continuous version of flipping coins - the probability that we get our first heads within
a + b flips, given that our first a flips are all tails, is the probability that we get our first heads within b
flips). Then, each of the vertices will broadcast their signals outwards h steps, each signal weakening by 1
every edge it travels across. All of the vertices will receive and store these weakened versions of the signals
of vertices within distance h of it. Then, the vertices will find the maximum out of these signals, and for
each signal that is within 1 of the maximum (i.e. a threshold), the vertex will add an edge along the shortest
path from itself to the vertex corresponding to that signal.

The paper by Elkin and Neiman that introduces this algorithm proves that the stretch factor is at most
2h− 1; in particular, since this stretch factor is finite, this means that the graph produced by running this
algorithm does not break up any connected components. Thus, since our algorithm with a promise mainly
works on graphs with vertices that have a large neighborhood of vertices within O(log n) distance (more
precisely, k = Õ(n1/3) vertices within ` distance, where k and ` are defined earlier), and this algorithm
works by having each vertex receive signals from all vertices within a certain distance h of it, it makes sense
to have this algorithm run on only the vertices that don’t have a center within ` of them, which we can call
remote vertices.

9

This leads to the general global algorithm:

Algorithm 5: General Global Algorithm (Clusters) [2]

Input : Connected graph G = (V,E), ε > 0, sequence of random bits r ∈ {0, 1}∗
Output: Outputs a subgraph G′ = (V,E′) of G such that G′ is connected and |E′| ≤ (1 +O(ε))n in

expectation.
1 Randomly choose a set S of centers, with |S| = Θ(εn2/3/ log n).

2 Randomly choose ` ∈ [b log n/ log(1 + ε), b log n/ log(1 + ε) + ∆/ε], and define k = cn1/3 log n · `∆/ε
(where b and c are large enough constants).

3 Let R denote the set of remote vertices, or vertices that don’t have a center within ` of them, and

let R = V \R. Define GR = (R,ER), with ER denoting the set of edges whose endpoints are both
remote, and GR = (R,ER), with ER denoting the set of edges whose endpoints are both not
remote.

4 Run the Elkin-Neiman Algorithm on the connected components of GR, with h = ` and δ = 1/nb−1.
Add all added edges into E′.

5 Run our “algorithm with a promise” on the connected components of GR, with each Voronoi cell

marked randomly with probability p = 1/n1/3. Add all added edges into E′.
6 Add any edges (u, v) ∈ E with u ∈ R and v ∈ R (or vice versa) to E′.
7 Return G′ = (V,E′).

We now show that this algorithm satisfies the required conditions.

Theorem 3.4 ([2]). The output graph G′ = (V,E′) is connected, and the expected number of edges in E′ is
at most (1 +O(ε))n.

Proof. It’s clear that this subgraph is connected - the connected components of GR and GR remain connected
and we preserve all connections between the connected components of GR and the connected components of
GR.

As for the number of edges added, for the fourth and fifth steps (running the Elkin-Neiman Algorithm
and the “algorithm with a promise”), the subroutines produce a subgraph of GR with at most O(|R| ·
(nb)log(1+ε)/(b logn)) = O(|R|(1 + ε)) edges in expectation, and a subgraph of GR with at most O(|R|(1 + ε))
edges in expectation. For the sixth step (adding the edges that bridge between GR and GR, note that for
each edge (u, v), there is at most one value of ru,v, within the range that ` is pulled from, such that one
vertex is remote with respect to S but the other one isn’t, and so the probability that an edge (u, v) gets
added in this case is Pr[` = ru,v] ≤ ε/∆, so we add at most (∆n)(ε/∆) = εn edges in expectation at this
step. Thus, in total, we have O((|R|+ |R′|)(1 + ε) + nε) = n(1 +O(ε)) edges in expectation.

Thus, our algorithm has the desired behavior.

10

It’s also clear how to make this algorithm local.

Algorithm 6: General Local Algorithm [2, Algorithm 1]

Input : Connected graph G = (V,E), ε > 0, set S of chosen centers (with |S| = Θ(εn2/3/ log n))
along with whether or not they are marked, constants
` ∈ [b log n/ log(1 + ε), b log n/ log(1 + ε) + ∆/ε] and k = cn1/3 log n · `∆/ε, sequence of
random bits r ∈ {0, 1}∗, and a query edge (u, v)

Output: Outputs whether or not (u, v) ∈ E′, where E′ is as specified in the global algorithm.
1 Determine whether or not u or v or both are remote. If exactly one of them is remote, output YES.
2 If both are remote, run the Elkin-Neiman Algorithm within the set of remote vertices in the union

of the `-neighborhoods of u and v (which should contain Õ(n1/3) vertices with high probability).
Return the answer that the Elkin-Neiman Algorithm returns.

3 Else, if both are not remote, then proceed as in our “algorithm with a promise”:
4 If both are in the same Voronoi cell, determine whether or not this edge is in the BFS tree of this

Voronoi cell (see last part of Section 3), and return that answer.
5 Else, determine the clusters A 3 u and B 3 v. If A and B don’t satisfy any of the conditions: (i)

at least one is marked, (ii) one of them, WLOG A, is unmarked and has no marked neighboring
clusters, or (iii) neither are marked and one of them, WLOG B, is adjacent to a marked Voronoi
cell Vor(C), such that Vor(B) has minimum rank among all cells adjacent to both A and C, and
the edge of minimum rank between A and Vor(B) is between A and B, then output NO. Otherwise,
if (u, v) is the minimum-rank edge between A and B (or in the case of the second condition,
between A and Vor(B), or A and Vor(B), depending on which one has no marked neighboring
clusters), output YES. Otherwise, output NO.

We consider the general runtime of this algorithm. Determining whether or not a vertex is remote takes
Õ(n1/3) time, based on the number of centers that we chose. Thus, the first step takes Õ(n1/3) time. If
either vertex happens to be not remote, we can also obtain information about its center and the distance
from the center with no extra cost.

Now, in the “both remote” case, even before the Elkin-Neiman algorithm subroutine, this involves looking
through all vertices within the union of the `-neighborhoods of u and v, and determining whether or not
they are remote. Since both vertices are remote, there should be Õ(n1/3) vertices within ` of either u or v
with high probability. Combining this with the cost of determining whether or not a vertex is remote (which
takes Õ(n1/3) time), we get a Õ(n2/3) cost before running the Elkin-Neiman algorithm. However, running
the Elkin-Neiman algorithm would take time Õ(n1/3) as we can BFS outwards to receive all of the signals
and information about the neighbors on the shortest paths, thus giving us a Õ(n2/3) total runtime.

Finally, in the “both not remote” case, the subcase where the vertices are in the same Voronoi cell takes
Õ(n1/3) time, through similar reasoning as in the last part of Section 3. However, in the other subcase,
determining the cluster a vertex v is in takes Õ(n2/3) time, as we explore via BFS to find which vertices
are in the same Voronoi cell and which ones should correspond to the cluster v is in, where we may explore
up to Õ(n1/3) vertices and each requires Õ(n1/3) time to determine which Voronoi cell it is in, along with
necessary information (such as distance to the center). Checking the first condition in step 5 takes O(1)
time, as we have information on the centers; the other two conditions require Õ(n2/3) time, as there may
be up to Õ(n1/3) neighboring clusters and finding the centers corresponding to those clusters takes Õ(n1/3)
time. Lastly, determining whether or not a specific edge is the minimum-rank edge between two clusters, or
a cluster and a cell, takes Õ(n1/3) time, as there are Õ(n2/3) edges leaving a specific cluster.

Thus, this local algorithm takes Õ(n2/3) time overall. This is another bottleneck in this algorithm, as this
means that we can’t make the clusters any larger, or the number of clusters any smaller (asymptotically),
otherwise we bump up the runtime of the algorithm.

11

3.3 Attempting to remove some of the bottlenecks

Here, we discuss some of our approaches to overcoming some of these bottlenecks and achieve a faster
runtime.

Our first observation is that for Algorithm 6, instead of running the Elkin-Neiman Algorithm within only
the set of remote vertices, we can run it on all vertices, and keep only the edges whose endpoints are both
remote vertices. Note that this cuts out the cost of figuring out which vertices are remote, thus lowering the
cost of the “both remote” case down to Õ(n1/3) (as the Elkin-Neiman Algorithm only requires a BFS to find
the relevant data, and then a linear-time scan through the data to recover which edges are kept).

We first claim that the subgraph remains connected, even if we run the Elkin-Neiman Algorithm on our
original graph and keep only the edges whose endpoints are both remote vertices. Suppose the subgraph is
disconnected; then there are several connected components that are disconnected from each other. Consider
any two such connected components that are connected by at least one edge in the original graph. If one of
the edges is between a remote vertex and a non-remote vertex, then we would’ve added this edge in Step 6 of
our global algorithm, meaning that these two connected components are actually connected, contradicting
the fact that these connected components are disconnected from each other. Similarly, if one of the edges
is between two non-remote vertices, then the “algorithm with a promise” should preserve a connection
between these vertices, though not necessarily this edge in particular. Since the algorithm with a promise
keeps only edges between non-remote vertices, any such path must be present in the output, contradicting
the disconnectedness assumption.

Therefore, all edges between our connected components must have been between remote vertices. How-
ever, notice that the set of edges between remote vertices that we take is determined by the output of
running the Elkin-Neiman Algorithm on our original graph. In particular, since none of the edges between
our connected components showed up in the output, and all of these edges are between remote vertices, none
of the edges between our connected components showed up in the output of the Elkin-Neiman Algorithm.
Therefore, the Elkin-Neiman Algorithm produced an output that is disconnected, which is impossible. Thus
we have reached a contradiction in all cases, and so the subgraph is connected.

In addition, we claim that we add at most |R|+O(εn) edges between remote vertices via this modification,
compared to the original |R|(1 + O(ε)). To see this, notice that because the output of the Elkin-Neiman
Algorithm is connected and contains n(1 +O(ε)) edges, we can pick a spanning tree from this subgraph and
ignore the O(εn) edges not in the spanning tree for now. Then, because a tree contains no cycles, if we
restrict our attention to only edges between remote vertices, we see that there are at most |R| edges between
remote vertices in this spanning tree, since there are |R| remote vertices, and having more than |R| edges
between remote vertices would cause us to form a cycle. Therefore, if we add back the O(εn) edges that we
ignored, this gives us the upper bound of |R| + O(εn) edges. Note that the difference between εn and ε|R|
is at most εn, so we still have n(1 +O(ε)) edges in our subgraph.

This takes care of one of the bottlenecks, at least in the runtime of the local algorithm; however, the
other bottleneck is harder to take care of, because computing an entire cluster and checking neighboring
clusters takes quadratic time in our set-up since we have to verify the centers of all of the vertices we look
through.

One proposed idea is to make the “center-finding” more symmetric - for each center a vertex finds within
some search limit (like Õ(n1/3)), it also checks whether or not the center can find that vertex within the
same search limit. However, this would produce a third category of vertices (“hidden” vertices, or the set
of vertices which do contain a center within their search limit but cannot be found by any center within the
same search limit), which might complicate things even more. We might even end up with a large number
of hidden vertices; consider an example where we have a graph on n vertices, which contains a n/2-vertex
subgraph with high expansion, and n/(2 log n) paths of length log n sticking out from n/(2 log n) random
vertices in that n/2-vertex high-expansion subgraph. Note that if we choose a sublinear number of centers,
then most of the vertices along these paths will be hidden, as most paths will not contain a center, in which
case it’s easy to find a center through BFS from the vertices along the path, but it’s hard for the centers to

12

find them through BFS due to the centers being in the high-expansion part of the graph.

4 Random walk approach

One of the main drawbacks of using BFS, as noted in the end of the previous section, is its “asymmetry” - in
particular, a vertex v1 finding another vertex v2 through BFS may end up searching through more vertices
than if v2 were to find v1 through BFS, as the expansion around v1 may be significantly higher than the
expansion around v2. This can be seen in a jellyfish-like graph, as described in the end of the previous
section - the vertices in the tendrils (long paths, or areas of low expansion) can more easily find the vertices
in the main body (the area of high expansion) than the other way around.

Thus, we would ideally want a search algorithm that is roughly “symmetric” - we would want to make
it so that if a vertex u can find another vertex v, then v can also find u. This suggests an approach using
likelihoods and random walks; the probabilities that two vertices find each other within some number of
steps is roughly the same because walks can be “reversed” and the probability associated with a specific
walk is inversely proportional to the products of the degrees of the vertices visited.

In particular, one of the approaches using likelihoods is the following.

Algorithm 7: Pure Likelihood Search

Input : Connected graph G = (V,E), vertex v ∈ V , threshold t(n) = O(
√
n)

Output: Outputs a set of vertices S that can be found from v using this approach, along with
weights on the vertices (denoting likelihoods).

1 Initialize the likelihood Lv,v to be 1, and the rest of the likelihoods on all other vertices to be
undefined (if a likelihood is undefined, then we don’t keep track of it).

2 Run a BFS-like search: Initialize a set R0 = S0 = {v}, and for 0 ≤ i ≤ 100 log n, do the following:
3 Consider the set of vertices Ri+1 adjacent to Si but not in any of S0, S1, . . . , Si. For each

u ∈ Ri+1, consider the maximum value of
Lv,w

deg(w)−1 , if i > 0, or
Lv,w

deg(w) , if i = 0, over all neighbors w

of u that are also in Si; let this maximum value be equal to mu. If mu ≥ t(n)−1 = Ω
(

1√
n

)
, then

set Lv,u = mu and put u into Si+1. Otherwise, leave Lv,u as undefined and don’t put u into Si+1.
4 Return the set S = S0 ∪ S1 ∪ S2 ∪ · · · ∪ S100 logn, along with the set of values Lv,u associated with

each vertex u ∈ S.

We can see the symmetry in effect for this approach - if a vertex u can find v, then there exists a path
u→ v1 → · · · → vi → v for some i such that the likelihood computed for v, which is

Lu,v =
1

deg(u)
∏i
j=1(deg(vj)− 1)

,

is at least Ω
(

1√
n

)
. This means that if we consider the reverse of this path, v → vi → · · · → v1 → u, the

likelihood computed for u if we were to start at v would be

Lv,u =
1

deg(v)
∏i
j=1(deg(vj)− 1)

= Lu,v ·
deg(u)

deg(v)
,

which is also at least Ω
(

1√
n

)
, and so v will also find u.

We note that having a threshold of ε = Ω
(

1√
n

)
also ensures that we don’t look at too many vertices.

Lemma 4.1. This search has runtime Õ(t(n)).

13

Proof. We prove by induction that sizes of each of the Ri’s is bounded by ∆t(n) and the sums of the
likelihoods Lv,u over all u ∈ Si is bounded by 1. The base case, i = 0, is clear.

For the inductive step, notice that since the sums of the likelihoods Lv,u over all u ∈ Si is bounded by 1
and each of the vertices u ∈ Si must have likelihood at least t(n)−1 in order for it to be in Si, there are at
most t(n) vertices in Si. Thus, since Ri+1 is a subset of vertices adjacent to vertices in Si, there are at most
∆t(n) vertices in Ri+1. Further, we can bound the sum of the likelihoods Lv,u over all u ∈ Si+1 as follows:∑

u∈Si+1

Lv,u ≤
∑
u′∈Si

Lv,u′

deg(u′)
· deg(u′) =

∑
u′∈Si

Lv,u′ ≤ 1,

where the second inequality is because each vertex in Si+1 has likelihood of the form
Lv,u′

deg(u′) for some

u′ ∈ Si adjacent to u, and each u′ ∈ Si is adjacent to at most deg(u′) vertices in Si+1. This means that
|Ri+1| ≤ ∆t(n) and

∑
u∈Si+1

Lv,u ≤ 1, completing the inductive step and thus the proof.

Now, since the sizes of each of the Ri’s is bounded by ∆t(n) = O(t(n)), this means that we only look
through O(t(n)) vertices at each iteration, hence giving us a runtime of Õ(t(n)) due to the logarithmic
number of iterations.

However, one of the issues is that we don’t have a guarantee on the number of vertices that we are
guaranteed to search through. Indeed, it’s possible that this vertex will only find O(log n) vertices: consider
a structure which contains a root node r and k = O(log n) sets of vertices L1, L2, . . . , Lk, each containing
∆/2 vertices, such that r is connected to all vertices in L1, and all vertices in Li are connected to all vertices
in Li+1 for all 1 ≤ i ≤ k− 1. Notice that if we were to run this search from any vertex, the likelihood would
decay exponentially as the depth of our search increases, but we only find O(∆) vertices each iteration. Thus,
when we hit our threshold, we would only have found O(∆ log n) vertices, which is not even polynomial in

n. It’s possible to try to fix this approach by instead looking at the sum of the
Lv,w

deg(w)−1 instead of the

maximum of the
Lv,w

deg(w)−1 at step 3 of Algorithm 7, with roughly the same runtime (and proof of runtime).

However, the main issue is that this approach might end up losing a lot of our “likelihood mass” as the depth
of our search increases, particularly when dealing with cycles of odd length, and thus we cannot guarantee
that we’ll be able to search through sufficiently many vertices, even if the neighborhood of depth O(log n)
contains a large number of vertices.

As such, we want to consider a search algorithm that is still symmetric, but one that can still search
through sufficiently many vertices if the neighborhood contains a large number of vertices. The key problem
is being able to balance between the amount of symmetry we have and the amount of distinct vertices that
we are able to search through, in the high-expansion case.

14

We thus turn our attention to an algorithm called Nibble, designed by Spielman and Tang.

Algorithm 8: Nibble Algorithm [6]

Input : Connected graph G = (V,E), vertex v, 0 < φ < 1, positive integer b
Output: Outputs either the empty set, or a set S of vertices with low conductance (i.e. the number

of edges leaving S is low compared to the sum of degrees of vertices in S), sum of degrees
at least 2b (high enough) but at most 5(

∑
v∈V deg(v))/3 (low enough), and the likelihood

of reaching each u ∈ S from v after a certain number of steps t is high enough (at least on
the order of 1/(2b log n)).

1 Set a threshold ε = Ω(1/(2bpolylog(n))). Initialize likelihoods Lu,0 for all vertices, so that vertex v
has likelihood 1 and all other vertices have likelihood 0 (if a vertex has likelihood 0, then we don’t
keep track of it).

2 Repeat for O(log(n log n)/φ2) iterations, keeping a time counter t (initially at 0) that increments
every iteration:

3 Update likelihoods: initialize each of the likelihoods Lu,t+1 for every vertex u to 0 for the next
time-step. for every vertex u that currently has positive likelihood Lu,t, add Lu,t/d(v) to each of
the likelihoods of u’s neighbors. After doing this for all vertices with positive likelihood at time t,
check the likelihoods of the vertices at time t+ 1; if some likelihood is lower than ε, round the
likelihood to 0 (and don’t keep track of it this timestep).

4 If there exists an integer j such that the set of j vertices Sj with highest ratio Lu,t+1/d(u)
satisfies the conditions as specified in the output (the conductance Φ(Sj) is at most φ, the sum of
degrees is between 2b and 5(

∑
v∈V d(v))/3, and the likelihoods are Ω(1/(2b log n))), then return Sj .

Otherwise, continue.
5 If after O(log(n log n)/φ2) iterations we haven’t output anything, return the empty set.

The general idea is to compute the likelihoods involved for a lazy random walk starting from v (where at
each step, we have a probability p = 1

2 of staying at our current vertex), truncating the likelihoods if they
become too small, and then taking a set of vertices with high enough volume (in our case, because of bounded
degrees, we would get at least 2b/∆ vertices) and each vertex in the set has high enough likelihood, which
necessarily bounds the number of vertices in our set (as if each vertex needs likelihood Ω(1/(2b log n)), and
the sum of likelihoods is bounded by 1, then we get at most 2b log n vertices in our set). Spielman and Tang
[6, Theorem 2.1] show that this algorithm runs in O(2b(log6 n)/φ4) time, or roughly linear in the number
of vertices output. Furthermore, Spielman and Tang [6, Lemma 2.13] show that the truncated likeihoods
Lu,t computed for each vertex u at a timestep t differs from the normal likelihood by at most tε deg(u),
which in our case is at most tε∆ = O(1/(φ22bpolylog(n))) and is thus negligible compared to the threshold
of Ω(1/(2b log n)) that we set when finding Sj .

Of course, this algorithm doesn’t directly apply to our situation - the main questions we need to answer
are:

1. Is this this search is roughly symmetric (if u finds v, then v can also find u)? The low conductance
requirement, the threshold for cutting off likelihoods, and the fact that we can return an empty set
can potentially break the symmetry that we desire.

2. Is our output a connected component? We would ideally like our output to be connected, particularly
if we want to design a partitioning algorithm around this, and this is not necessarily guaranteed if we
look at the set of j vertices with highest ratio Lu,1/d(u).

One modification that we can make is instead of trying to search for the set Sj at step 4 of Nibble,
we instead keep a separate set Rt of vertices whose likelihoods clear the ε bound at timestep t, and then
return the union of all of the Rt’s after all of our iterations, just like in Algorithm 7. Since the truncated
likelihoods don’t differ by much from the normal likelihoods, the search should still roughly be symmetric,
up to adjusting constant factors in the algorithm (since, again, we can reverse paths and the likelihoods only
change by a constant factor), and the output should be connected because any vertex in Rt must have had a

15

neighbor in Rt−1 in order for it to have had nonzero truncated likelihood at time t. As such, we can envision
our algorithm to do the following.

1. If we run BFS from v and don’t find Õ(n1/2) vertices within a neighborhood of depthO(log n/ log(1+ε)),
then run the Elkin-Neiman algorithm.

2. If we do find Ω̃(n1/2) vertices within a neighborhood of depth O(log n/ log(1 + ε)) (where we stop once
we find Õ(n1/2) vertices), and then we run and find θ̃(n1/2) vertices through modified Nibble (where
we keep a separate set Rt of vertices whose likelihoods clear the ε bound at timestep t, and then return
the union of all of the Rt’s after all of our iterations), then we can find a center from this set of θ̃(n1/2)
vertices that can find it in return.

However, it’s not clear what we should do if this modified Nibble only finds o(n1/2) vertices, even if the
neighborhood around v is large. This might suggest that this vertex v is in a set of low conductance. This
means that if we can find a set of vertices around v that has conductance lower than ε, and all but an ε
fraction of vertices within this set can agree on being within this set of vertices, then we can separate out
this set of low conductance from the rest of the graph and add all edges between this set and the rest of the
graph, due to the low conductance of this set. However, we are still not fully sure how to approach this, as
ensuring that all but an ε fraction of vertices within a set of low conductance agree on being within the set
is tricky.

5 Final Remarks

The key ingredient to make an LSSG algorithm like the one discussed in Section 4 work will be a partition
oracle. This oracle assigns every vertex to a connected component, and every vertex in a component is able to
find the entire component containing the vertex (or at least, is able to find some superset of this component).
Every component is one of three types: it has size Ω(

√
n), it has low conductance, or it is a leftover vertex,

but there should be few leftover vertices in total with high probability. To make a sparse spanning subgraph,
we keep a spanning tree within each component, all edges leaving the low expansion components and leftover
vertices, and at most one edge between each pair of large components (the lexicographically smallest such
edge).

How do we create this partition oracle? We don’t know, but our idea is as follows. Run some random-
walk based algorithm similar to Nibble. This should assign to each vertex a set of other vertices it is likely
to find in a random walk. If this set has size Ω(

√
n), we’re happy by symmetry of random walk probabilities:

we can choose around
√
n centers and use these. (But there is still a problem of connectedness: the set of

vertices assigned to a center may not be connected.)

If the set of likely vertices has size o(
√
n), what then? Ideally, there must be small expansion/conductance

happening, and we can turn that into some small conductance components that everyone can agree on, with
maybe a few leftover vertices.

References

[1] Elkin, M., and Neiman, O. Efficient algorithms for constructing very sparse spanners and emulators.
ACM Trans. Algorithms 15, 1 (2019), Art. 4, 29.

[2] Lenzen, C., and Levi, R. A centralized local algorithm for the sparse spanning graph problem. In
45th International Colloquium on Automata, Languages, and Programming, vol. 107 of LIPIcs. Leibniz
Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, pp. Art. No. 87, 14.

16

[3] Levi, R., Ron, D., and Rubinfeld, R. Local algorithms for sparse spanning graphs. In Approximation,
randomization, and combinatorial optimization, vol. 28 of LIPIcs. Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2014, pp. 826–842.

[4] Parter, M., Rubinfeld, R., Vakilian, A., and Yodpinyanee, A. Local computation algorithms
for spanners. In 10th Innovations in Theoretical Computer Science, vol. 124 of LIPIcs. Leibniz Int. Proc.
Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, pp. Art. No. 58, 21.

[5] Rubinfeld, R., Tamir, G., Vardi, S., and Xie, N. Fast local computation algorithms.
arXiv:1104.1377.

[6] Spielman, D. A., and Teng, S.-H. A local clustering algorithm for massive graphs and its application
to nearly linear time graph partitioning. SIAM J. Comput. 42, 1 (2013), 1–26.

17

	Intro
	Algorithm for High-Expansion Graphs
	High-Expansion Case
	Guess for General Case

	Refined algorithm for general case
	Algorithm with a Promise
	General Algorithm
	Attempting to remove some of the bottlenecks

	Random walk approach
	Final Remarks

