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Abstract. The hypercontractive inequality is a seminal result in discrete Fourier analysis with
numerous important applications in discrete mathematics. Several variants of the hypercontractiv-
ity theorem have been proved for product spaces. In a recent paper, Filmus, Kindler, Lifshitz, and
Minzer proved an analagous inequality in the symmetric group setting. In this paper, we will talk
about the traditional hypercontractivity theorem and its applications, and the global hypercon-
tractivity theorem for general product spaces. Then, we shift our focus to the Sn-hypercontractive
inequality and its applications. This paper is an expository paper mostly evolves around the paper
by FKLM. Mainly, we develop the tools they use in their paper, and give the proof of their main
theorem following one of their approaches, namely the coupling approach.

1. Introduction

In 1970, Bonami [1] proved the following theorem known as the Hypercontractivity Theorem,
which is arguably the most seminal result in the field of analysis of Boolean functions.

Theorem 1.1. Let f : {−1, 1}n → R be degree of d and q ≥ 2 be a real number. Then, ‖f‖q ≤√
q − 1

d ‖f‖2.

This theorem enables us to transform q-norms to 2-norm in inequalities. This is especially useful
because 2-norm has a simple expression in terms of the Fourier coefficients, whereas the other norms
are not as simple. In particular, ‖f‖22 =

∑
S⊆[n] f̂(S)2. One particular simple but useful property

of this identity is that each term has a nonnegative contribution. For example, we know that∥∥∥f≤d∥∥∥2
2

=
∑
S⊆[n]
|S|≤d

f̂(S)2 ≤
∑
S⊆[n]

f̂(S)2 = ‖f‖22

where f≤d is defined to be the part of f whose degree is less than or equal to d.
The Hypercontractivity Theorem has been thus used to prove numerous influential results such

as FKN Theorem [4] (degree-1 functions are close to a dictatorship), KKL Theorem [5] (there exists
an influential voter), Invariance Principle [7] (one can switch back and forth between the Boolean
setting the Gaussian setting without changing the expectation too much if the influences are small),
and thereof Majority is Stablest [7] the most stable bounded function with low influences is the
Majority function) and it has been used to give shorter proofs of different versions of Arrow’s
Impossibility Theorem (there is no "fair" voting system), including a robust version by Gil Kalai
(see e.g. [8]). In fact, the theorem stated above is a corollary of a more general theorem also known
as the Hypercontractivity Theorem. Before we state the original Hypercontractivity Theorem, let
us give the definition of the noise operator, which is a linear operator from L2({−1, 1}n) to itself,
also known as the smoothing operator.
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Definition 1.2. Let ρ ∈ [0, 1]. For any x ∈ {−1, 1}n we denote by y ∼ Nρ(x) the following
distribution: ∀i ∈ [n] yi = xi with probability ρ, and uniformly random with probability 1− ρ. The
noise operator is defined to be Tρf(x) = Ey∼Nρ(x)[f(y)].

The reason Tρ called the noise operator is that it introduces noise to each coordinate. A machine
receives the signal correctly with probability ρ but randomly assigns a value to the signal by itself
with probability 1 − ρ. In this sense, the functions with more variables should be affected more
from this process. Indeed, Tρf(x) =

∑
S∈[n] ρ

|S|f̂(S)χS(x). So, it smooths out the high degree part
of f , which is why it is called the smoothing operator. Now, we can state the Hypercontractivity
Theorem in its most general version:

Theorem 1.3. Let f : {−1, 1}n → R, 1 ≤ p ≤ q, and 0 ≤ ρ ≤
√

p−1
q−1 . Then, ‖Tρf‖q ≤ ‖f‖p.

We will give the proof for p = 2, q = 4, ρ = 1/
√

3, which is sufficient to prove most of the
applications as such. The idea behind the proof for the general case is similar, but requires more
rigorous calculations. Before giving the proof, let us give the definition of discrete derivatives and
Laplacians, which are two most important notions lying at the heart of many inductive proofs in
discrete Fourier analysis.

Definition 1.4. Let f : {−1, 1}n → R. For every i ∈ [n], discrete derivative with respect to coordi-
nate i is defined to beDif(x) = (f(xi→1)−f(xi→−1))/2 where xi→1 = (x1, · · · , xi−1, 1, xi+1, · · · , xn)
and xi→−1 = (x1, · · · , xi−1,−1, xi+1, · · · , xn). Laplacian is defined to be Lif(x) = Exi∼{−1,1}[f(x)].

Proof of Theorem 1.3. The proof follows by induction over n. Note that Tρf(x) = Tρ(Dnf(x)xn) +
TρLnf and that both Dnf and Lnf has domain {−1, 1}n−1. Then,

E[(Tρf)4] = ρ4E[(TρDnf)4] + 6ρ2E[(TρDnf)2(TρLnf)2] + E[(TρLnf)4]

≤ E[(TρDnf)4] + 2E[(TρDnf)2(TρLnf)2] + E[(TρLnf)4]

≤ E[(TρDnf)4] + 2
√
E[(TρDnf)4]

√
E[(TρLnf)4] + E[(TρLnf)4]

≤ E[(Dnf)2]2 + 2E[(Dnf)2]E[(Lnf)2] + E[(Lnf)2]2

= E[f2]2

where the first equality is by binomial expansion, the second inequality is by Cauchy-Schwarz, and
the third inequality is by induction. �

In a recent paper, Filmus, Keevash, Long, and Minzer [6] proved an analogous result for general
product spaces. However, their result requires the function to be global.

Definition 1.5. Let (Ω, µ) = (Ω1 × Ω2 × · · · × Ωm, µ1 × µ2 × · · · × µm) be a product probability
space and f : Ω→ R. We say that f is ε-global with constant C if for any T ⊂ [m] and x ∈

∏
i∈T Ωi,

‖fT→x‖22 ≤ C |T |ε.
The statement of the Global Hypercontractivity is as follows.

Theorem 1.6. Let q ∈ N be even, f : Ω→ R be ε-global with constant C, and ρ ≤ 1
(10qC)2

. Then,

‖Tρf‖q ≤ ε
q−2
q ‖f‖

2
q

2 .

Following this result, Filmus, Kindler, Lifshitz, and Minzer [3] proved a similar hypercontractivity
theorem in the symmetric group setting, which is probably the most common non-product group.
The definition of globalness in the symmetric group setting will be given in the next chapter. For
now, we encourage reader the think of it as the function is small on average even when some of its
coordinates are restricted.
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Theorem 1.7. There exists K > 0 such that the following holds. Let q ∈ N be even, n ≥ qKd
2. If

f : Sn → R is a (2d, ε)-global function of degree d, then ‖f‖q ≤ qO(d3)ε
q−2
q ‖f‖

2
q

2 .

As hypercontractivity is the main tool in most of the results regarding Boolean functions, The-
orem 1.7 can be used to prove analogous results in the symmetric group setting. In their paper,
FKLM gives several applications of this theorem. The first application is that the symmetric group
version of the well known level-d inequality (e.g. [9, Corollary 9.25]), which gives an upper bound on
the low degree weights. Another one is that they prove that global product-free sets in An are small.
In [2], Eberhard proved an upper bound without the globalness condition. FKLM’s work tightens
the bound. A third important result they prove is analogous to KKL Theorem [5]. They work
out the proof by proving isoperimetric inequalities in the symmetric group setting for global sets.
Finally, we will mention that they are able to transfer the results to other non-product domains, and
the multi-slice in particular. In fact, it is not hard too see that there is a canonical correspondence
between the functions of domain Sn and multi-slice. Hence the results are generally transferred in
a black-box fashion.

In the rest of this paper we will develop the tools to prove Theorem 1.7. In [3], they give two
different approaches. In our paper, we will stick to their first approach, which is less direct and
requires the combination of a few ideas from combinatorics. Throughout the paper, we will skip
some of the proofs which we think are not essential to grasp the idea and mostly straightforward.

Acknowledgements. I would like to thank Dor Minzer for suggesting the direction of the project
and teaching me about the topic, Elchanan Mossel for introducing me to the field, MIT UROP+
committee for funding the project, and most importantly Ashwin Sah for being a supportive mentor
throughout the project both regarding the project and else.

2. Globalness

Globalness will be a condition in the hypercontractivity theorem of Sn too. In fact, the main
reason behind this requirement is that in our proof, we first transfer the function to a product
space, use hypercontractivity in this product space, and transfer it back to the Sn setting. Before
we give the formal definition of globalness, we first need to describe how the restrictions work in
the symmetric group setting.

Given f : Sn → R and a subset T ∈ [n]× [n] of the form {(i1, j1), (i2, j2), · · · , (it, jt)} where all of
the i’s are distinct and all of the j’s are distinct we denote by STn the set of permutations respecting
T . Similar to the Boolean setting, we denote by f→T : STn → R the restriction of f to STn equipped
with the uniform measure.

Now, we are ready to give the formal definition of globalness. We will give two different definitions
and refer to the first one as full globalness, the second one as bounded globalness.

Definition 2.1. A function f : Sn → R is called ε-global with constant C if for any consistent T ,
it holds that ‖f→T ‖2 ≤ C |T |ε.

Definition 2.2. A function f : Sn → R is called (d, ε)-global if for any consistent T of size at most
d, it holds that ‖f→T ‖2 ≤ ε.

One can see that full globalness implies bounded globalness. So, intuitively, full globalness is
stronger than bounded globalness. Indeed, we prove that bounded globalness also implies full
globalness.

Lemma 2.3 ([3, Lemma 3.5]). Suppose n ≥ Cd log d for a sufficiently large constant C. Let
f : Sn → R be a (2d, ε)-global function of degree d. Then, f is also ε-global with constant 48.

The rest of this section will be dedicated to the proof of Lemma 2.3.
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2.1. Derivatives and the Proof of Lemma 2.3. Recall that we mentioned derivatives are crucial
and lie at the heart of the proofs by induction in analysis of Boolean functions. Likewise, the notion
of discrete derivatives lies at the heart of the proof of Lemma 2.3 which follows by several inductions.
In the proof, we first define discrete derivatives in the symmetric group setting such that (1) if f
is bounded global then the derivatives are small, (2) if derivatives are small, then f is bounded
global, (3) the degree of a derivative is strictly smaller than the degree of f . Here, property (3)
seems to be unrelated as we have not discussed the exact relation between small derivatives and
bounded globalness in the first properties, which make it seem like only these two properties will
be enough to prove the lemma. We find that the high order derivatives have exponentially greater
upper bounds. Thus, the upper bound for derivatives become exponential in n without having the
last property. On the other hand, we use the third property to say that high order derivatives are
already 0. Therefore, the upper bound for derivatives turn out to be exponential in the degree of
function rather than the number of variables in function.

Definition 2.4. Derivative of f along (i, j) → (k, l), D(i,j)→(k,l)f : S
(i,k),(j,l)
n → R is defined as

D(i,j)→(k,l)f(π) = f(π)− f(π ◦ (i, j)) for every π ∈ S(i,k),(j,l)
n . For any t ≤ n/2, the composition of t

consistent derivatives is called a derivative of order t.
Throughout the proofs of these properties of derivatives, induction will be our main tool. The

following lemma shows that bounded globalness requires small derivatives. We will skip its proof
as it is immediate by induction over t and the triangle inequality.

Claim 2.5 ([3, Claim 4.2]). Let t ∈ N, ε > 0, and f : Sn → R be a (2t, ε)-global function, then for
each derivative D of order t, we have ‖Df‖2 ≤ 2tε. �

Next, we will show that small derivatives imply bounded globalness.

Claim 2.6 ([3, Claim 4.2]). Let t ≤ n/2, ε > 0 and f : Sn → R. Assume that for all r ≤ t and
derivative D of order r we have that ‖Df‖2 ≤ ε. Then, f is (t, 2tε)-global.

The proof of this lemma is again by induction over t. The inductive step is quite straightforward
once the base case is known, i.e. for t = 1. Hence, we will prove the base case in the following
claim, but leave the inductive step to the reader.

Claim 2.7. Let ε > 0 and f : Sn → R. If ‖f‖2 ≤ ε and for any i1 6= i2, k1 6= k2 ∈ [n],∥∥D(i,j)→(k,l)f
∥∥
2
≤ ε, then f is (1, 2ε)-global.

Proof. For any i1 6= i2, k1 6= k2 ∈ [n], we get from the triangle inequality that

ε ≥
∥∥D(i,j)→(k,l)f

∥∥
2

= ‖fi→k,j→l − fi→l,j→k‖2 ≥
∣∣‖fi→k,j→l‖2 − ‖fi→l,j→k‖2∣∣ .

Multiplying the inequality by ‖fi→k,j→l‖2 + ‖fi→l,j→k‖2, we get that

ε(‖fi→k,j→l‖2 + ‖fi→l,j→k‖2) ≥
∣∣∣‖fi→k,j→l‖22 − ‖fi→l,j→k‖22∣∣∣ .

Now, we take the average over l with the goal of eliminating one of the restrictions.

εEl[‖fi→k,j→l‖2 + ‖fi→l,j→k‖2] ≥ El[
∣∣∣‖fi→k,j→l‖22 − ‖fi→l,j→k‖22∣∣∣] ≥ ∣∣∣‖fi→k‖22 − ‖fj→k‖22∣∣∣

where the last inequality is due to the triangle inequality. Note that by Cauchy-Schwarz,

‖fi→k‖2 ≥ El[‖fi→k,j→l‖22]
1
2 ≥ El[‖fi→k,j→l‖2]

and similarly ‖fj→k‖2 ≥ El[‖fi→l,j→k‖2]. Thus,

ε(‖fi→k‖2 + ‖fi→k‖2) ≥
∣∣∣‖fi→k‖22 − ‖fj→k‖22∣∣∣ .

4



Dividing the inequality by (‖fi→k‖2 + ‖fi→k‖2), we obtain that

ε ≥
∣∣‖fi→k‖2 − ‖fj→k‖2∣∣ .

Since ε2 ≥ ‖f‖22 = Ej [‖fj→k‖22], for any k there is a j such that ε ≥ ‖fj→k‖2. Combining with the
above inequality using the triangle inequality, we get that ‖fi→k‖2 ≤ 2ε. �

The proof of the following claim is straightforward.

Claim 2.8 ([3, Claim 4.3]). If f is of degree d and D is a derivative of order t, then Df is of degree
less than or equal to d− t. �

With Claim 3.5, Claim 3.6, Claim 3.8 in hand, we can easily prove the following claim.

Claim 2.9 ([3, Claim 4.4]). Let f : Sn → R is a (2d, ε)-global function of degree d. Then f is
(t, 4tε)-global for each t ≤ n/2.

Proof. By Claim 2.5, for every t ≤ d and derivative of degree t, ‖Df‖2 ≤ 2tε. By Claim 2.8 for
every t > d and derivative of degree t, ‖Df‖2 = 0. Thus, for every t ≤ n/2 and derivative of degree
t, ‖Df‖2 ≤ 2dε. The rest of the proof follows by Claim 2.6. �

To complete the proof of Lemma 3.3, we need to bound the norms of the restrictions with sets
of size greater than n/2. For this, we use the naive bound that f is (t, ‖f‖∞)-global for any t. As
such, it is sufficient to upper bound the infinity norm.

Claim 2.10 ([3, Claim 4.5]). Let f be a (2d, ε)-global function of degree d. Then ‖f‖∞ ≤
√

(6d)!43nε.

Proof. The proof is by induction over n. We will analyze it under two cases.
If 3d ≤ n/2, then by the previous claim we have that f is (3d, 43dε)-global. Thus, for any

consistent set T of size d, we have that f→T is (2d, 43d)-global. Hence,

‖f‖∞ = max
|T |=d

‖f→T ‖∞ ≤
√

(6d)!43nε

where we used the induction hypothesis for f→S in the inequality.
If 3d > n/2, then

‖f‖2∞ = max
π

f(π)2 ≤
∑
π

f(π)2 = n! ‖f‖22 < (6d)!ε2. �

Claim 2.9 and Claim 2.10 together completes the proof of Lemma 2.3. �

3. Coupling and the Markov Operator

In this section, we will define a Markov operator T (ρ) such that it satisfies the properties given
in the following theorem.

Theorem 3.1 ([3, Theorem 1.2]). For an even q and C > 0, there is ρ > 0 and an operator
T (ρ) : L2(Sn)→ L2(Sn) satisfying the following two conditions:

(1) If f : Sn → R is ε-global with constant C, then
∥∥T (ρ)f

∥∥
q
≤ ε

q−2
q ‖f‖

2
q

2 .

(2) There is an absolute constant K such that for all d ≤
√

log n/K, it holds that the eigenvalues
of T (ρ) corresponding to degree d functions are at least ρ−Kd.

The reason we refer to it as a Markov operator is that the operator will be defined by averaging
the values in the next step of a Markov chain. We construct the Markov chain by a coupling method.
In the following section, we will first give a general approach, then specify it for Sn.
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3.1. General Coupling Approach. In this section, we introduce an important technique called
coupling. Generally speaking, coupling is a matching between two probability distributions. We
want to introduce a coupling between two distributions when we have an important property in
one of the distributions and we desire to transfer this property to the other. When we are to
construct a coupling between two probability spaces, we aim to have a joint distribution where the
marginal distributions remain same. In our case, the property we would like to transfer will be the
hypercontractive property of a linear operator similar to the noise operator in the Boolean setting.

Consider two finite probability spaces X and Y , and suppose that C(x, y) is a coupling between
them such that the marginal distributions of x and y will corresponds to the probability distributions
in X and Y , respectively. Using this coupling, we may define the averaging operators TX→Y :
L2(X)→ L2(Y ) and TY→X : L2(Y )→ L2(X) as

TX→Y f(y) = Ex∼C(·,y)[f(x)], TY→Xg(x) = Ey∼C(x,·)[g(y)].

It is easy to see that by Jensen’s inequality, the averaging operators are contractions with respect
to Lp-norm for any p ≥ 1. Suppose that we have a hypercontractive operator TY : L2(Y )→ L2(Y ).
Then, if we define TX := TY→XTY TX→Y , TX is also hypercontractive. For example, if Y = {−1, 1}2
and TY = T1/

√
3, then we know that ‖TY f‖4 ≤ ‖f‖2 by the Hypercontractivity Theorem. Thus,

‖TXf‖4 = ‖TY→XTY TX→Y f‖4 ≤ ‖TY TX→Y f‖4 ≤ ‖TX→Y f‖2 ≤ ‖f‖2 .

3.2. Our Coupling for Sn. Define L = [n]2 and let m be a sufficiently large number depending
polynomially on n, e.g. m = n2 will work. We will construct a coupling between Sn and Lm (One
can take X = Sn, Y = Lm in the above approach.). Our coupling is as follows:

(1) Choose y ∼ Lm uniformly at random.
(2) Greedily construct a set T of consistent pairs from y. That is, starting from k = 1 to m, we

consider the k-th coordinate of y, add it to the set if it keeps the set consistent, increment
k otherwise.

(3) Choose a permutation x ∈ STn uniformly random.

3.3. Markov operator on Sn. We are now ready to define the Markov operator T (ρ). Take
X = Sn, Y = Lm, and define the averaging operators corresponding to the coupling we constructed
above. Let TY be the noise operator Tρ on the product space Lm, defined as usual: Every element
is retained with probability ρ, and uniformly resampled otherwise. Note that this is equivalent
to multiplying the Fourier level d with ρd for each d in the Boolean case. Now, we can give the
hypercontractivity result of T (ρ) for global functions, which corresponds to the first condition of
Theorem 3.1.

Theorem 3.2 ([3, Theorem 3.3]). Let q ∈ N be even, C, ε > 0, and ρ ≤ 1
(10qC)2

. If f : Sn → R is

ε-global with constant C, then
∥∥T (ρ)f

∥∥
q
≤ ε

q−2
q ‖f‖

2
q

2 .

Proof Overview. In the proof of this theorem, we first show that if f : Sn → R is ε-global with
constant C, then so g := TSn→Lmf . The proof of this claim is immediate by Cauchy-Schwarz
and the fact that the marginal distributions in the coupling are equal to the distributions of the
probability spaces Sn and Lm. Second, we note that for any X and Y coupled as in Section 4.1,
TX→Y is a contraction with respect to Lp-norm for any p ≥ 1, which is immediate from Jensen’s
inequality. Then,∥∥∥T (ρ)f

∥∥∥
q

= ‖TLm→SnTρTSn→Lmf‖q ≤ ‖TρTSn→Lmf‖q ≤ ε
q−2
q ‖TSn→Lmf‖

2
q

2 ≤ ε
q−2
q ‖f‖

2
q

2

where the first and the third inequalities are due to the contractive property of the averaging
operators, and the second inequality is due to Theorem 1.6. �
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Another important property of the Markov operator is that we can estimate f as a polynomial
of the Markov operator. Since we already know a hypercontractive inequality for this operator,
namely Theorem 3.2, the next theorem will enable us to prove Theorem 1.7.

Lemma 3.3 ([3, Lemma 3.6]). Let n ≥ Kd3q−Cd for a sufficiently large constant K, and let
ρ = 1/(400K3q2). Then, there exists a polynomial P satisfying P (0) = 0 and ‖P‖ ≤ qO(d3) such
that ∥∥∥P (T (ρ))f − f

∥∥∥
q
≤ 1√

n
‖f‖2

for every function of degree at most d.

The proof of this lemma is by spectral considerations. The proof has several steps, but each step
has a mostly straightforward combinatorial proofs. Thus, we will give the overall proof and the
main steps of the proof, but we will not give the detailed arguments for these steps.

First, let us provide some intuition about what are we trying to do and why. Suppose we find
a polynomial as in Lemma 3.3. First, for it to happen, the eigenvalues must be sufficiently large.
Otherwise, if f is an eigenfunction with small eigenvalue then P (T (ρ))f would be too close to 0
and not be close to f in q-norm. Second, it should have a small degree for uniformity purposes.
For these reasons, we will first find a set of functions that makes almost an eigenbasis. From that,
we will show that the eigenvalues are sufficiently large. Second, we prove that the eigenvalues are
concentrated on a small number of values. And then we construct the polynomial.

3.4. A basis for L2(Sn). Because L2(Sn) does not have a natural basis like product spaces, we
show that the most natural basis is indeed approximately a basis. For every consistent set T ⊂ [n]2,
define vT = 1T

‖1T ‖2
where 1T is the indicator function of T , i.e. 1T (π) = 1 if π is consistent with

T , 1T (π) = 0 otherwise. Note that 〈vT , vT 〉 = 1. The proof of the following proposition is by
combinatorial considerations, which will be skipped.

Proposition 3.4. The following properties of vT and T (ρ) hold.
(1) [3, Lemma 5.7] Let d ≤ n/2 and T 6= S be sets of size d. Then 〈vT , vS〉 ≤ O( 1

n)
(2) [3, Proposition 5.8] There exist an absolute constant C such that or all consistent T , we

have 〈T (ρ)vT , vT 〉 ≥ (cρ)|T |

(3) [3, Lemma 5.9] Let ρ ∈ (0, 1). Then for all sets T 6= S of size at most n/2, we have
〈T (ρ)vT , vS〉 = O( 1√

n
). �

By using Proposition 3.4, we can prove the following proposition.

Proposition 3.5 ([3, Proposition 5.10]). Let C be a sufficiently large absolute constant. If n ≥
ρ−dCd

2 and f is a d-junta, then
〈T (ρ)f, f〉 ≥ ρO(d) ‖f‖22

And the following corollary is immediate.

Corollary 3.6 ([3, Corollary 5.11]). Let C be a sufficiently large absolute constant. If n ≥ ρ−dCd2,
then all the eigenvalues of T (ρ) as an operator from Vd to Vd are at least ρO(d).

3.5. Eigenvalues are concentrated on d values. Now, we will show that the eigenvalues of T (ρ)

on Vd is concentrated on following d values: For any i, let λi(ρ) = 〈T (ρ)vT , vT 〉 where T is a set of
size i. Note that λi(ρ) does not depend on the choice of T due to symmetry.

Proposition 3.7 ([3, Lemma 5.12]). Let C be a sufficiently large absolute constant. If n ≥ ρ−dCd2,
then each eigenvalue of T (ρ) as an operator from Vd to Vd is equal to λi(ρ) · (1± n−1/3).
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Proof. Let λ be an eigenvalue of T (ρ), and let f be a corresponding eigenfunction in V[d],[d]. Write

f =
∑

aSvS ,

where the sum is over all S = {(i1, j1) , . . . , (it, jt)} ⊆ [d]. Then 0 = T (ρ)f − λf , but on the other
hand for each set S we have

〈T (ρ)f − λf, vS〉 = aS

(
〈T (ρ)vS , vS〉 − λ

)
±
∑
|S|6=|T |

|aT |
(∣∣∣〈T (ρ)vT , vS〉

∣∣∣+ |λ| |〈vT , vS〉|
)

= aS
(
λ|S| (ρ)− λ

)
±O

(∑
T 6=S |aT |√

n

)
.

Thus, for all S we have that

|aS |
∣∣λ|S| (ρ)− λ

∣∣ ≤ O(∑T 6=S |aT |√
n

)
.

On the other hand, choosing S that maximizes |aS |, we find that |aS | ≥
∑
T 6=S |aT |
2d2

, and plugging

that into the previous inequality yields that
∣∣λ|S| (ρ)− λ

∣∣ ≤ O
(
2d

2
)

√
n
≤ n−0.4ρ−d ≤ n−1/3λ|S| (ρ),

provided that C is sufficiently large. �

3.6. Finishing the proof of Lemma 3.3. We first prove the L2 variant of the lemma, and then
we prove the lemma itself.

Claim 3.8 ([3, Lemma 5.13]). Let n ≥ ρ−Cd
3 for a sufficiently large constant C. There exists a

polynomial P (z) =
∑k

i=1 aiz
i, such that ‖P‖ ≤ ρ−O(d3) and ‖P

(
T(ρ)

)
f − f‖2 ≤ n−2d‖f‖2.

Proof. Choose P (z) = 1 −
∏d
i=1

(
λ−1i z − 1

)9d, where λi = λi(ρ). Orthogonally decompose T(ρ) to
write f =

∑
λ f

=λ, for nonzero orthogonal functions f=λ ∈ Vd satisfying T(ρ)f=λ = λf=λ, and let
g = P

(
T(ρ)

)
f − f . Then g =

∑
λ (P (λ)− 1) f=λ. Therefore

‖g‖22 =
∑
λ

(P (λ)− 1)2 ‖f=λ‖22 ≤ max
λ

(P (λ)− 1)2‖f‖22.

Suppose the maximum is attained at λ?. By Proposition 3.7, there is i ≤ d such that λ? =

λi(1± n−
1
3 ), and so ∣∣∣(λ−1i λ? − 1

)9d∣∣∣ ≤ n−3d.
For any j 6= i, we have by Corollary 3.6 that λj ≥ ρO(d), and so∣∣∣(λ−1i λ? − 1

)9d∣∣∣ ≤ ρ−O(d2).

Combining the two inequalities, we get that

(1− P (λ?))
2 ≤ ρ−O(d3)n−6d ≤ n−2d,

where the last inequality follows from the lower bound on n. Now all we need to do is to upper
bound ‖P‖ to end the proof.

‖P‖ ≤ 1 +

∥∥∥∥∥
d∏
i=1

(
λ−1i z − 1

)9d∥∥∥∥∥ ≤ 1 +
d∏
i=1

∥∥λ−1i z − 1
∥∥9d = 1 +

d∏
i=1

(1 + λ−1)9d ≤ 1 +
d∏
i=1

(1 + ρ−O(d))9d,

which is at most ρ−O(d3). In the second inequality, we used the fact that ‖P1P2‖ ≤ ‖P1‖ ‖P2‖. �
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Now, we will prove a hypercontractive inequality (which is weaker than the hypercontractive
inequality we are trying to prove), and obtain the Lemma 3.3 together with the previous claim.

Lemma 3.9 ([3, Lemma 5.14]). Let C be a sufficiently large absolute constant, and let n ≥ Cd2q2d.
Let f : Sn → R be a function of degree d. Then, ‖f‖q ≤ qO(d)nd ‖f‖2.

Proof. Let ρ = 1
(10·48·q)2 . Decomposing f into the

∑
λ

f=λ where T (ρ)f=λ = λf=λ, we may find g of

degree d, such that f = T(ρ)g, namely, g =
∑
λ

λ−1f=λ. By Parseval and Corollary 3.6, we get that

‖g‖2 ≤ ρ−O(d)‖f‖2. Thus, we have that ‖f‖q =
∥∥T (ρ)g

∥∥
q
, and to upper bound this norm we intend

to use Theorem 3.2, and for that we need to show that g is global with fairly weak parameters.
Let T be a consistent set of size 2d. Then,

‖g→T ‖22 =
Ex∼Sn [g(x)21T (x)]

Ex∼Sn [1T (x)]
≤ Ex∼Sn [g(x)21T (x)2]1/2

Ex[1T (x)]
Ex∼Sn [g(x)]1/2 =

‖g→T ‖2
Ex∼Sn [1T (x)]1/2

‖g‖2 .

Thus,

‖g→T ‖2 ≤
‖g‖2

Ex∼Sn [1T (x)]1/2
≤ nd ‖g‖2 ≤ n

dρ−O(d) ‖f‖2 .

Hence, g is (2d, ndρ−O(d) ‖f‖2) global. Lemma 2.3 implies that g is ndρ−O(d) ‖f‖2 global with
constant 48. By the choice of ρ, we may use Theorem 3.2 to get that

‖f‖q =
∥∥∥T (ρ)g

∥∥∥
q
≤ (ndρ−O(d) ‖f‖2)

q−2
q ‖g‖

2
q

2 ≤ n
dρ−O(d) ‖f‖2 = ndqO(d) ‖f‖2

which completes the proof. �
Now, we are ready to finish the proof of Lemma 3.3.

Proof of Lemma 3.3. Let f be a function of degree d. By lemma 3.8 there exists a P with ‖P‖ ≤
ρ−O(d3) and P (0) = 0 such that the function g = P

(
T(ρ)

)
f − f satisfies ‖g‖2 ≤ n−2d‖f‖2. By

Lemma 3.9, ‖g‖q ≤ q4dn−d‖f‖2 ≤ 1√
n
‖f‖2, provided that C is sufficiently large, completing the

proof. �

4. Proof of Theorem 1.7

We recall Theorem 1.7.

Theorem 1.7. There exists K > 0 such that the following holds. Let q ∈ N be even, n ≥ qKd
2. If

f : Sn → R is a (2d, ε)-global function of degree d, then ‖f‖q ≤ qO(d3)ε
q−2
q ‖f‖

2
q

2 .

Proof. Let ρ = 1/(400K3q2), P and K be as in Lemma 3.3. Then, by the triangle inequality and
Lemma 3.3,

‖f‖q ≤
∥∥∥P (T (ρ))f

∥∥∥
q

+
1√
n
‖f‖2 .

Also,∥∥∥P (T (ρ))f
∥∥∥
q

=
∥∥∥∑(T (ρ))if

∥∥∥
q
≤ |ai|

∥∥∥∑(T (ρ))if
∥∥∥
q
≤ ‖P‖

∥∥∥(T (ρ))f
∥∥∥
q
≤ qO(d3)

∥∥∥(T (ρ))f
∥∥∥
q

where the first inequality is due to the triangle inequality, and the second inequality is because
T (ρ) is a contraction. Given K is sufficiently large, by Lemma 2.3 and Theorem 3.2, we get that∥∥T (ρ)f

∥∥
q
≤ ε

q−2
q ‖f‖

2
q

2 . Because ‖f‖2 ≤ ε, we have

‖f‖q ≤ q
O(d3)ε

q−2
q ‖f‖

2
q

2 +
ε√
n

= qO(d3)ε
q−2
q ‖f‖

2
q

2 ,

9



which completes the proof. �
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