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Abstract. We analyze an algorithm of Brown, which allows for the compu-

tation of the stable homotopy groups of spheres. We provide an upper bound

on the asymptotic complexity of this algorithm when applied to compute the
homotopy groups of odd-dimensional spheres, as well as any space with finite

homotopy groups obtained as the realization of a finite simplicial set. We ad-

ditionally discuss difficulties in providing bounds in the case of spaces with
homotopy groups of arbitrary size.

Contents

1. Introduction 2
2. Acknowledgements 2
3. Computational Preliminaries and Model of Computation 2
3.1. Asymptotic Notation: O, Ω, and Θ 3
3.2. Runtimes of Basic Operations 3
3.3. Data Structures 4
3.4. Representation of Mathematical Objects 4
4. Topological Preliminaries 6
4.1. Simplicial Sets 7
4.2. Functors 9
4.3. The simplicial sets ∆k 10
4.4. Chain complexes and homology 11
5. Analysis of Postnikov Construction with Finite Coefficient Groups 16
5.1. The Postnikov Construction 16
6. Analysis of Iterated Postnikov Construction 21
6.1. Iterated Postnikov Construction 22
6.2. Complexity of determining Pn from Pn−1. 22
6.3. Complexity of determining Pi, i < n 24
7. Computation of Higher Homotopy Groups of Spheres 26
7.1. q-Deformation Retracts and the Modified Iterated Postnikov

Construction 26
7.2. Modified Iterated Postnikov Construction on Odd-Dimensional

Spheres 28
References 29

Date: January 10, 2022.

1



2 KEITA ALLEN

1. Introduction

In his 1956 paper Finite Computability of Postnikov Complexes [Bro57], E.H.
Brown provided a procedure which, building on earlier results proven by M. Post-
nikov [Pos51], yields an algorithmic procedure by which the stable homotopy groups
of spheres can be computed. That being said, at the time this procedure was mostly
of theoretical importance; Brown himself writes in the paper that “although the
procedures developed for solving these problems are finite, they are much too com-
plicated to be considered practical.” However, computing has evolved enormously
since the 1950s, and it may now be possible to compute these groups within a rea-
sonable amount of time. The question of just how reasonable then arises, and the
purpose of this project is to answer this question.

In the case of a space with finite homotopy groups, obtained as the realization
of a simplicial set N finite in each level, we have the following result.

Theorem 1.1. Given a finite complex N , we can determine πi(|N |) for 1 < i ≤ n
in

O

n2


|Nmax|+

∏
j<n

|πj(|N |)|(
j+n
n )

3

+ n

(
2n

n

)∏
j<n

|πj(|N |)|(
j+n
n )


(1.2)

time, where Nmax is the level of the simplicial set N with maximal order out of
levels 2 through level n+ 2.

Given Stirling’s approximation, this roughly tells us that the algorithm runs
polynomial in the size of the homotopy groups, but heavily superexponential in the
amount of homotopy groups being computed.

Brown’s algorithm also gives an process to compute the homotopy groups of a
complex N with infinite homotopy groups, but there is a detail in the construction
that we have been unable to place a bound on. In lieu, we analyze the case of odd-
dimensional spheres, using previous results bounding the order of the homotopy
groups to obtain the following result.

Theorem 1.3. Using Brown’s algorithm, we can determine the homotopy groups
πi(S

2n+1), i < m for some m > 2n+ 1, in
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time.
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3. Computational Preliminaries and Model of Computation

Here, we lay out discuss some preliminaries to the analysis of the algorithm, and
discuss the computational model which will be the basis of our complexity analysis.
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3.1. Asymptotic Notation: O, Ω, and Θ. When analyzing the runtime of an
algorithm, we do not care too much about the exact time an algorithm might
take when run on a particular system with a particular input; there are too many
variables that can affect this. Instead, we choose to think about how the runtime
scales as the inputs become more complex, which we describe using O, Θ, and Ω
notation.

Definition 3.1 (O, Ω, and Θ). Given two functions f(x) and g(x), we say

(1) g(x) ∈ O(f(x)) if there exists some constant c > 0 such that cf(x) ≥ g(x)
for all x ∈ R,

(2) g(x) ∈ Ω(f(x)) if there exists some constant c > 0 such that cf(x) ≤ g(x)
for all x ∈ R, and

(3) g(x) ∈ Θ(f(x)) if g(x) ∈ O(f(x)) ∩ Ω(f(x)).

As a common abuse of terminology,“g(x) is O(f(x))” means that g(x) ∈ O(f(x)),
and likewise for Ω and Θ.

One can think of a function g(x) being O(f(x)) as saying that it is asymptotically
upper bounded by f(x), Ω(f(x)) as being asymptotically lower bounded by f(x),
and Θ(f(x)) as being asymptotically ”equivalent” to f(x).

Remark 3.2. In this paper (and in the study of algorithms as a whole), most of the
time we upper-bound the runtimes of algorithms discussed, and so we will largely
be using O. As such, in the discussion below, we will only state facts relating to O;
we leave as exercise to verify that the facts also apply to Ω and Θ.

We describe the runtime of an algorithm as a function of some number of param-
eters, and this is why the notation described above is useful; it allows us to capture
information about how our algorithm behaves as inputs become more complicated,
which generally will not change drastically between implementations, while throw-
ing away details such as constant factors which cause notational clutter and do not
convey too much useful information.

Example 3.3. Mergesort, an efficient algorithm for sorting lists, has a runtime of
O(n log n), where n is the size of the list.

Two useful facts regarding O is the following:

(1) If a function f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then f1(x) + f2(x) is
O(g1(x) + g2(x)).

(2) If a function f1(x) is O(g1(x)) and f2(x) is O(g2(x)), and all functions
f1, f2, g1, g2 are positive, then f1(x)f2(x) is O(g1(x)g2(x)).

In particular, this tells us asymptotic notation behaves how we should want it
to when analyzing an algorithm’s smaller subparts. If an algorithm is comprised
of n subtasks, then the runtime of the algorithm can be obtained by summing
the runtimes of the subtasks, and similarly, if you have an algorithm consisting
of a subtask which is repeated some amount of times, then the total runtime is
obtained by multiplying the runtime of the subtask by the number of times it is
being repeated.

3.2. Runtimes of Basic Operations. In order to analyze the runtime of algo-
rithms, we need to first define the runtime of some primitive operations.
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• Arithmetic/Comparison We will assume that all arithmetic operations be-
tween two numbers - addition, subtraction, multiplication, and division, in
addition to modular arithmetic such as finding remainders, take O(1) or
constant time. We will also assume that checking equality/inequality of
two numbers can be accomplished in constant time.

• Boolean Arithmetic/Comparison: A boolean value is simply a True or a
False value. We will assume that we can compute boolean operations
(and, or, is and not) in constant time.

• Memory Access: We will assume that if we assign a value to a variable,
then we can look up the value in constant time. Further, we will assume
that we can assign any object/data structure as a value to a variable. (See
the section below for a discussion of data structures that will be employed
in this paper.)

3.3. Data Structures. A data structure is a way to arrange data. There are many
different data structures, with each one more suited to certain applications. In this
section, we discuss the data structures which will be employed in this paper.

3.3.1. Static Arrays. An array is an ordered list, where the objects contained can
be anything from numbers to other lists. We refer to the object in position i to
be at index i in the array, and if the array is given by A = (x1, x2, . . . , xn), then
we denote xi, the object at index i, by A[i]. A static array is one where the size is
prespecified, and which cannot be changed. We assume the following runtimes for
some basic operations with a static array A:

• Initialization: We assume that in initializing a length n static array is an
O(n) time task.

• Lookup: Given an index i, we assume that we can return A[i] in O(1) time.
• Deletion: Given an index i, we assume that we can remove the value at
A[i] in O(1) time.

• Write: Given an index i, we assume we can assign a new value to A[i] in
O(1) time.

3.3.2. Hash Tables. Hash tables are a data structure which will be employed heavily
to describe various constructions. A hash tableH has keys, each assigned to a value,
and we will say ”x ∈ H” to mean that ”x exists as a key in H,” and refer to the
value associated to x as H(x). We assume that we can accomplish the following
operations in O(1) time:

• Lookup: Given an item x, we will assume that we can check if x ∈ H in
O(1) time, and if x ∈ H, that we can return H(x) also in O(1) time.

• Deletion: Given x ∈ H, we will assume that we can remove x and its
associated value from H in O(1) time.

• Insertion: Given x, we will assume that both newly assign x to a given
value and reassign H(x) in O(1) time.

3.4. Representation of Mathematical Objects. At the core of our analysis we
have some basic mathematical objects. In this section we discuss how we represent
them computationally.
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3.4.1. Sets. We represent sets using hash tables. Specifically, a set S is represented
as a hash table S′, where x ∈ S if and only if S′(x) = True . We will say x ∈ S′

to mean S′(x) = True in this manner. This allows us to add objects to, remove
objects from, and check whether an object is included in a set in O(1) time. It also
allows us to implement the following set operations with the following runtimes:

• Union: Given two sets S1, S2, we can compute the union S1 ∪ S2 as a new
set in O(|S1|+ |S2|) time.

• Intersection: Given two sets S1, S2, we can compute the intersection S1∩S2

as a new set in O(min(|S1|, |S2|)) time.

3.4.2. Cartesian Products. Given two sets S1, S2, we represent the cartesian prod-
uct S1×S2 as a new set whose elements are static arrays (x1, x2), with x1 ∈ S1, x2 ∈
S2. This is computable in O(|S1||S2|) time.

Remark 3.4. Note that under this representation, (S1 × S2) × S3 is not the same
computational object as S1 × (S2 × S3). However, for our purposes, this does not
raise any problems, and so we will employ this representation.

3.4.3. Functions between sets. We represent a function f : S1 → S2 as a static
array

(3.5) (S′
1, S

′
2, F ),

where S′
1 is the domain represented as a set, S′

2 is the codomain represented as a
set, and F is a hash table whose keys are s1 ∈ S′

1, and where F (s1) = f(s1) ∈ S′
2.

With this representation, we can determine the image of s1 ∈ S1 under our function
in O(1) time, and in particular, we can determine the image of our entire domain
in O(|S1|) time. We can also determine the preimage of all singletons in s2 ∈ S2

at once in O(|S1|) time.

3.4.4. Simplicial sets. A simplicial set N can be thought of as a collection of sets
and functions between them. So we can represent the kth level Nk as a list

(3.6) (N ′
k, ∂

′
0, . . . , ∂

′
k, s

′
0, . . . , s

′
k)

where N ′
k is the computational representation of the set Nk, and ∂′

i and s′i are
the computational representations of the face and degeneracy maps.

3.4.5. Finitely generated abelian groups. The Structure Theorem for finitely gener-
ated abelian groups tells us that for any finitely generated abelian group G,

(3.7) G ≃ Zd1 ⊕ . . .⊕ Zdn ⊕ Zr

where di, r ∈ N; that is, any finitely generated abelian group can be represented
as the direct sum of finite cyclic groups and a free abelian group.1 Thus, represent-
ing such a group is simple; all we need is a tuple of integers! So we will use this
decomposition to represent a finitely generated abelian group G via a static array

(3.8) (r, d1, . . . , dn),

and an element g ∈ G via another static array

(3.9) (vf , v1, . . . , vn),

where vf = (vf1 , . . . , vfr ) ∈ Zr, and vi ∈ Zdi .

1Please see [Art10], Ch. 14.7 for a proof of this theorem, in addition to details on how the di
and r are determined.
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3.4.6. Direct sums. With the above representation of finitely generated abelian
groups, we can represent the direct sum of two such groups G1, G2 fairly easily;
if G1 ≃ Zd11

⊕ . . . ⊕ Zdn1
⊕ Zr1 and G2 ≃ Zd12

⊕ . . . ⊕ Zdm2
⊕ Zr2 , then we can

represent G1 ⊕G2 simply as

(3.10) (r1 + r2, d11 . . . . , dn1 , d12 . . . . .dm2)

3.4.7. Abelian group homomorphisms. We can also represent homomorphisms be-
tween finitely generated abelian groups without too much difficulty. We use the
fact that the action of a homomorphism is determined by the image of a generat-
ing set of the domain. We will represent a homomorphism ϕ between two finitely
generated abelian groups G1, G2 via a static array (G′

1, G
′
2, φ) where G

′
1 is the rep-

resentation of G1, G
′
2 is the representation of G2, and φ is a hash table whose keys

are a generating set of G′
1 and where the values assigned to each key it its image

under ϕ.
In particular, there are many instances where we will want to describe maps out

of simplicial chain groups for some simplicial set K. In this case, we will always be
describing the action of the map on the ’canonical’ basis, given by the elements of
Kn.

3.4.8. Matrices. Homomorphisms between free abelian groups can be represented
via integer matrices, obtained by fixing bases. We will represent an m× n matrix

(3.11) A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,

via a ”list of lists” A′:

A′ = ((a11, a12, . . . , a1n),

(a21, a22, . . . , a2n), . . . ,

(am1, am2, . . . , amn))

(3.12)

With this representation of matrices, we have the following asymptotic runtimes
for some basic matrix operations:

• Multiplication: Given a m × n matrix A and an n × p matrix B, we can
compute (the computer representation of) AB in O(mnp) time.

• Inversion: Given an invertible n×n matrix A, we can compute the inverse
of A in O(n3) time.

4. Topological Preliminaries

Brown largely makes use of a certain combinatorial structure in his paper; simpli-
cial sets. In this section we will outline some basic definitions surrounding simplicial
sets, modernized from Brown’s original exposition. We will assume familiarity with
basic definitions from general topology and category theory, as in [Mun03] and
[Rie16], and draw from exposition in [Hat01], [May67] and [GJ09].
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4.1. Simplicial Sets. What Brown refers to as complete semi-simplicial complexes
are known today as simplicial sets. These objects are combinatorial in nature,
and can be thought of as generalizing directed graphs.

Definition 4.1 (Simplicial set). A simplicial set K is a collection of sets {Kn}n∈Z+ ,
along with face maps ∂i : Kn+1 → Kn and degeneracy maps si : Kn−1 → Kn,
0 ≤ i ≤ n, which satisfy the following simplicial identities:

(4.2)



sisj = sj+1si i ≤ j

∂i∂j = ∂j−1∂i i < j

∂isj = sj−1∂i i < j

∂jsj = id = ∂j+1sj

∂isj = sj∂i−1 i > j + 1

We refer to the elements of Kn as n-simplices. Given a n-simplex x, ∂i(x) is
called the ith face of x, and x is said to be degenerate if x = si(y) for some i and
some n+ 1-simplex y.

Example 4.3. A motivating pseudoexample is a directed graph (V,E), with the
condition that the self-directed edge (v, v) is in E for all v ∈ V. We let K0 = V
and K1 = E, and define the face maps ∂0, ∂1 : K1 → K0 and the degeneracy map
s0 : K0 → K1 as follows:

∂0((u, v)) = v

∂1((u, v)) = u

s0(v) = (v, v)

(4.4)

One could complete this pseudoexample to be an actual simplicial set in the
following way.

(1) Define higher-dimensional n-simplices as n-tuples (v0, v1, . . . , vn).
(2) Define the higher-dimensional face maps ∂i : Kn+1 → Kn to be the func-

tions where

∂i(v0, v1, . . . , vn) = (v0, . . . , vi−1, vi+1, . . . , vn)

and the higher-dimensional degeneracy maps si : Kn−1 → Kn to be the
functions where

(v0, v1, . . . , vn) = (v0, . . . , vi, vi, . . . , vn).

Notice that these match the given definitions for n = 0, 1.
(3) Inductively define Kn to be

⋃
i si(Kq−1).

One can verify that these maps are well-defined and satisfy the simplicial iden-
tities, and therefore this “completion” of a directed graph is a simplicial set.

Definition 4.5. A simplicial set K is finite if Kn is finite for all n.

We now define the class of structure-preserving maps between simplicial sets.

Definition 4.6 (Simplicial map). Given two simplicial sets K and L, a collection
of maps f = {fq}q∈Z+ , with fq : Kq → Lq, is called a simplicial map if

fq+1si = sifq

fq−1∂i = ∂ifq
(4.7)

In words, it is said that f commutes with the simplicial maps.



8 KEITA ALLEN

In modern day, one typically takes a categorical approach to defining simplicial
sets. We describe this in what follows.

Definition 4.8 (Simplex category). The simplex category ∆ is defined to be the
category whose objects are lists of integers {0, 1, . . . , n}, denoted as [n], and whose
morphisms are monotone increasing functions µ : [n] → [m]; that is, functions such
that µ(i) ≤ µ(j) if i < j.

Definition 4.9 (Simplicial set (categorical definition)). A simplicial set K is a
(covariant) functor

K : ∆op → Set

between the opposite category of ∆op and the category of sets Set, or equivalently,
a contravariant functor K : ∆ → Set.

More generally, given a category C, one can define a simplicial object in the
category C as a functor K : ∆op → C.

To provide intuition as to why this abstract definition matches our more explicit
one from before, consider σi ∈ Hom([n], [n− 1]) such that

(4.10) σi(j) =

{
j j ≤ i

j − 1 j > i

and δi ∈ Hom([n], [n+ 1]) such that

(4.11) δi(j) =

{
j j < i

j + 1 j ≥ i

In Chapter VII.5 of [ML71], the following lemma is proven regarding these maps:

Lemma 4.12. Any f ∈ Hom∆([n], [m]) has a unique expression of the following
form:

(4.13) f = δik . . . δi1σj1 . . . σjh ,

such that

(4.14)


n+ k = m+ h

0 ≤ i1 < . . . < ik ≤ m

0 ≤ j1 < . . . < jh < n

Further, one can verify that the cosimplicial identities, obtained by replacing si
and ∂i with σi and δi respectively in the equations (4.2), hold true. Therefore, to
obtain the “classical” simplicial set, according to our first definition, from the cate-
gorical one, one simply takes the sets Kn to be K([n]), and the face and degeneracy
maps ∂i and si to be K(δi) and K(σi), respectively. We leave it as an exercise to
verify that one can also work in reverse; that given a “classical” simplicial set K,
there is a unique functor K : ∆op → Set such that K([n]) = Kn, K(δi) = ∂i, and
K(σi) = si, thus showing us the equivalence of our definitions.

Simplicial maps, defined in categorical terms, offers an example of how our cat-
egorical reformulation allows for a streamlining in description.

Definition 4.15 (Simplicial map (categorical definition)). A simplicial map is a
natural transformation between simplicial sets.



COMPUTATION OF HOMOTOPY GROUPS OF SPHERES 9

Definition 4.16 (sSet). The category sSet of simplicial sets is the category whose
objects are simplicial sets and whose morphisms are simplicial maps.

In the remainder of the paper, we will adopt notation and terminology from the
“classical” definition when we require access to more specific data in a simplicial
set, such as individual face/degeneracy maps or individual n-simplices, and attempt
a categorical view otherwise.

4.2. Functors. Given the purely combinatorial nature of simplicial sets, in order to
make topological claims we require some way to interface between them and topo-
logical spaces. We accomplish this via the singular and geometric realization
functors.

We begin by describing the singular functor.

Definition 4.17 (Singular n-simplex). Given a topological space X, a singular
n-simplex of X is a continuous map f : |∆n| → X, where

(4.18) |∆n| =
{
(x1, . . . , xn) ∈ Rn+1 :

∑
xi = 1, xi ≥ 0

}
,

endowed with the subspace topology from Rn+1, is the topological n-simplex.

Let ∂i : |∆n−1| → |∆n| be defined by

∂i(x1, . . . , xn−1) = (x1, . . . , xi−1, 0, xi . . . , xn−1)

si(x1, . . . , xn+1) = (x1, . . . , xi−1, xi + xi+1, xi+2, . . . , xn+1)
(4.19)

Definition 4.20 (Singular simplicial set). Given a topological spaceX, the singular
simplicial set of X, denoted by S(X), is the simplicial set whose n-simplices are
the simply the singular n-simplices of X, and where the face maps ∂i : Sn+1(X) →
Sn(X) and degeneracy maps si : Sn−1(X) → Sn(X) are described as follows:

(4.21)

{
∂if = f ◦ ∂i

sif = f ◦ si

We leave it as an exercise to verify that these maps satisfy the simplicial identi-
ties.

Definition 4.22 (Singular functor). The singular functor S : Top → SSet is the
functor which sends a topological space X to its total singular complex S(X), and
a continuous map g : X → Y to the simplicial map S(g) : S(X) → S(Y ) which
takes f : |∆n| → X ∈ Sn(X) to g ◦ f : |∆n| → Y .

Now we know of a way to interface one way, from topological spaces to simplicial
sets. Now let’s start to think about how we can go in the other direction. We
accomplish this via geometric realization.

Definition 4.23 (Geometric Realization Functor). Let K be a simplicial set, and
endow each Kn with the discrete topology. The geometric realization of K, denoted
as |K|, is the quotient space formed by the discrete union

⊔
n Kn × |∆n| modulo

the equivalence (∼), under which

(4.24) (∂ix, u) ∼ (x, ∂iu), (six, u) ∼ (x, siu)

As one may suspect, there exists a functor Geom : SSet → Top which sends a
simplicial set K to its geometric realization |K|.
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We then have the following strong relationship between a space X and the real-
ization of its total singular complex |S(X)|, first introduced in [Mil57].

Proposition 4.25. For any topological space X, πi(X,x) ≃ πi(|S(X)|, |S(e)|).

From a high-level perspective, this means that if we wish to investigate the
homotopy groups of some space, we can instead study a simplicial set, a purely
combinatorial object. This is the idea behind Brown’s algorithm, which we will
begin to describe in section 5.

4.3. The simplicial sets ∆k. Next, we move to defining and exploring a certain
special simplicial set.

Definition 4.26. The simplicial set ∆k is defined as Hom∆(−, [k]).

From the purely categorial side, Yoneda Lemma tells us that this simplicial set
has a special property:

Corollary 4.27. Given a simplicial set N , there is a unique simplicial map ιs
between Hom∆(−, [k]) and N taking id[k] to a given k-simplex s ∈ Nk. □

We will omit proof of this result here, but revisit the reasoning when it comes
to be applied.

This simplicial set is also special geometrically; we have the following theorem
given in [Mil57]:

Theorem 4.28. The geometric realization of ∆k is homeomorphic to the topological
k-simplex.

Thus, we remain consistent with our previous use of |∆k| to denote the topolog-
ical n-simplex.

There is a certain subsimplicial set of ∆k called the boundary ∂∆k, with the
following property.

Proposition 4.29. |∂∆k| is homeomorphic to the (k − 1)-sphere bounding |∆k|.

We refer to [GJ09], I.1 for a definition of ∂∆k and a proof of the above property.
We also make definitions of a collection of simplicial maps, relating the ∆k.

Definition 4.30. We define simplicial maps ei : ∆
k−1 → ∆k, ti : ∆

k+1 → ∆k via

(ei)[n](α) = α ◦ σi

(ti)[n](α) = α ◦ δi,
(4.31)

where σi and δi are the maps given in (4.10) and (4.11), respectively.

Now, first let’s try to determine the size of the levels of these simplicial set.

Lemma 4.32.

(4.33) |Hom∆ ([n], [m])| =
(
n+m+ 1

m

)
.

Proof. Recall that Hom∆([n], [m]) is the set of all functions µ : [n] → [m] such that
µ(i) ≤ µ(j) if i < j. So we can view an element µ ∈ Hom∆([n], [m]) as a length
(n+ 1)-tuple

(4.34) (µ(0), µ(1), . . . , µ(n)),
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with µ(i) ∈ [m] and (monotone) increasing across indices, making our problem
a purely combinatorial one. Counting shows us the case where n = 0;

|Hom∆([0], [m])| = m+ 1 =

(
0 +m+ 1

m

)
(4.35)

Towards the general case, a way we can imagine determining such a map µ is
by choosing µ(0), and then choosing a monotone increasing map µ1 : {1, . . . , n} →
{µ(0), . . . ,m}, which is the same thing as choosing a monotone increasing map
{0, . . . , n−1} → {0, . . . ,m−µ(0)}. Given that that µ(0) can take any value in [m],
we obtain the following recursive relation:

|Hom∆([n], [m])| =
m∑
i=0

|Hom∆([n− 1], [m− i])|(4.36)

We can now induct. Assume |Hom∆([n − 1], [j])| =
(
n+j
j

)
for any j. Then we

have

|Hom∆([n], [m])| =
m∑
i=0

(
n+m− i

m− i

)

=

m∑
i=0

(
n+ i

i

)
=

(
n+m+ 1

m

)
,

(4.37)

where the last equality follows from a variant of the hockey-stick identity. □

4.4. Chain complexes and homology. One meaningful algebraic structure as-
signed to simplicial sets are chain complexes, which we discuss now.

Definition 4.38 ((Co)chain complex). A chain complex C is a sequence of abelian
groups Cn (called chain groups) and homomorphisms ∂n : Cn → Cn−1 (called
boundary maps),

· · · Cn−1 Cn Cn+1 · · ·∂n ∂n+1

with the property that ∂n∂n+1 = 0.We call the groups Cn chain groups, Zn(C) :=
ker(∂n) the group of n-cycles, Bn(C) := im(∂n+1) to be group of n-boundaries, and
Hn(C) := Zn(C)⧸Bn(C) the nth homology group of the chain complex C.

A cochain complex is a structure dual to the chain complex, and is a sequence
of abelian groups Cn and homomorphisms ∂n,

· · · Cn−1 Cn Cn+1 · · ·∂n−1 ∂n

with the property that ∂n∂n−1 = 0. We similarly call the groups Cn cochain
groups, Zn(C) := ker(∂n) the group of n-cocycles, Bn(C) := im(∂n−1) the group
of n-coboundaries, and Hn(C) := Zn(C)⧸Bn(C) the nth cohomology group of the
complex C.

Definition 4.39. Given two (co)chain complexes C,D, a (co)chain map f : C → D
is a collection of maps {fn : Cn → Dn} such that ∂ ◦ f = f ◦ ∂.
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Definition 4.40. If f : C → D is a chain map, the mapping cone of f , denoted
by Cone(f), is a chain complex where Cone(f)n = Cn−1 ⊕Dn, and with boundary
map ∂ given by

(4.41) ∂(x, y) = (−∂C(x), f(x) + ∂D(y))

Definition 4.42 (Simplicial homology/cohomology). The simplicial chain complex
of a simplicial setK is defined to be the chain complex C(K) where the chain groups
Cn(K) are the free abelian groups generated by Kn, and with boundary maps ∂n
whose action on the generators k ∈ Kn of the free abelian groups is described by∑

i(−1)i∂i(k), where ∂i : Kn → Kn−1 are the appropriate face maps. The nth
simplicial homology group Hn(K) is obtained by taking the nth homology of the
simplicial chain complex.

Given an abelian group π, one can also consider a simplicial cochain complex, ob-
tained through application of the contravariant functor Hom(−, π) to the simplicial
chain complex:

· · · Cn−1(K) Cn(K) Cn+1(K) · · ·

· · · Cn−1(K;π) Cn(K;π) Cn+1(K;π) · · ·

∂n

Hom(−,π)

∂n+1

Hom(∂n,π) Hom(∂n+1,π)

The nth simplicial cohomology group with coefficients in π is defined to be the
the nth cohomology group of the cochain complex described above.

Remark 4.43. One may notice that the definition of simplicial homology relies
solely on the face maps. For this reason, for most of the computations we do
with simplicial sets in thie paper we will be only concerned with determining face
maps. The reason the degeneracy maps can be useful is because they can allow us to
compute homology using smaller substructures; there is a theorem that roughly says
that ”simplicial homology is equal to simplicial homology modulo degeneracies.” We
refer the reader to [GJ09], III.2 for a precise statement and proof.

Computing (co)homology is an integral part of Brown’s algorithm, and so we list
here a couple of computational lemmas regarding the complexity of determining
these groups and some surrounding structures.

Definition 4.44 (Smith Normal Form). Let A be an m× n integer matrix. Then
there exists invertible integer matrices P , Q such that

(4.45) Q−1AP =



d1 0 0 · · · 0
0 d2 0 · · · 0

0 0
. . . 0

... dr
...

0
. . .

0 · · · 0


,

where d1|d2| . . . |dr. The product Q−1AP is known as the Smith Normal Form
(SNF) of A, and the integers di are known as the elementary divisors of A.
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We note that the rank of the matrix A is the same as the rank of its SNF, which
can be determined by counting the number of nonzero rows.

Lemma 4.46. Given a sequence

Zp Zn ZmB A

where A and B are matrices such that AB = 0, we can determine the homology
group kerA⧸ imB up to isomorphism as a direct sum of cyclic groups and free
abelian groups

(4.47) O(m2n+ n2p)

time.

Proof of lemma. According to [AC21], we know that kerA⧸ imB ≃
⊕r

i=1 Zdi
⊕

Zn−rankA−rankB , where the di are the elementary divisors of the matrix B. We
obtain the elementary divisors through computing the Smith Normal Form of the
matrix A, which is accomplished in O(n2p) time according to [Sto96]. We can
determine the ranks of A and B through the SNF also, which we compute in
O(n2p+m2n) time. □

Lemma 4.48. Given an m×n integer matrix A, we can determine a basis for the
kernel of A, in addition to an extension of it to a basis for all of Zn, in

(4.49) O(m2n)

time.

Proof of lemma. We begin by determining the SNF S of A. This is an O(m2n)
operation according to [Sto96]. Now, let’s try to relate the kernel of A to the
kernel of S. Given that S = Q−1AP for some invertible Q, P , we can see that
Sx = 0 ⇔ QSx = 0 ⇔ QSP−1(Px) = 0 ⇔ A(Px) = 0. Thus, we can see that the
kernel of A is the image under P of the kernel of S, and that we can find a basis for
the kernel of A by simply computing Px for all x in a basis of S. Further, finding
a basis for the kernel of S is easy! Given we know that

(4.50) S =



d1 0 0 · · · 0
0 d2 0 · · · 0

0 0
. . . 0

... dr
...

0
. . .

0 · · · 0


,

we can see that the elementary basis vectors {ei : r < i ≤ n} form a basis for the
kernel of S. Therefore, {Pei : r < i ≤ n} form a basis for the kernel of A. These are
just the (r+1)th through nth columns of P . Further, given that P is invertible, we
know that all of its columns are linearly independent when considered as vectors
in Zn. Therefore, we can accomplish our desired task by simply reading off the
columns of P , which we can do in O(n2) time. □
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Lemma 4.51. Given the following sequence

Zp Zn ZmB A

where A, B are matrices such that AB = 0, we can determine the action of some
extension of the canonical map kerA → kerA⧸ imB on the canonical basis {ei} in

(4.52) O(n3 +m2n+ n2p)

time.

Proof of lemma. First, let’s discuss how we can determine the action. By definition,
we know that B is a presentation matrix for kerA⧸ imB. This means that if

(4.53) B =


b11 b12 . . . b1p
b21 b22 . . . b2p
...

...
. . .

...
bn1 bn2 . . . bnp

 ,

then the following relations hold amongst the residues {ei} of the canonical basis
vectors {ei} of Zn :

(4.54)


b11e1 + b21e2 + . . .+ bn1en = 0

b12e1 + b22e2 + . . .+ bn2en = 0
...

b1pe1 + b2pe2 + . . .+ bnpen = 0

The question is then what relations this implies amongst the residues of vectors
in a separate basis {wi}. The answer is not too complicated; we consider the change
of basis matrix

(4.55) Q =

w1 . . . wn


Then the presentation matrix giving the relations between {wi} is given by the

matrix QB.
Further, we can also convince ourselves that if we take an invertible p×p matrix,

say P , and consider the matrix QBP, then this also provides a complete set of
relations between {wi}, as the right multiplication by P represents a change of
basis in the domain Zp.

So looking back, 4.44 tells us that there exists invertible matrices Q, P such that

(4.56) Q−1BP =



d1 0 0 · · · 0
0 d2 0 · · · 0

0 0
. . . 0

... dr
...

0
. . .

0 · · · 0


,
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which in turn tells us that there is a basis {wi} such that the following is a complete
set of relationships for the module kerA⧸ imB:

(4.57)


d1w1 = 0

d2w2 = 0
...

drwr = 0

Given that the matrix in 4.56 is how we determined kerA⧸ imB to be
⊕r

i=1 Zdi
⊕

Zn−rankA−rankB (see [AC21]), we know that we can take the the residue wi = π(wi)
to be the element ϵi := (0, . . . , 0, 1, 0, . . . , 0) ∈

⊕r
i=1 Zdi

⊕ Zn−rankA−rankB , where
the 1 is in the ith position. Now we can use properties of homomorphisms to deduce
where other elements should map under π! Let’s start with the canonical basis {ei}.
We use the fact that Q represented a change of basis from {ei} to {wi} to reason

π(wi) = π(Qei)

⇒π(ei) = π(Q−1wi)
(4.58)

We know that Q−1wi =
∑

k(Q
−1)kiwk; therefore, we obtain

(4.59) π(ei) = π(Q−1wi) = π

(∑
k

Q−1
ki wk

)
=
∑
k

[
Q−1

ki mod dk
]
ϵk

We then want to take this a step further; we want to describe what this implies
for the residues of a basis {vi}, where {vi}ri=1 is a basis for kerA. So let {vi} be
such a basis, and R be the matrix representing a change of basis from {ei} to {vi};
then we can repeat reasoning similar to above to see that

(4.60)

π(vi) = π(R(Q−1)wi) = π

(∑
k

(R(Q−1))kiwk

)
=
∑
k

[
(R(Q−1))ki mod dk

]
ϵk

It is here where things might get a bit confusing. What we have succeeded
in describing at the moment is finding out where our basis {vi} of Zn is taken
under the canonical map π : Zn → Zn⧸ imB. However, this isn’t quite an exten-
sion of the canonical map from kerA → kerA⧸ imB, as in general Zn⧸ imB is
slightly ”bigger” than kerA⧸ imB; kerA⧸ imB ≃

⊕r
i=1 Zdi

⊕ Zn−rankA−rankB ,
while Zn⧸ imB ≃

⊕r
i=1 Zdi ⊕ Zn−rankB . Thus, as it stands we run the risk of

describing a map where the basis elements {vi}ni=r+1 are mapped to elements out-
side of our group of interest. To remedy this, we will instead consider a minor
modification to the map π we currently have.

Zn Zn Zn⧸ imB

vi

{
vi i ≤ r

0 i > r

{
π(vi) i ≤ r

0 i > r

r π

Figure 4.1.
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By considering the composition π ◦ r, we obtain an extension of the canonical
map kerA → kerA⧸ imB. Now, this map is easy to describe for our basis {vi}, but
our end goal is to describe it for our basis {ei}. Let’s work this out. The matrix for
the transformation r in terms of the basis {vi} is easy to write down; one verifies
that it is the following;

(4.61)

[[
Ir
]

0

]
,

where Ir is the r × r identity. Thus, to describe its action in terms of the basis
ei, we conjugate; the matrix for r in terms of the basis {ei} is given by

(4.62) R

[[
Ir
]

0

]
R−1

That is, the image of ei under r, written in the coordinates given by {ei}, is

the ith column of the matrix R

[[
Ir
]

0

]
R−1. We can then use our knowledge of

where π takes {ei} to find out where this element is taken, and thus we have finally
determined the image of {ei} under the composition π◦r, which is what we wanted.

With that, let us see how long each step in this process takes.

(1) First, we want to find the Smith Normal Form of the n×p matrix B, along
with the matrix Q representing the change of basis between {ei} to {wi}.
This is accomplished in O(n2p) time according to [Sto96]

(2) Next, we want to determine where our canonical basis ei maps to un-
der π, which we accomplish by computing Q−1 and computing the sum∑

k

[
Q−1

ki mod dk
]
ϵk. The inversion is accomplished via Gaussian elimi-

nation, which we can count to be done in O(n3) time, while computing the
sum involves O(n) arithmetic operations for each ei, giving us an O(n2)
runtime total.

(3) Then, we want to find the matrix R representing change of basis between
{ei} and {vi}. This is obtained in the process of determining the kernel of
A, which is accomplished in O(m2n) by our work in Lemma 4.48.

(4) Then, we want to compute the product R

[[
Ir
]

0

]
R−1, and then do more

appropriate arithmetic to determine the image of {ei} under π ◦ r. We can
count the matrix multiplication to be accomplished in O(n3) time, while
the arithmetic can again be seen to take O(n2) time.

Thus, taking the sum across all steps, we obtain that the total runtime is O(n3+
m2n+ n2p). □

5. Analysis of Postnikov Construction with Finite Coefficient
Groups

5.1. The Postnikov Construction. Brown makes use of a construction with sim-
plicial sets, originally detailed by M. Postnikov in [Pos51], which has particularly
nice properties when considering the homotopy groups of the realization of a simpli-
cial set. The description of these constructions has been streamlined since Brown’s
day, tending to sacrifice explicitness for elegance. For the purposes of this paper,
we require the former, and so we will describe the construction largely following
Brown’s original exposition.
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We begin by defining some objects which will be used in what follows, and
determining the complexity of determining them. First, we describe a categorical
construction.

Definition 5.1. For three objects A,B,C and two morphisms f : A → B, g : C →
B in a category C, the fiber product of f and g is defined to be an object, denoted
by A ×B C, along with two maps p1 : A ×B C → A, p2 : A ×B C → C which is
universal with respect to the following square:

A×B C A

C B

p1

p2 g

f

The motivation for the name is that if C = Set, then A ×B C can be obtained
by taking the product of the fibers of f and g.

(5.2) A×B C =
⋃
x∈B

{f−1(x)× g−1(x)}

Then the maps p1, p2 are the projection maps onto the first and second coor-
dinates, respectively. Although formally a fiber product of two maps refers to the
triple (A ×B C, p1, p2), we will often use it to refer to only the object A ×B C. It
will be of interest of us to compute the fiber product of two maps of sets, so we will
state the following lemma here.

Lemma 5.3. Given functions f : A → B, g : C → B between sets A,B and C, we
can determine the set A×B C in O(|A||C|) time.

Proof. Our process is the following:

(1) Compute the collection of singleton fibers {f−1(x)}x∈B , {g−1(x)}x∈B .
(2) Compute the collection of products {f−1(x)× g−1(x)}x∈B .
(3) Compute the union

⋃
x∈b f

−1(x)× g−1(x).

Step (1) is accomplished in O(|A| + |B|) time according to 3.4.3. Step (2) is
accomplished in O

(∑
x∈B |f−1(x)||g−1(x)|

)
time according to 3.4.2. However, the

inequality
∑

x∈B |f−1(x)||g−1(x)| ≤
(∑

x∈B |f−1(x)|
) (∑

x∈B |g−1(x)|
)
= |A||C|

tells us that we can further upper bound this to be O(|A||B|) time. Step (3) is
accomplished in O

(∣∣⋃
x∈B f−1(x)× g−1(x)

∣∣) time; we use the same inequality as
above to conclude that this is also an O(|A||C|) time task. Summing yields our
desired result. □

With this, we move to defining the following structures, obtained from ∆k.

Definition 5.4 (K(π, n), E(π, λ, n)). Given an abelian group π and n, we define
K(π, n) to be the simplicial set where the set of k-simplices is given as

(5.5) K(π, n)k = Zn(∆k;π)

and where the face/degeneracy maps are the maps induced via the simplicial maps
ei, ti in (4.30).
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Given λ ⊂ π, we can also define E(π, λ, n) to be the simplicial set where the set
of k-simplices is given as

(5.6) E(π, λ, n)k = {u ∈ Cn(∆k;π) : imu ⊂ λ}

and where the face/degeneracy maps are the same maps discussed for K(π, n). We
let E(π, n) = E(π, π, n).

We define

(5.7) δ : E(π, λ, n− 1) → K(π, n)

to be the map sending u in E(π, λ, n − 1)k ⊂ Cn−1(∆k, π) to its coboundary in
K(π, n)k = Zn(∆k, π).

Lemma 4.32 gives us the following:

Lemma 5.8. Given finite π,

|E(π, n)k| = |π|(
n+k+1

k )

|K(π, n)k| = O
(
|π|(

n+k+1
k )

)(5.9)

Proof of lemma. ∆k is defined to be the simplicial set Hom∆(−, [k]). Therefore
given that dim (Cn(N)) = |Nn| for any simplicial setN , dim

(
Cn(∆

k)
)
= |Hom∆([n], [k])| =(

n+k+1
k

)
. Since E(π, n)k = Cn(∆k;π) = HomAb(Cn(∆

k), π), all that remains is to

count the number of unique homomorphisms φ : Cn(∆
k) → π. Given that a ho-

momorphism from a free abelian group into an abelian group is determined by

the images of a basis of the source, we count that there are |π|(
n+k+1

k ) unique
homomorphisms, as desired. The second bound is obtained by corollary since
K(π, n)k ⊂ E(π, n)k. □

It will be necessary to determine the action of the face maps of the simplicial
sets E and K.

Lemma 5.10. Let π be a finite abelian group. Then we can determine the action
of all of the di on E(π, n)k in

(5.11) O

(
n

(
n+ k

k

)
|π|(

n+k
k )
)

time.

Proof. For a fixed f ∈ E(π, n)k, we need to first determine dif for all i. dif is
given by f ◦ (ei)∗ where ei is the map in (4.30). We can determine what this map

is in O(|E(π, n)k−1|) = O
((

n+k
k

))
time. Repeating this for the O(n) di and for all

f ∈ E(π, n)k gives us the desired runtime. □

It is also of interest of us to see how we can determine the map δ : E(π, λ, n) →
K(π, n+ 1). Towards this, we have the following lemma:

Lemma 5.12. Given ∆k, we can determine the action of δ on E(π, n)k in

(5.13) O

(
n

(
n+ k + 2

k

)
|π|(

n+k+1
k )

)
time.
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Proof of lemma. For a basis element f ∈ Hom(Cn(∆
k), π), we have that δf =∑

i f ◦ σi ∈ Zn+1(∆k, π). We can determine the action of f ◦ σi on Cn+1(∆
k) in

O(|(∆k)n+1|) = O(
(
n+k+2

k

)
) time. Given that there are O(n) σi, we can determine

δf in O
(
n
(
n+k+2

k

))
time. Repeating this for all f ∈ Hom(Cn(∆

k), π) gives us the

above runtime. □

We have one more structure left to describe before we can describe the Postnikov
construction.

Definition 5.14. A map z ∈ Cn(N ;π) induces a map ẑ : N → K(π, n) such that
for a k-simplex s ∈ Nk,

(5.15) ẑ(s) = z ◦ (ιs)∗n,

where (ιs)
∗
n : Cn(∆

k) → Cn(N) is the map induced by (ιs)n : (∆k)n → Nn.

Maps defined in this way play a key role in the Postnikov construction, and it
will be of interest to use to see the complexity of determining ẑ given z. We will
do this in steps.

Lemma 5.16. Fix s ∈ Nk, and let ιs : ∆k → N be the simplicial map from 4.27.
For any u ∈ (∆k)n, we can determine (ιs)n(u) in O(n+ k) time.

Proof. First, let’s see how fixing id[k] maps to determines the entire simplicial map.

For any u ∈ (∆k)n = Hom([n], [k]) we can see where u must map from the following
commutative square, obtained from the fact that ιs is a natural tranformation.

Hom([k], [k]) Hom([n], [k])

Nk Nn

Hom(u,[k])

(ιs)k (ιs)n

Nu

Analyzing starting from the point id[k] ∈ Hom([k], [k]), we obtain the following
pointed diagram

id[k] u

s (ιs)n(u) = Nu(s)

Hom(u,[k])

(ιs)k
(ιs)n

Nu

So we see that it suffices to determine Nu(s). So let us figure out how we
can determine this. Lemma 4.12 tells us that u is the composition of O(n + k)
face/degeneracy maps, and functoriality tells us that Nu is the composition of the
corresponding face/degeneracy maps. So given N , we can determine the appro-
priate composition in O(n+ k) time, and then determine where s maps under the
determined composition in O(n+k) time. Summing yields our desired runtime. □
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Corollary 5.17. We can determine the action of (ιs)
∗
n on Cn(∆

k) in

(5.18) O

(
(n+ k)

(
n+ k + 1

k

))
time.

Proof. We can determine (ιs)n(u) in O(n + k) time; repeating over all u ∈ (∆k)n
yields that we can determine the action on all of (∆k)s in O

(
(n+ k)|(∆k)n|

)
time.

Since (∆k)n is a basis of Cn(∆
k), we therefore have determined the action on

Cn(∆
k). □

Lemma 5.19. For a fixed s ∈ Nk and z ∈ Ck(N ;π), we can determine ẑ(s) =
z ◦ (ιs)∗n in

(5.20) O

(
(|Nk|+ (n+ k))

(
n+ k + 1

k

))
time.

Proof. The process is to first determine (ιs)
∗
n, and then determine (z ◦ (ιs)

∗
n)(u)

for all u ∈ (∆k)n. The first step has runtime O
(
(n+ k)

(
n+k+1

k

))
, and the second

step has runtime |Nk||(∆k)n| = O
(
|Nk|

(
n+k+1

k

))
time. Summing yields the desired

runtime. □

Lemma 5.21. For z ∈ Ck(N ;π), we can determine the action of ẑ on Nk in

(5.22) O

(
|Nk|(|Nk|+ (n+ k))

(
n+ k + 1

k

))
Proof. We need to determine ẑ(s) for all s ∈ Nk; multiplying using the lemma
above yields the desired runtime. □

We this, we are finally well-equipped to describe the Postnikov Construction.

Definition 5.23 (The Postnikov Construction). Let N be a simplicial set, π an
abelian group, λ ⊂ π, and An ∈ Zn(N ;π). The Postnikov Construction, denoted
as P (N, π, λ,An), is the subsimplicial set of N × E(π, λ, n− 1), where

(5.24) P (N, π, λ,An)k = δk ×K(π,n)k Ân
k,

and with face/degeneracy maps inherited from N and E(π, λ, n− 1). We define
P (N, π,An) to be the complex P (N, π, π,An).

First, a rudimentary bound on the size of this complex;

Lemma 5.25. |P (N, π,An)k| = O
(
|Nk||π|(

n+k
k )
)

Proof of lemma. P (N, π,An)k ⊂ Nk×E(π, n)k, and |Nk×E(π, n)k| = |Nk||E(π, n)k| =
|Nk||π|(

n+k
k ) from (5.8). □

Now, let us determine how hard it is to compute each level of the Postnikov
construction.
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Lemma 5.26. Let N be a simplicial set, π a finite abelian group, and An ∈
Zn(N ;π). Given finite Nk, π, and (An)k : Ck(N) → π, we can determine P (N, π,An)k
in

(5.27) O

([
|Nk|+ n

(
n+ k

k

)]
|π|(

n+k
k ) + |Nk| (|Nk|+ (n+ k))

(
n+ k

k

))
time.

Proof of lemma. One procedure to determine the Postnikov construction is the fol-
lowing.

(1) Determine the maps Ân and δ.

(2) Compute the fiber product between Ân and δ.

Using the lemmas above and summing yields the above runtime. □

In our later applications, we will require a little more information than just the
individual sets; we will also need some of the data of the face maps. So we end this
section with the following theorem:

Theorem 5.28. Let N be a simplicial set, π a finite abelian group, and An ∈
Zn(N ;π). Given the data in the sequence

Nk+1 Nk Nk−1
...

d0

dk+1

...

d0

dk

,

π, and An ∈ Zn(N ;π), we can determine the data in the sequence

P (N, π,An)k+1 P (N, π,An)k P (N, π,An)k−1
...

d0

dk+1

...

d0

dk

in

O
([(

max
i∈I

|Ni|
)
+ n

(
n+ k

k

)]
|π|(

n+k
k )

+

(
max
i∈I

|Ni|
)((

max
i∈I

|Ni|
)
+ (n+ k)

)(
n+ k

k

))(5.29)

time, where I = {k − 1, k, k + 1}.

Proof. Follows from (5.10) and (5.26). □

6. Analysis of Iterated Postnikov Construction

We now move to analyzing what Brown dubs the ”iterated Postnikov Construc-
tion,” or the construction of a Postnikov tower for a simplicial set N. The high-level
overview of the construction is to inductively define a triple (Pn(N), pn(N), gn),
where Pn(N) is a simplicial set, pn(N) is an abelian group, and gn : N → Pn(N)
is a simplicial map, for each n ∈ N. We then have the following powerful theorem:

Theorem 6.1 (Brown 5.1). If N is a complex such that |N | is simply connected,
then pn(N) ≃ πn(|N |).
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which tells us that in order to calculate the higher homotopy groups πn(X), it
suffices to first determine some representation of our space X as a simplicial set -
that is, a simplicial set N such that |N | is homotopy equivalent to X - and then
inductively determine pn(N).

6.1. Iterated Postnikov Construction. With this in mind, it remains to de-
scribe this construction.

Definition 6.2 (Iterated Postnikov Construction). Given a simplicial set N , we
define a simplicial set Pn(N), an abelian group pn(N), and simplicial map gn :
N → Pn(N) inductively as follows:

• P1(N) is the ”trivial simplicial set,” where each level of the simplicial set
contains 1 element, and where the all of the face/degeneracy maps are the
(unique) map between two one-element sets. p1(N) is the trivial group,
and g1 : N → p1(N) is the map which takes each Nk into the appropriate
one-element set.

• The inductive step is a bit more involved. Assume Pn−1(N), pn−1(N) and
gn−1 : N → Pn−1(N) have been defined. Let ĝn−1 be the mapping cone of
the chain map C(N) → C(Pn−1(N)) induced by gn−1. We then define

(6.3) pn(N) := Hn+1(ĝn−1)

Moving on, we let En+1 ∈ Zn+1(ĝn−1; pn(N)) be some extension of the
quotient map from Zn+1(ĝn−1) into Hn+1(ĝn−1) = pn(N). We use this to
define the pair of maps;

– An+1 ∈ Zn+1(Pn(N); pn(N)) is defined by lettingAn+1(s) = En+1(0, s),
and

– Bn ∈ Cn(N ; pn(N)) is defined by letting Bn(r) = En+1(r, 0)
We can now finally make the definitions of the last two objects we need;

Pn(N) := P (Pn−1(N), pn(N), An+1)(6.4)

gn := (gn−1, B
n)(6.5)

6.2. Complexity of determining Pn from Pn−1. With this in mind, we move
to analyzing the difficulty of going a ”level” upwards in the Postnikov construction:
the complexity of determining Pn(N), pn(N) and gn−1 given Pn−1(N), pn−1(N) and
gn−1. It is here where a lot of the linear algebra work we did in the Preliminaries
section comes in handy.

Lemma 6.6. Given the data in the sequences

Nn+1 Nn Nn−1
...

d0

dn+1

...

d0

dn

and

Pn−1(N)n+2 Pn−1(N)n+1 Pn−1(N)n
...

d0

dn+2

...

d0

dn+1

,
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in addition to (gn−1)n+1 and (gn−1)n we can determine pn(N) in

O[(|Nn−1|+ |Pn−1(N)n|)2 (|Nn|+ |Pn−1(N)n+1|)

+ (|Nn|+ |Pn−1(N)n+1|)2 (|Nn+1|+ |Pn−1(N)n+2|)]
(6.7)

time.

Proof of lemma. Recall that pn(N) is defined to be (n+1)th homology of Cone(gn−1).
So the data we care about in order to compute the homology is the following se-
quence:

Nn+1 ⊕ Pn−1(N)n+2 Nn ⊕ Pn−1(N)n+1 Nn−1 ⊕ Pn−1(N)n
∂ ∂

So from Lemma (4.46), we retrieve the above runtime. □

Our next task is to determine the quotient map from Zn+1(ĝn−1) into pn(N),
and then determine an extension of it to a map from Cn+1(ĝn−1) into pn(N). Some
effort is required here to determine the action of this map on the “canonical” basis
of Cn+1(ĝn−1);

(1) First, we must find a basis for Zn+1(ĝn−1), and then extend it to a basis
for Cn+1(ĝn−1).

(2) Then, we must find out where the basis of Zn+1(ĝn−1) is taken under the
canonical map; that is, what remains after “killing off” im(∂n+2). (We can
just send the basis vectors spanning the rest of Cn+1(ĝn−1) to 0 arbitrarily.)

(3) Finally, with the information about how our map of interest behaves on
this basis, we must reconstruct how it behaves on our “canonical” basis.

Luckily, we can accomplish each of these steps with a bit of linear algebra.

Lemma 6.8. Given the data given in (6.6), we can find a basis of Cn+1(ĝn−1)
which is an extension of a basis of Zn+1(ĝn−1) in

(6.9) O
[
(|Pn−1(N)n+1|+ |Nn|)2 (|Pn−1(N)n+2|+ |Nn+1|)

]
time.

Proof of lemma. This follows directly from Lemma (4.48). □

Lemma 6.10. Given the data given in (6.6), we can determine
En+1 ∈ Zn+1(ĝn+1; pn(N)) in

O[(|Pn−1(N)n+1|+ |Nn|)3

+ (|Nn−1|+ |Pn−1(N)n|)2 (|Nn|+ |Pn−1(N)n+1|)

+ (|Nn|+ |Pn−1(N)n+1|)2 (|Nn+1|+ |Pn−1(N)n+2|)]

(6.11)

time.

Proof of lemma. This follows directly from Lemma (4.51). □

With this, we essentially have all the information we need to make the final
construction; we omit proof of the following lemma.

Lemma 6.12. Given En+1, we can determine An+1 in O(|Pn−1(N)n+1|) time and
Bn in O(|Nn|) time
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Lemma 6.13. Given the data given in 6.6, in addition to Pn−1(N)k and (gn−1)k,
we can determine Pn(N)k, pn(N) and (gn)k in

O
([

(|Pn−1(N)k|) + n

(
n+ k

k

)]
|pn(N)|(

n+k
k )

+ (|Pn−1(N)k|) ((|Pn−1(N)k|) + (n+ k))

(
n+ k

k

)
+max

i∈I
(|Ni|+ |Pn−1(N)i+1|)3

)(6.14)

time, where I = {n− 1, n, n+ 1}, assuming |pn(N)| < ∞.

Proof. Follows from the lemmas in this section, in addition to (5.26) □

Proposition 6.15. Given the data given in (6.6), in addition to the data in the
sequence

Pn−1(N)k+1 Pn−1(N)k Pn−1(N)k−1
...

d0

dk+1

...

d0

dk

,

(gn−1)k−1, (gn−1)k and (gn−1)k+1, we can determine pn(N), (gn)k−1, (gn)k,
(gn)k+1, and the data in the sequence

Pn(N)k+1 Pn(N)k Pn(N)k−1
...

d0

dk+1

...

d0

dk

in

O
([(

max
i∈I′

|Pn−1(N)i|
)
+ n

(
n+ k

k

)]
|pn(N)|(

n+k
k )

+

(
max
i∈I′

|Pn−1(N)i|
)((

max
i∈I

|Pn−1(N)i|
)
+ (n+ k)

)(
n+ k

k

)
+max

i∈I
(|Ni|+ |Pn−1(N)i+1|)3

)(6.16)

time, where I = {n−1, n, n+1} and I ′ = {k−1, k, k+1}, assuming that |pn(N)| <
∞.

Proof. Follows from the lemmas in this section, in addition to (5.28). □

6.3. Complexity of determining Pi, i < n. Now, let N be a complex where |N |
is simply connected, and |πi(|N |)| < ∞ for all i. Let us work towards determining
the complexity of determining πi(|N |) for 1 < i ≤ n.

Lemma 6.17. If N is a simplicial set such that |πi(|N |)| < ∞, then

(6.18) |Pn(N)k| = O

∏
i≤n

|πi(|N |)|(
i+k
k )


Proof. This follows inductively from (5.25) and (6.1). □
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Theorem 6.19. Given a finite complex N with finite homotopy groups πi(|N |), we
can determine πi(|N |) for 1 < i ≤ n in

O

n2


|Nmax|+

∏
j<n

|πj(|N |)|(
j+n
n )

3

+ n

(
2n

n

)∏
j<n

|πj(|N |)|(
j+n
n )


(6.20)

time, where Nmax is the level of the simplicial set N with maximal order out of
levels 2 through level n+ 2.

Pn(N)n+2 Pn(N)n+1

~ww pn(N) ≃ πn(|N |)

Pn−1(N)n+2 Pn−1(N)n+1 Pn−1(N)n

~ww pn−1(N) ≃ πn−1(|N |)

...

~ww p3(N) ≃ π3(|N |)

P2(N)n+2 P2(N)n+1 · · · P2(N)3

~ww p2(N) ≃ π2(|N |)

P1(N)n+2 P1(N)n+1 · · · P1(N)3 P1(N)2

...

d0

dn+2

outputs

...

d0

dn+2

...

d0

dn+1

outputs

outputs

...

d0

dn+2

...

d0

dn+1

...

d0

d4

outputs

...

d0

dn+2

...

d0

dn+1

...

d0

d4

...

d0

d3

Figure 6.1.

Proof of theorem. We illustrate the necessary computations in Figure 6.1. For i <
n, we must compute the necessary data (sets and face maps) of the simplicial set
Pi(N) from level i + 1 to level n + 2, in addition to the necessary auxiliary maps
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gi and the object of interest, pi(N). Using 6.15, 6.17, and the fact that
(
n+k
k

)
is

strictly increasing in k, we can compute this data for fixed i in

O

(n− i)


|Nmax|+

∏
j<i

|πj(|N |)|(
j+n
n )

3

+ (i+ n)

(
i+ n

n

)∏
j<i

|πj(|N |)|(
j+n
n )




(6.21)

time. Summing over i and upper-bounding using i ≤ n gives the runtime above. □

7. Computation of Higher Homotopy Groups of Spheres

In the previous section, we described the iterated Postnikov construction, which
provides us a systematic procedure for determining the higher homotopy groups
πk(X) of a simply connected space X. However, in order to guarantee that this
procedure, as described, is finitely computable, we require crucially that the groups
πk(X) are finite. In this section, we first describe how Brown circumvents this
requirement, and then apply it to analyze the complexity of determining the higher
homotopy groups of spheres.

7.1. q-Deformation Retracts and the Modified Iterated Postnikov Con-
struction. Brown begins by making a certain homotopical definition for simplicial
sets.

Definition 7.1 (q-deformation retract). Let N be a simplicial set, and let M be
a subsimplicial set of N . M is a q-deformation retract of N if M satisfies the
following conditions:

• N0 ⊂ M0.
• Given a simplicial setK and a subsimplicial set L ⊂ K such that dimK ≤ q
and dimL < q, if f : K → N is a simplicial map taking L into M , then
there is a simplicial set K and a subsimplicial set L ⊂ K such that K ⊂ K
and L ⊂ L, along with a simplicial map f : K → N such that

– f takes L into M ,
– dimK ≤ q + 1 and dimL ≤ q,
– f |K = f , and
– (K,K) and (K,L) are acyclic.

He then moves to describing a family of q-deformation retracts for the Postnikov
construction.

Definition 7.2. Let π be a finitely generated abelian group, with decomposition

such that π =
⊕ℓ

i=1 πi⊕πf , where the πi are infinite cyclic groups and πf is finite.
Let pi : π → Z be the composition of the projection π → πi and an isomorphism
πi → Z. We will call P = {pi}ℓi=1 a projective decomposition for π. Let a = {ai}ℓi=1

be a collection where ai is either a positive integer or ∞. We then let

(7.3) λ(P, a) = {x ∈ π : |pi(x)| < ai for all 1 ≤ i ≤ ℓ} ,

where given a map φ : G → Z, we define

(7.4) |φ| =

{
max{|φ(x)| : x ∈ G} max{|φ(x)| : x ∈ G} exists

∞ else
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Lemma 7.5 (Brown 7.6). Given a simplicial set N , abelian group π, and An ∈
Zn(N ;π), P (N, π, λ(P, a), An) is a q-deformation retract of P (N, π,An) if ai ≥
(q + 1)(|pi ◦An|+ 1) for all i.

With this, we are finally prepared to describe the ”modified iterated Postnikov
construction” which allows us to compute homotopy groups in a finite amount of
time.

Definition 7.6 (Modified Iterated Postnikov Construction). Given a simplicial set
N and integer q, we define a simplicial set Pn,q(N) which is finite in each dimension,
an abelian group pn(N), and simplicial map gn,q : N → Pn,q(N) inductively as
follows:

• P1,q(N) = P1(N), p1,q(N) = p1(N), and g1,q = g1.
• Towards induction, assume that Pn−1,q(N), pn−1,q(N), and gn−1,q have
been defined appropriately. Let ĝn−1,q be the mapping cone of the chain
map C(N) → C(Pn−1,q(N)) induced by gn−1,q. We define

(7.7) pn,q(N) := Hn+1(ĝn−1,q)

Moving on, we let Rn+1 ∈ Zn+1(ĝn−1,q; pn,q(N)) be some extension of
the canonical map from Zn+1(ĝn−1,q) into Hn+1(ĝn−1,q) = pn,q(N). We use
this to define the pair of maps;

– Sn+1 ∈ Zn+1(Pn−1,q(N); pn(N)) is defined by letting Sn+1(s) = Rn+1(0, s),
and

– Tn ∈ Cn(N ; pn,q(N)) is defined by letting Tn(t) = Rn+1(t, 0)
Next, take P = {pi}ℓi=1 to be a projective decomposition of pn,q(N).2 For

1 ≤ i ≤ ℓ, let ai = max
{
(q + 1)(|pi ◦ Sn+1|+ 1), |pi ◦ Tn|

}
, a = {ai}ℓi=1,

and λn,q = λ(P, a). Then we define

Pn,q(N) := P (Pn−1,q(N), pn,q(N), λn,q, S
n+1)(7.8)

gn,q := (gn−1,q, T
n)(7.9)

We note that the process is nearly identical to the iterated Postnikov construction
described in the previous section, with the only added step being the computation
of the a = {ai}, and the use of the finite subset λ(P, a) instead of pi(N) ≃ πi(|N |)
in the inductive step if the homotopy group is infinite. As a result, we have the
following modification of 6.19.

Theorem 7.10. Given a finite complex N , we can determine πi(|N |) for 1 < i ≤ n
in

O

n2


|Nmax|+

∏
j<n

|π∗
j (|N |)|(

j+n
n )

3

+ n

(
2n

n

)∏
j<n

|π∗
j (|N |)|(

j+n
n )


(7.11)

time, where Nmax is the level of the simplicial set N with maximal order out of
levels 2 through level n+ 2, and

(7.12) π∗
i (|N |) :=

{
πi(|N |) |πi(|N |)| < ∞
λ(P, a) else

2The existence of such a decomposition is guaranteed by the finiteness of N , and the finiteness
in each dimension of Pn−1,q(N).
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The author has not yet been able to determine whether the complexity of this
process can in general be bounded; there may be families of spaces where the de-
termining a projective decomposition can take arbitrarily long. We instead analyze
the particular example of using this algorithm to determine the higher homotopy
groups of odd-dimensional spheres.

7.2. Modified Iterated Postnikov Construction on Odd-Dimensional Spheres.
We begin with a discussion of various results regarding the growth of the homotopy
groups of spheres. First, a basic result found in [Hat01]:

Theorem 7.13. πi(S
n) = 0 if i < n.

Next, a consequence of the Hurewicz theorem;

Theorem 7.14. πn(S
n) ≃ Z

It is the groups πi(S
n), i > n where things get complicated. First, a couple of

results from Serre’s seminal 1951 paper [Ser51], which tell us that most of these
groups are finite, and which gives us a bound on the primes p where πi(S

n) has
nontrivial p-torsion.

Theorem 7.15. πi(S
n) (i > n) are finite with the exception of π4n−1(S

2n), which
is the direct sum of Z and a finite group.

Theorem 7.16. The p-torsion of πi(S
n), (n ≥ 3, p prime), is zero if i < n+2p−3,

and the p-primary component of πn+2p−3(S
n) is a cyclic group of order pj , j ≥ 1.

Next, we have some more classical results, from James ([Jam57]) and Cohen-
Moore-Neisendorfer ([CMN79]), giving us a bound on the order of the p-torsion
elements at primes p.

Theorem 7.17. The homotopy groups of S2n+1 (n ≥ 1) contain no elements of
order 22n+1. That is, all Z2j summands are with j ≤ 2n.

Theorem 7.18. The homotopy groups of S2n+1 contain no elements of order pn+1

for an odd prime p. That is, all Zpj summands are with j ≤ n.

Finally, a result which lets us bound on the number of p-torsion summands in
these homotopy groups, from [HW19].

Theorem 7.19. Let N be a simply connected finite complex. Then the p-torsion
of π∗(|N |) has at most exponential growth, i.e.,

(7.20) lim sup
k

lnTk

k
< ∞,

where Tk is the number of Zpr -summands in
⊕

i≤k πi(|N |), r > 1.

Now, let us begin combining these results.

Proposition 7.21. For any prime p, the order of the p-torsion of π∗(S
2n+1) has

at most exponential growth, i.e.,

(7.22) lim sup
k

ln
∣∣∣⊕i≤k πi(S

2n+1)p

∣∣∣
k

< ∞,
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or equivalently,

(7.23)

∣∣∣∣∣∣
⊕
i≤k

πi(S
2n+1)p

∣∣∣∣∣∣ = O
(
ek
)

where πi(S
2n+1)p denotes the p-torsion of πi(S

2n+1).

Proof of proposition. Follows from (7.17), (7.18), and (7.19). □

Proposition 7.24. For n ≥ 1 and i > 2n+ 1,

(7.25) |πi(S
2n+1)| = O

(
ei

2
)

Proof of proposition. (7.16) tells us that the only primes p for which the p-torsion
of πi(S

2n+1) can be nonzero are p < i−2n+2
2 . In particular, the number of primes

p with nonzero p-torsion is O(i). (7.15) tells us that πi(S
2n+1) =

⊕
p πi(S

2n+1)p,

and so (7.21) gives us the bound above. □

With this, we obtain the following bound on determining the homotopy groups
of odd spheres:

Theorem 7.26. Using Brown’s algorithm, we can determine the homotopy groups
πi(S

2n+1), i < m for some m > 2n+ 1, in

(7.27) O

(
m2

[((
2n+m

2n

)
+ em

3(2mm )
)3

+m

(
2m

m

)
em

3(2mm )

])
time.

Proof of theorem. Recall that the geometric realization of ∂∆k+1 is homeomorphic
to the k-sphere Sk. So in order to use Brown’s algorithm to compute πi(S

2n+1), we
can use the simplicial set ∂∆2n+2, contained within ∆2n+2 = Hom(−, [2n+2]). We
then use (7.10) to craft our bound. First, given π2n+1(S

2n+1) ≃ Z, we have that
π∗
2n+1(S

2n+1) = 0. Further, we have that |∂∆2n+2
max | ≤ |∆2n+2

max | = O
((

2n+m
2n

))
and

so using 7.24, we obtain a bound of
(7.28)

O

m2


(2n+m

2n

)
+

∏
2n+1<j<m

ej
2(j+m

m )

3

+m

(
2m

m

) ∏
2n+1<j<m

ej
2(j+m

m )




Using monotonicity
(
ej

2(j+m
m ) ≤ em

2(2mm )
)
gives us the bound above. □

References

[Bro57] E.H. Brown, Finite Computability of Postnikov Complexes, Annals of Mathematics 65
(1957).

[Pos51] M. M. Postnikov, Determination of the homology groups of a space by means of homo-

topy invariants, Doklady Akad. Nauk SSSR 76 (1951), 359-362.
[Mun03] J.R. Munkres, Topology, 2nd ed., Pearson Education, 2003.

[Hat01] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001.

[May67] J. Peter May, Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathemat-
ics, University of Chicago Press, 1967.

[Rie16] Emily Riehl, Category Theory in Context, Dover Publications, 2016.



30 KEITA ALLEN

[GJ09] Paul G. Goerss and John F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag
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