
HOMOTOPY GROUPS OF THE FIBERS OF THE CHROMATIC

RESOLUTION OF DETERMINANT TWISTS OF Q(`)

UROP+ FINAL PAPER, SUMMER 2020
CHRIS XU

MENTOR: ROBERT BURKLUND
PROJECT SUGGESTED BY: WEI ZHANG

Abstract. The E(2)-local ring spectrum Q(`) was introduced by Behrens
and used in [Beh08] to associate generators βi/j,k of the 2-line of the Adams-

Novikov spectral sequence with certain p-adic modular forms fi/j,k of weight

t+ j(p−1). Associated to Q(`) are twists Qd(`) parametrized by d ∈ Z, which

can be though of as invertible Q(`)-module spectra. In this paper, we compute
parts of the 0-, 1- and 2-line of the chromatic resolution of Qd(`), of which

computations of Q(`) = Q0(`) in [Beh08] were instrumental in producing the

association between β elements and modular forms. In the future, we hope to
obtain analogous results and shed more light on the E(2)-local sphere.

1. Introduction

Fix a prime p. The Adams-Novikov spectral sequence

Exts,tBP∗BP (BP∗, BP∗)⇒ πt−s(S)(p)

yields information about the p-components of the stable homotopy groups of spheres.
It is well-known that the 1-line is generated by elements

αi/j ∈ Ext
1,2(p−1)i−1
BP∗BP

(BP∗, BP∗)

of order pj , where i ≥ 1 and j = vp(i) + 1. The following theorem characterizes
αi/j .

Theorem 1.1. Let t := (p− 1)i. Then there is a bijection between generators αi/j
and Bernoulli numbers Bt. In particular, the order of αi/j equals the p-factor of
the denominator of Bt/t, where Bt denotes the tth Bernoulli number.

A classical computation by Miller, Ravenel and Wilson in [MRW77] shows that
for p ≥ 5, the 2-line is generated by elements

βi/j,k ∈ Ext
2,2i(p2−1)−2j(p−1)
BP∗BP

(BP∗, BP∗)

of order pk, where i = spn, p - s, and:

• pk−1 | j.
• j ≤ pn−k+1 + pn−k − 1.
• If pk | j then j > pn−k + pn−k−1 − 1.

Work by Behrens in [Beh08] shows that, much in the same vein as the 1-line, the
generators βi/j,k are in a similar correspondence with p-adic modular forms:
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Theorem 1.2. Each generator βi/j,k can be associated with a weight t modular

form fi/j,k ∈Mt, where t = i(p2 − 1) and fi/j,k satisfies:

• We have fi/j,k(q) 6≡ 0 mod p.

• We have ordqfi/j,k(q) > t−j(p−1)
12 or equal to t−j(p−1)−2

12 .
• The form fi/j,k(q) has the lowest possible weight out of all modular forms

reducing to the reduction of fi/j,k modulo pk.
• For any prime ` 6= p, there exists a form g` ∈Mt−j(p−1)(Γ0(`)) such that

fi/j,k(q`)− fi/j,k(q) ≡ g` mod pk.

The main machinery used to prove theorem 1.2 is the introduction of a certain
ring spectrum denoted Q(`), which is E(2)-local; then, parts of the 0- through 2-
line of the chromatic resolution of Q(`) (denoted M0Q(`), M1Q(`) and M2Q(`))
are computed.

The E(2)-locality of Q(`) also induces the natural map

SE(2) → Q(`)

from the unit map S → Q(`). Work by Behrens in the same paper yields the
following:

Theorem 1.3. In the natural map

π∗SE(2) → π∗Q(`)

the images of all αi/j and βi/j,k are nontrivial. Therefore, the spectrum Q(`) de-
tects Greek letter phenomena from the 1- and 2-lines of the Adams-Novikov spectral
sequence.

The goal of this paper is to perform similar computations to [Beh08] for twists
Qd(`) of Q(`), which can be thought of as a class of Q(`)-module spectra invertible
under smash product. In particular, we have

Qd(`) ∧Q(`) Q−d(`) ∼= Q(`).

In this paper, we compute parts of πtM0Qd(`), πtM1Qd(`) and πtM2Qd(`). Namely,
we compute the following:

Theorem 1.4. Let `, p be primes such that p ≥ 5 and ` is a topological generator
of Z×p . Further let t, d ∈ Z. Then the following statements hold for πtMiQd(`):

(1) We have

πtM0Qd(`) =

{
0 t 6= 4d, 4d− 1, 4d− 2

Qp t = 4d.

(2) We have

πtM1Qd(`) =


0 t 6≡ 0,−1,−2 mod 2(p− 1) or p− 1 - d

Z/pkZ
t =: 4d+ 2(p− 1)pi−1s

d =: (p− 1)pi
′−1s′

k := min(i′, i).

(3) Let t be even. Then there is a bijection between the additive order pk gen-
erators of π2tM2Qd(`) and f ∈ (Mt+j(p−1))

0
Zp

for pk−1 | j such that

(a) (p− 1)pk−1 divides t− 2d.
(b) ordqf(q) ∈

{
t−2
12

}
∪
(
t
12 ,∞

)
.
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(c) p does not divide f(q).
(d) The weight of f is the smallest possible weight for its reduction modulo

pk.
(e) There is g ∈Mt(Γ0(`))0Zp

such that `df(q`)− f(q) ≡ g(q) mod pk.

Our hope is that these computations will shed more light on π∗SE(2) in the future,
and in particular the 1- and 2-lines of the Adams-Novikov spectral sequence.

1.1. Layout of the paper. The layout of this paper is as follows:
Section 2 introduces the ring spectrum Q(`) and its twists Qd(`) in terms of the

totalization of a three-term semicosimplicial set Qd(`)
•. Work from [Beh08, Sec. 5-

7] is then adapted to compute πtMnQ(`) for 0 ≤ n ≤ 2 in terms of the cohomologies
of the three-term chain complex Cd(`)

• arising from applying homotopy to Qd(`)
•.

In particular, the differentials in Cd(`)
• are computed.

Sections 3, 4 and 5 compute πtMnQ(`) for certain values of t and for 0 ≤ n ≤ 2,
respectively. In the future, we hope to compute πtMnQ(`) for all values of t, which
would require looking at the first and second cohomologies of Cd(`).

1.2. Acknowledgements. This paper was sponsored by MIT’s annual UROP+
program. The author thanks Slava Gerovitch for organizing the program; supervisor
Wei Zhang for suggesting the problem, as well as mentor Robert Burklund for
extensive mentorship, support and advice through biweekly remote Zoom calls.
This material is based upon work supported by the National Science Foundation
under Grant DMS-1502244.

2. The setup

2.1. Topological modular forms. Fix primes p, ` such that p ≥ 5 and ` is a
topological generator of Z×p . Define

ẐS :=
∏
p/∈S

Zp

AS,∞ := ẐS ⊗Q

We briefly recall the setup of TMF in [Beh08].

Definition 2.1. Let C be the category of compact open subgroups of GL2(Ap,∞).
Then we define TMF (standing for topological modular form) to be a certain functor

TMF: C → RingSpectra.

For more information on TMF, see [Beh08, Sec. 3-4].

Letting

K0(`) :=

{
A ∈ GL2(Z`) : A ≡

[
∗ ∗
0 ∗

]
mod `

}
Kp

0 := GL2(Ẑp)

Kp
0 (`) := GL2(Ẑp,`)K0(`)

we define

TMFp := TMF(Kp
0 )

TMF0(`)p := TMF(Kp
0 (`))
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The relevant fact here is the following statement of the homotopy groups of TMFp
and TMF0(`)p:

Theorem 2.2. The graded homotopy rings of TMFp and TMF0(`)p are precisely
the graded rings of modular forms over Zp for Γ0(1) and Γ0(`), respectively, with
weight the k modular forms in each ring concentrated in dimension 2k for all k. In
particular:

π2k(TMFp) = (Mk)0Zp

π2k(TMF0(`)p) = (Mk(Γ0(`))0Zp
.

2.2. The ring spectrum Q(`). In [Beh05, Part 1], the spectrum Q(`) is intro-
duced. Much of the exposition here is adapted from there as well as [Beh08, Sec.
4-5].

Definition 2.3. The spectrum Q(`) is defined to be the totalization Tot Q(`)• of
the semicosimplicial set

Q(`)• :=

 TMFp

TMFp
×

TMF0(`)p

TMF0(`)p.


with certain face maps d, of which π∗(d) will be later addressed in proposition 2.9
and corollary 2.12. Additionally, there are natural multiplication and unit maps
which make Q(`) a ring spectrum.

To compute π∗Q(`), we may take the homotopy of Q(`)• and then apply the
Bousfield-Kan spectral sequence as per [BK72]. More specifically, taking homotopy
of Q(`)• yields

C(`)•2k :=

 (Mk)0Zp

(Mk)0Zp

×
(Mk(Γ0(`))0Zp

(Mk(Γ0(`))0Zp
.


Remark 2.4. We can interpret C(`)·k as a three-term cohomological chain complex
whose differentials are the alternating sum of the corresponding maps. In particular,
Hs(C(`)•) = 0 for s 6= 0, 1, 2.

Remark 2.5. Since Mk and Mk(Γ0(`)) are 0 for odd k (this follows from
(−1 0

0 −1
)
∈

Γ0(`)), we have C(`)•t = 0 for t 6= 0 mod 4.

Now [BK72] states that there is an associated convergent spectral sequence given
by

Es,t1 = C(`)st ⇒ πt−sQ(`).

In our case, we note that in the second page of E, the differentials given by
d2 : Es,t2 → Es+2,t−1

2 are all 0 by remark 2.4. Furthermore, all higher page dif-
ferentials vanish by remark 2.5. Therefore, the spectral sequence collapses to the
second page. Thus:

πnQ(`) =
⊕
t−s=n

Es,t2

= H0(C(`)n)⊕H1(C(`)n+1)⊕H2(C(`)n+2)

By remark 2.5 we obtain the following:
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Proposition 2.6. We have πnQ(`) = Hs(C(`)4k) where 0 ≤ s < 4 is such that
4 | n+ s, and k := (n+ s)/4.

2.3. Face maps. In [Beh08, Sec. 6] and [Beh05], Behrens describes another way to
obtain C(`), by pulling back from the semisimplicial set of moduli stacks of elliptic
curves

M• :=

 (Mell)p

M(Γ0(`))p
t

(Mell)p

M(Γ0(`))p.


where (Mell)p is the moduli stack of elliptic curves C over Z(p), and M(Γ0(`))p is
the moduli stack over Z(p) of elliptic curves (C,H) with level ` structure.

Remark 2.7. Informally, a level ` structure is a pair (C,H) where C is an elliptic
curve and H is an order ` subgroup.

The face maps are interpreted on R-points as follows. An R-point ofM(Γ0(`))pt
Mell)p is a morphism C → C/H (for (C,H) ∈M(Γ0(`))p(R)) or C → C/C[`] (for
C ∈ Mell)p(R)). The top map d0 : M1 → M0 takes a morphism to its target,
while the bottom map d1 takes a morphism to its source.

Remark 2.8. Similarly, the R-points ofM2 may be interpreted as the chain C →
C/H → C/C[`], and then d0, d1 and d2 : M2 → M1 omit the first, middle and
last objects of the chain, respectively.

From our determination of the face maps, we may then obtain C(`)• by pulling
back on the ring of modular forms for each Mi. We note the following.

Proposition 2.9. The face maps d0, d1 : M1 →M0 pull back to coface maps

(Mk)0Zp

(Mk)0Zp

×
(Mk(Γ0(`))0Zp

given by

f 7→ (`kf(q`), `kf(q))

f 7→ (f(q), f(q))

respectively. Hence the differential is given by

f 7→ (`kf(q`)− f(q), `kf(q)− f(q)).

Proof. See [Beh08, Prop. 6.2]. �

2.4. Qd(`): determinant twists of Q(`). Since Q(`) is a ring spectrum, there
is a natural notion of invertible Q(`)-module spectra: precisely the Q(`)-module
spectra M for which there exists M ′ such that M ∧M ′ = Q(`).

One important class of invertible spectra are suspension spectra, which gives rise
to the usual graded homotopy ring π∗Q(`). However, it turns out there is another
class known as the determinant twists of Q(`), parametrized by d ∈ Z. We will
denote these twists by Qd(`), and the corresponding semicosimplicial homotopy
groups of Qd(`)

• as Cd(`)
•.

Definition 2.10. The homotopy graded Picard group of a ring spectrum A, denoted
PicA, is the abelian group of invertible A-module spectra.
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There is a natural injection

H := Z⊕ Z→ PicQ(`)

where (t, d) ∈ H is such that t is the suspension parameter and d is the determinant
twist parameter.

The spectrum Qd(`) is the totalization of Qd(`)
•, which has the same objects as

Q(`)• but whose maps are “twisted” by some parameter depending on d. It, too,
arises from the pullback of a semisimplicial object M(d)• whose objects are the
same as M• but whose maps are different. The effect of this twisting on Cd(`)• is
described in the following proposition.

Proposition 2.11. Let di,j : Mi →Mi−1 be a coface map in M•, and let r be the
rank of the corresponding map of elliptic curves. (For example, if di,j takes (C,H)
to C/H, then r = `, the rank of H.) Then, in Cd(`)

•, the map induced by pulling
back on di,j is precisely the corresponding map in C(`) multiplied by r−d.

Therefore:

Corollary 2.12. The map Mk →Mk ×Mk(Γ0(`)) in Cd(`)
• is precisely the alter-

nating sum given by f 7→ (`k−2df(q)− f(q), `k−df(q`)− f(q)).

Proof. Follows evidently from proposition 2.11 and proposition 2.9. �

2.5. The chromatic resolution of Qd(`). This section is largely adapted from
[Beh08, Sec. 7], as many of the facts of Q(`) remain true for Qd(`). We note the
following fact:

Proposition 2.13. The spectra TMFp and TMF0(`)p are E(2)-local.

Since Qd(`)
• is a semicosimplicial set from TMFp and TMF0(`)p, we obtain the

following corollary:

Corollary 2.14. The spectrum Qd(`) is E(2)-local.

Therefore, the chromatic resolution of Qd(`) stops at E(2):

M0Qd(`) M1Qd(`) M2Qd(`)

Qd(`)E(0) Qd(`)E(1) Qd(`)E(2) Qd(`)

(For more information on the chromatic resolution of a general spectrum, see
[Beh08, p. 2.1].) We note the following fact about homotopy groups of MiQd(`),
adapting the arguments from the proof of [Beh08, Cor. 7.7]:

Proposition 2.15. The following isomorphisms hold for Qd(`):

πtM0Qd(`) ∼= Hs(Cd(`)
•[p−1])4k

πtM1Qd(`) ∼= Hs(Cd(`)
•/(p∞)[v−11 ])4k

πtM2Qd(`) ∼= Hs(Cd(`)
•/(p∞, v∞1 ))4k

where k ∈ Z is such that 4k is the smallest multiple of 4 greater than t, and s :=
4k − t.

6



3. Computing πtM0Qd(`)

Here we compute

πtM0Qd(`) ∼= Hs(Cd(`)
•[p−1])4k.

Analogous to [Beh08, Prop 8.1], we have the following:

Proposition 3.1. The cohomology Hs(Cd(`)•)2t is pj-torsion if t ≡ 2d mod (p −
1)pj−1 and in particular 0 if t 6≡ 2d mod p− 1.

Proof. Since the objects in Q(`)• remain the same in Qd(`)
•, the central element

[`] ∈ GL2(Q`) still acts as the identity on Qd(`) ∼= V
(Kp,`

0 )+
d . In fact, everything in

the proof remains the same, except that the action of [`] on π∗(TMF(Kp)) is now
given by

[`] : π2k TMF(Γ0(N))→ π2k TMF(Γ0(N))

f 7→ `k−2df

since the induced map of elliptic curves is the `th power map, which has rank `2

(thus we divide by `−2d). We deduce that multiplication by `k−2d − 1 is the zero
homomorphism on Hs(Cd(`)•)2k. Since ` topologically generates Z×p , it follows that

k ≡ 2d mod (p−1)pj−1 implies that `k−2d−1 ∈ pjZ×p , so pj = 0 in Hs. This yields
the desired result. �

Since tensoring with Z[1/p] kills p∞-torsion, we have the following corollary:

Corollary 3.2. The homotopy groups of M0Qd(`) are

πtM0Qd(`) =

{
0 t 6= 4d, 4d− 1, 4d− 2

Hs(Cd(`)
•[p−1])4d t = 4d− s, 0 ≤ s < 3.

In particular, when s = 0 in the second case, we obtain

Proposition 3.3. We have the isomorphism π4dM0Qd(`) ∼= Qp.

Proof. We compute H0, the kernel of the coface map for k = 4d. In this case, the
coface map is given by

(M2d)
0
Qp
→ (M2d)

0
Qp
×M2d(Γ0(`))0Qp

f 7→ (`2d−2df(q)− f(q), `2d−df(q`)− f(q)) = (0, `df(q`)− f(q)).

The condition for f to lie in H0 therefore reduces down to

`df(q`)− f(q) = 0

or in other words, writing f :=
∑
anq

n:

an =

{
`dan/` ` | n
0 o.w.

This forces an for positive n to equal 0, while a0 can vary over Qp. Hence the 0th
cohomology group Hs(Cd(`)

•)4d is isomorphic to Qp. �

Putting this all together yields theorem 1.4(1):
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Theorem 3.4. We have

πtM0Qd(`) =


0 t 6= 4d, 4d− 1, 4d− 2

Qp t = 4d

H1(Cd(`)
•[p−1])4d t = 4d− 1

H2(Cd(`)
•[p−1])4d t = 4d− 2

4. Computing πtM1Qd(`)

Here we compute

πtM1Qd(`) ∼= Hs(Cd(`)
•/(p∞)[v−11 ])4k (t = 4k − s).

Define

At/j := H0(Cd(`)/(p
j))2t

At/∞ := lim−→
j

At/j

Then

At/j =

{
f ∈ (Mt)

0
Z/pjZ :

`t−df(q`) ≡ f(q) mod pj

(`t−2d − 1) ≡ 0 mod pj

}
Writing f :=

∑
anq

n, we see that the first condition is equivalent to

(`d − 1)a0 ≡ 0 mod pj

an ≡

{
0 ` - n
`dan/` ` | n

forcing all ai to 0 for i positive. Combining this information with (`d − 1)a0 ≡ 0
and the second condition, we obtain

At/j =

{
f ∈ (Mt)

0
Z/pjZ :

f(q) ≡ a mod pj and vp(a) + min(i, vp(`
d − 1) ≥ j

for i s.t. t = 2d+ (p− 1)pi−1s

}
and in particular At/j = 0 if t 6= 2d mod p − 1 or p − 1 - d. Note that this forces
p − 1 to divide both d and t for At/j to be nonzero. From here on out, assume
p− 1 | d, t.

For t ∈ {4, 6, 8, . . . }, let Et ∈ (Mt)
0
Q denote the weight t Eisenstein series

Et(q) = 1− 2t

Bt

∑
i≥1

σk−1(i)qi.

We recall a classical lemma in p-adic modular forms.

Lemma 4.1. If p−1 | t, then Et is p-integral, so “reduction mod pj” makes sense.
Moreover, if we can write t as t =: (p− 1)pj−1s, then we have Et ≡ 1 mod pj.

Proof. See [Kat72]. �

Note that k := min(i, vp(`
d−1)) is the smallest value of j for which At/j can

possibly be all of Z/pjZ; here, we are allowed to have vp(a) ≥ 0, i.e. a can range
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along anything in Z/pkZ. It is now a matter of showing that all possible a ∈ Z/pkZ
can be hit by the image of Mt. Let i′ := vp(`

d−1 − 1); then we may write

t = 2d+ (p− 1)pi−1s

d = (p− 1)pi
′−1s′.

Then vp(t) ≥ min(vp(d), vp(t)) = k − 1; so we may write t as (p − 1)pk−1s′′. The
lemma above implies that Et ≡ 1 mod pk, so At/k ∼= Z/pkZ. Condition (1) means

that for no j > k will it be possible for 1 to lie in At/j ; hence At/∞ ∼= Z/pkZ.

Adjoining v−11 doesn’t do anything:

H0(Cd(`)/(p
∞)[v−11 ])2t ∼=

{
Z/pkZ k = min(i′, i)

0 p− 1 - d or p− 1 - t.

We arrive at theorem 1.4(2):

Theorem 4.2. We have

πtM1Qd(`) =


0 t 6≡ 0,−1,−2 mod 2(p− 1) or p− 1 - d

Z/pkZ
t =: 4d+ 2(p− 1)pi−1s

d =: (p− 1)pi
′−1s′

k := min(i′, i).

5. Computing πtM2Qd(`)

We have

H0(Cd(`)
•/(p∞, v∞1 ))2t = lim−→

k

lim−→
j=spk−1

H0(Cd(`)
•/(pk, vj1))2t+2j(p−1)

=: lim−→
k

lim−→
j=spk−1

Bt/j,k.

Then a series of computations shows that

Bt/j,k =

{
f ∈

(Mt+j(p−1))
0
Z/pkZ

(Mt)0Z/pkZ
:

(`t+j(p−1)−2d − 1)f(q) = g1(q) for g1 ∈ (Mt)
0
Z/pkZ

`t+j(p−1)−df(q`)− f(q) = g2(q) for g2 ∈Mt(Γ0(`))0Z/pkZ

}
where the embedding Mt →Mt+j(p−1) is given by multiplication by Ej(p−1), since

Ej(p−1) ≡ 1 mod pk from the above lemma.

Proposition 5.1. We have a split short exact sequence

0 (Mt)
0
Z/pkZ (Mt+j(p−1))

0
Z/pkZ

(Mt+j(p−1))
0
Z/pkZ

(Mt)0Z/pkZ
0

·Ej
p−1

Proof. See [Beh08, Lem. 11.4]. �

Let rj,k and ιj,k denote the retractions and sections

(Mt+j(p−1))
0
Z/pkZ (Mt)

0
Z/pkZ

(Mt+j(p−1))
0
Z/pkZ

(Mt)0Z/pkZ
(Mt+j(p−1))

0
Z/pkZ

rj,k

ιj,k

of the split short exact sequence in proposition 5.1.
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Proposition 5.2. The image of ιj,k is given by{
f ∈ (Mt+j(p−1))

0
Z/pkZ : ordqf(q) >

t

12
or equal to

t− 2

12

}
.

Proof. See [Beh08, Lem. 11.6]. �

We now state and prove theorem 1.4(3), a statement on the structure of πtM2Qd(`),
analogous to [Beh08, Thm. 11.3].

Theorem 5.3. There is a bijection between the additive order pk generators of
H0(Cd(`)

•/(p∞, v∞1 ))2t and f ∈ (Mt+j(p−1))
0
Zp

for pk−1 | j such that

(1) (p− 1)pk−1 divides t− 2d.
(2) ordqf(q) ∈

{
t−2
12

}
∪
(
t
12 ,∞

)
.

(3) p does not divide f(q).
(4) The weight of f is the smallest possible weight for its reduction modulo pk.
(5) There is g ∈Mt(Γ0(`))0Zp

such that `df(q`)− f(q) ≡ g(q) mod pk.

Proof. We have a split short exact sequence

0 (Mt)
0
Z/pkZ (Mt+j(p−1))

0
Z/pkZ

(Mt+j(p−1))
0

Z/pkZ
(Mt)0Z/pkZ

0

rj,k
ιj,k

Let b ∈ Bt/j,k have order pk
′

for k′ < k. Then ιj,k(b) has order pk
′
, so ιj,k(b) =

pk−k
′
f . Taking the image of f mod Mt yields an element b′ of order pk in Bt/j,k.

Hence, every additive generator of order pk lies in Bt/j,k.

A generator b ∈ Bt/j,k of order pk lifts to f ∈Mt+j(p−1) such that

(1) (`t+j(p−1)−2d − 1)f(q) ≡ g1(q) mod pk for g1(q) ∈ (Mt)
0
Z/pkZ.

(2) `t+j(p−1)−df(q`)− f(q) ≡ g2(q) mod pk for g2(q) ∈Mt(Γ0(`))0Z/pkZ.

Since pk−1 | j, conditions (i) and (ii) implies

(`t−2d − 1)f(q) ≡ g1(q) mod pk

`t−df(q`)− f(q) ≡ g2(q) mod pk

From condition (i) we obtain

f(q) ≡ g1(q)

`t−2d − 1
mod pk−v (v := vp(`

t−2d − 1))

But f mod pk−v is the image ιj,k−v(b
′′) where b′′ ∈ Bt/j,k−v is the reduction of b

mod pk−v; hence rt/j,k−v(f) ≡ 0 mod pk−v. But since g1(q) ∈ (Mt)
0
Z/pkZ, we have

g1(q)

`t−2d − 1
≡ rt/j,k−v

(
g1(q)

`t−2d − 1

)
≡ rt/j,k−v(f) ≡ 0 mod pk−v

which implies

g1(q) ≡ 0 mod pk.

So condition (i) is

(`t−2d − 1)f(q) ≡ 0 mod pk

10



which implies (p−1)pk−1 divides t−2d (condition (1) of the theorem). Meanwhile,
condition (ii) is condition (5) of the theorem statement. Conditions (2)-(4) of the
theorem follow evidently.

Conversely, for f ∈ (Mt+j(p−1))
0
Z/pkZ satisfying conditions (1)-(5), the lemma

implies f is in the image of ιj,k, so it reduces to

b ∈
(Mt+j(p−1))

0
Z/pkZ

(Mt)0Z/pkZ
.

By (2), b has order pk, and b lies in Bt/j,k since Conditions (1) and (5) imply (i)
and (ii). This completes the proof. �
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