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Abstract

We describe a framework for constructing a hierarchy of par-
tially ordered sets for an arbitrary Weyl group which is analogous
to the higher Bruhat orders defined by Manin and Schechtman
for the symmetric group. We give an explicit description of such
an order for type B, extending prior work by Shelley-Abrahamson
and Vijaykumar. Finally, we discuss possible interpretations and
applications of these orders.
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1 Introduction
One way to describe permutations π on n elements is by the set of inversions of π.
Specifically, the inversions of π are the pairs (i, j) with i < j but π(i) > π(j). The (left)
weak Bruhat order says that π1 < π2 when the set of inversions of π1 is a subset of the
set of inversions of π2. This defines a partially ordered set (hereafter poset) on the set
Sn of permutations on n elements. The higher Bruhat order introduced by Manin and
Schechtman [MS89] and described in Section 2 generalizes this perspective to larger sets
of inversions.

In [Eli16], Elias relies on certain nice properties of the higher Bruhat order, and
conjectures that there ought to exist similar objects for other types (specifically type
B). In [SV16], Shelley-Abrahamson and Vijaykumar construct a higher Bruhat order for
type B up to the second level, and show that it has some of these desirable properties
(in particular the existence of a unique minimal and maximal element). In Section 4 we
construct a higher Bruhat order for type B which is well-defined at every level, but can
only conjecture that it has a unique minimal and maximal element.

In generalizing the higher Bruhat order to other Weyl groups, we look at the root
hyperplane arrangement corresponding to an irreducible root system Φ. From this per-
spective, elements of the Weyl group are the chambers of the arrangement, and the
partial order given by the weak Bruhat order corresponds to crossing walls between
chambers. Paths from the identity permutation to the longest element ω0 can be de-
scribed as walks from the fundamental chamber of the arrangement to the opposite
chamber which cross each hyperplane once. Our motivation is that elements of the
higher Bruhat order should be seen as higher-dimensional walks, defined by the order in
which they cross subspaces of higher codimension. We describe this definition formally
in Section 3.

A result of Ziegler [Zie93] combined with the Bohne-Dress theorem [RZ94] shows that
another way to interpret elements of the higher Bruhat order is as fine zonotopal tilings
of the cyclic zonotope. The fact that “zonotopal tiling flips” correspond to the covering
relation in the higher Bruhat order was used in [BW20] to study Postnikov’s plabic
graphs [Pos06] through a result of Galashin [Gal18] relating plabic graphs to zonotopal
tilings. In Section 5 we speculate as to how the higher Bruhat order in type B could
lead to a similar perspective.

1.1 Notation

We use [n] as shorthand for the set {1, . . . , n}, and
(
[n]
d

)
for the set of subsets of [n] of size

d. When discussing type B, we use [±n] for the set {−n, . . . ,−1, 1, . . . , n}, and
(
[±n]
d

)
is the set of size d subsets of [±n] with all distinct absolute values, considered modulo
negation of all elements in the set. For example,

(
[±n]
1

)
has n elements, and

(
[±n]
2

)
has

n·(n−1) elements. We will often refer to elements of
(
[±n]
d

)
by one of their representative

elements, allowing us to force the sign of any one element to be as desired.
When discussing a poset with order <, we say that a covers b if a < b but there
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is no c with a < c < b. The covering relation describes which pairs of elements cover
each other, and is denoted by l. The transitive closure of this operation can be used to
completely define a poset.
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2 Higher Bruhat Order for the Symmetric Group
In this section we describe the higher Bruhat order as defined by Manin and Schecht-
man [MS89] and some results about it. The higher Bruhat order is a generalization of
the weak Bruhat order on the symmetric group.

Definition 2.1. Let Sn be the set of permutations on [n]. The i-th elementary trans-
position τi ∈ Sn, for 1 ≤ i < n, is the permutation which swaps i and i + 1 and leaves
everything else unchanged. The (left) weak Bruhat order on Sn is the partially ordered
set on Sn generated by the covering relation π l σ whenever σ = τi ◦ π for some i such
that π(i) < π(i + 1). The maximal element of the weak Bruhat order is called ω0 and
satisfies ω0(i) = n− i+ 1.

The weak Bruhat order is a ranked poset with rank
(
n
2

)
, with rank function given

by counting the number of pairs i < j such that π(i) > π(j). Maximal chains in the
weak Bruhat order correspond to reduced expressions for the maximal element ω0 as a
product of

(
n
2

)
elementary transpositions.

The weak Bruhat order will serve as the d = 1 level of the higher Bruhat order.
Elements of the weak Bruhat order are permutations of the set [n]; to generalize, elements
of the level d higher Bruhat order will be certain permutations of

(
[n]
d

)
. The motivation

is that elements at level d should correspond to maximal chains in the poset for level
d − 1 by describing the order in which sets should be moved around, like how reduced
expressions for ω0 are maximal chains in the weak Bruhat order.

Definition 2.2. For a set S ∈
(
[n]
d

)
, the d-packet of S is defined to be P (S) := {S \ x :

x ∈ S} ⊆
(

[n]
d−1

)
. The lexicographic order <lex on

(
[n]
d

)
is the order which compares two

sets by first comparing smallest elements, then comparing the second smallest element
only if the sets have the same smallest element, and so on. A total order ρ on

(
[n]
d

)
is

admissible if for each S ∈
(

[n]
d+1

)
, the subsequence of ρ formed by restricting to P (S)

is in lexicographic order, or the opposite of lexicographic order. If ρ is admissible, let
inv(ρ) denote the subset of S ∈

(
[n]
d+1

)
for which this restriction is in the opposite of

lexicographic order.
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In the case d = 1, all permutations of [n] are admissible, and in the case d = 2,
the admissible orderings correspond exactly to reduced expressions for ω0. In general,
let A(An, d) be the set of all admissible orders of

(
[n]
d

)
. Then say that two admissible

orders are elementarily equivalent if they differ by a swap of two adjacent sets which are
not in any (d+ 1)-packet together. Let B(An, d) be the quotient of A(An, d) under the
equivalence relation formed by the transitive closure of elementary equivalence. These
equivalence classes of admissible total orders will be the elements of the level-d higher
Bruhat order. The following is the main theorem of Manin and Schechtman, and com-
pletes the definition of the higher Bruhat order while giving some basic properties of
it.

Theorem 2.3 ([MS89, Theorem 3]). (a) The covering relation given by ρ1lρ2 if and
only if ρ2 can be obtained from ρ1 by reversing a packet which appears consecutively
in lexicographic order in ρ1 generates a partial order on B(An, d).

(b) Under this partial order, the unique minimal element is the lexicographic order on(
[n]
d

)
and the unique maximal element is the anti-lexicographic order. The function

|inv| is a rank function for this poset.

(c) Admissible orderings of
(

[n]
d+1

)
are in bijection with maximal chains in B(An, d) via

the map which sends orderings to the chain which performs packet flips in the order
given.

(d) The function inv is injective on B(An, d).

A useful geometric realization of the higher Bruhat order is given by Ziegler in [Zie93]
using hyperplane arrangements, which we now describe. The cyclic vector arrangement
is any collection of n vectors v(zi) = (1, zi, z

2
i , . . . , z

d−1
i ) in Rd. Dually, we consider an

arrangement H of n hyperplanes Hi in Rd with equations x1+zix2+z2i x3+· · ·+zd−1i xd =
0. We add in the hyperplane x1 = 1 in order to get an affine arrangement restricted to
d− 1 dimensions. In [Zie93, Theorem 4.1 (B)], it is shown that the higher Bruhat order
is isomorphic to the set of extensions of this affine hyperplane arrangement by a pseudo-
hyperplane, ordered by single-step inclusion of the set of vertices which lie on one side
of the hyperplane. Moreover, if we list the vertices of the affine hyperplane arrangement
in order of xd-coordinate, then (for suitable choices of zi) they appear in lexicographic
order when each vertex is labeled with the indices i of the hyperplanes which include
it. This allows us to see geometrically that the lexicographic order does provide a valid
sequence of packet flips to perform in the higher Bruhat order one dimension lower.

Ziegler also interprets these pseudo-hyperplane extensions as extensions of the alter-
nating oriented matroid. Using duality for oriented matroids, these extensions can also
be thought of as one-element lifts of the same oriented matroid, and then it follows by
the Bohne-Dress theorem [RZ94] that elements of the higher Bruhat order are in bijec-
tion with fine zonotopal tilings of the cyclic zonotope Z(n, d) formed by the Minkowski
sum of the vectors v(zi). In this setting, the covering relation in the higher Bruhat order
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corresponds to certain elementary flips of tiles. In two dimensions these are the well-
studied hexagon flips in rhombus tilings, and in three dimensions the flips were shown
in [Gal18] to correspond to certain moves in the plabic graphs of Postnikov [Pos06]. We
will not work much with this picture, but it is natural to wonder whether a similar story
can be told for types other than A.

3 Type-Independent Framework
Let Φ be an irreducible root system in n dimensions, with Weyl group W . Then let
H be the hyperplane arrangement in Rn formed by the reflecting planes for the roots
of Φ. We call the chamber of H bounded by the hyperplanes corresponding to simple
roots of Φ the fundamental chamber of H, and we can label all the chambers of H by
the element of W which sends that chamber to the fundamental chamber. Note that we
can choose a different chamber to be the fundamental chamber and proceed in the same
manner.We say that C1 ≤ C2 in the weak Bruhat order if every hyperplane separating
C1 from C2 also separates the fundamental chamber from C2. This matches the usual
definition of the weak Bruhat order on W using reduced expressions.

In this section, we will extend this perspective analogously to how the higher Bruhat
order extends the reduced expression perspective on the weak order in type A. In Sec-
tion 2, we defined elements of the higher Bruhat order B(An, d) to be certain equivalence
classes of total orderings on

(
[n]
d

)
. Here, certain subspaces of codimension d− 1 will take

the role of elements of
(
[n]
d

)
, as we now describe.

Definition 3.1. A subspace V ⊂ Rn is an inversion for Φ if the following two conditions
hold for the set S := {H ∈ H : V ⊆ H} of hyperplanes containing V

1.
⋂
H∈S H = V

2. The hyperplane arrangement in V ⊥ formed by the restriction of the elements of S
to V ⊥ is the set of reflecting hyperplanes for some irreducible root system.

We use C(Φ, d) to denote the set of inversions for Φ with codimension d − 1, for
d > 1.

Remark 3.2. When Φ is the type An root system, one can check that an element of
C(Φ, d) is specified by equations xi1 = xi2 = · · · = xid , and so corresponds to the set
{ij : j ∈ [d]} ∈

(
[n]
d

)
.

Next, we need to describe the notions of packets and admissibility in this context.

Definition 3.3. For an inversion V ∈ C(Φ, d), the packet P (V ) of V is defined to be
the set {U ∈ C(Φ, d− 1) : V ⊂ U} of all codimension d− 2 inversions which contain V .
A total order ρ on C(Φ, d) is admissible with respect to another total order ρ∗ if for all
V ∈ C(Φ, d + 1), the restriction ρ|P (V ) is equal to either ρ∗|P (V ) or its reverse. When ρ
is admissible, the inversion set invρ∗(ρ) is the set of V such that ρ|P (V ) is equal to the
reverse of ρ∗|P (V ). Two admissible orders ρ1, ρ2 with invρ∗(ρ1) = invρ∗(ρ2) are said to be
equivalent or to differ by commutation.
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When a packet P (V ) appears as a substring (i.e., a consecutive subsequence) of a
total ordering ρ, we can perform a packet flip in ρ which reverses the order of that
substring. The result will be an admissible ordering with only one inversion changed
(proved below), and we say that it differs by a packet flip from ρ.

Lemma 3.4. Suppose ρ1 and ρ2 are admissible total orderings with respect to ρ∗. Then

(a) If invρ∗(ρ1) = invρ∗(ρ2), then ρ1 and ρ2 can be related by a sequence of swaps of
adjacent elements which do not share a packet.

(b) invρ∗(ρ1) = invρ∗(ρ2) t {V } if and only if there exists representative elements of
[ρ1] and [ρ2] which differ only by a packet flip of P (V ).

Proof. For part (a), if ρ1, ρ2 are distinct, then there must exist some pair of consecutive
elements V1, V2 in ρ1 which do not appear in that order in ρ2. There must not be a packet
containing V1 and V2, since that would mean that ρ1 and ρ2 had different inversion sets.
Therefore we can swap V1 and V2, reducing the number of pairs (V1, V2) which appear in
opposite orders in ρ1 and ρ2. Induction on the number of such pairs shows that repeating
this process eventually relates ρ1 and ρ2.

For part (b), we start by finding a representative element of [ρ1] for which P (V )
appears as a substring by using these commutation moves. This will be possible as long
as there do not exist V1, V2, V3, appearing in that order in ρ1, such that V1, V3 ∈ P (V ),
but V1, V2 ∈ P (U1) and V2, V3 ∈ P (U2) for some U1, U2 6= V . Now, P (U1) and P (U2)
must appear in ρ2 in the same order as in ρ1, so V1, V2, V3 must occur in the same
order there. This contradicts the fact that P (V ), which contains V1, V3, appears in the
opposite order in ρ2, so in fact we must be able to bring P (V ) together as a substring.

Finally, having ρ ∈ [ρ1] where P (V ) appears as a substring, we can perform the
packet flip of P (V ). It suffices to show that no pair of elements of P (V ) appear in
any packet other than P (V ), since then we can conclude that the result of the flip will
be admissible and in [ρ2]. Well, any element of an intersection P (U) ∩ P (V ) of two
packets must contain span(U, V ), which has codimension at most d− 1 if U and V have
codimension d. Then the only possible element of the intersection is span(U, V ), so no
pair of elements of P (V ) can also be in some P (U), as required.

In Section 2 we described the higher Bruhat order in terms of commutation classes
and packet flips. Lemma 3.4 shows that we can equivalently consider the consistent
inversion sets to be the elements of the higher Bruhat order, and single-step inclusion
to take the role of packet flips. We do not classify exactly which sets of inversions are
consistent in the sense of being realized by some element of the higher Bruhat order,
but such a classification in type A can be found in [Zie93, Lemma 2.4].

Definition 3.5. For an irreducible root system Φ and a total ordering ρ∗ on C(Φ, d), let
B(Φ, d, ρ∗) be the set of subsets of C(Φ, d+1) which arise as inversion sets of admissible
total orderings of C(Φ, d). Equivalently, B(Φ, d, ρ∗) consists of the equivalence classes of
orderings up to commutation, and we will use these interpretations interchangeably. For

6



d = 1, we let B(Φ, 1, ρ∗) be the usual weak Bruhat order where ρ∗ denotes the choice of
fundamental chamber. We still label the elements of B(Φ, 1, ρ∗) by their inversion set,
which in this case is the subset of hyperplanes (elements of C(Φ, 2)) which separate the
chamber from the fundamental chamber.

The higher Bruhat order on B(Φ, d, ρ∗) is generated by the covering relation of single-
step inclusion of inversion sets. A sequence ρ∗1, . . . , ρ∗d such that ρ∗i is an admissible total
ordering on C(Φ, i) (i > 1) and each of the prefixes of ρ∗i+1 (considered as an inversion
set) is an element of B(Φ, d, ρ∗i ) is said to define a higher Bruhat order up to level d on
Φ. In other words, the sequence of total orders needs to be compatible in the sense that
each ρ∗i+1 provides a chain from ρ∗i to its opposite.

A good thing to check first is that this definition encapsulates the ordinary higher
Bruhat order for type An as a special case.

Proposition 3.6. Suppose Φ = An, and C(Φ, d) is naturally identified with
(
[n]
d

)
as

in Remark 3.2. Then if ρ∗i is the lexicographic order on
(
[n]
i

)
for all i, the sequence of

ρ∗1, . . . , ρ
∗
d is a higher Bruhat order up to level d on Φ = An, and the posets B(Φ, i, ρ∗i )

are isomorphic to the posets B(An, i) defined in Section 2 for all 1 ≤ i ≤ d.

Proof. The lexicographic orders ρi are the minimal elements of the posets B(An, i) de-
fined in Section 2. Therefore by Theorem 2.3 part (c), prefixes of ρ∗i are inversion sets
for elements of B(An, i− 1, ρ∗i−1). The function inv on B(An, i) is the same as the func-
tion invρ∗i on B(An, i, ρ

∗
i ), and the partial order on B(An, i) can also be described as

single-step inclusion of inversion sets, so the posets are isomorphic.

We can now prove a partial analogue of the main theorem of Manin and Schecht-
man [MS89] (cf. Theorem 2.3).

Theorem 3.7. Let ρ∗1, . . . , ρ∗d be a higher Bruhat order up to level d on Φ. We have the
following characterization of the orders B(Φ, i, ρ∗i ).

(a) [ρ1] l [ρ2] in B(Φ, i, ρ∗i ) if and only if there exists representative elements of [ρ1]
and [ρ2] which differ by a packet flip for an inversion in [ρ2].

(b) [ρ∗i ] is a minimal element of B(Φ, i, ρ∗i ), and its reverse is a maximal element. The
function |invρ∗i | is a rank function for this poset.

(c) Total orderings of C(Φ, i + 1) which are admissible with respect to ρ∗i+1 can be
considered as distinct chains from ∅ to C(Φ, i+ 1) in the poset B(Φ, i, ρ∗i ).

Proof. Part (a) follows from Lemma 3.4. The inversion set of [ρ∗i ] is ∅, so it certainly
minimal, and the inversion set of its reverse is C(Φ, i), which is all possible inversions.
The covering relation implies that if [ρ1] l [ρ2] then |invρ∗i (ρ1)|+ 1 = |invρ∗i (ρ2)|, so the
poset B(Φ, i, ρ∗i ) is ranked with rank function |invρ∗i |. It now remains to show part (c).

We can think of each ρ∗i+1 as specifying a chain in B(Φ, i, ρ∗i ) from ∅ to C(Φ, i + 1)
by writing down the order in which the elements of C(Φ, i+ 1) are added; the condition
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on the prefixes of ρ∗i+1 ensures that this will give inversion sets that are actually in
B(Φ, i, ρ∗i ). We need to show that the same process for any element ρ of B(Φ, i+1, ρ∗i+1)
also gives a valid chain. The only issue that can come up is for a move specified by ρ to
be illegal in B(Φ, i, ρ∗i ), which happens when the packet P (y) which needs to be flipped
cannot be brought together due to some element x ∈ C(Φ, i) which does not commute
with at least two elements of P (y). Suppose we could find an element z ∈ C(Φ, i + 2)
such that P (z) contains every y′ such that P (y′) contains x and intersects P (y), or
y = y′. Then since ρ has P (z) in the same order as ρ∗i+1 or backwards, if x caused a
problem in ρ with the flip of P (y), it would also cause a problem in ρ∗i+1.

It therefore suffices to find such an element z. The exact method here depends on
the root system Φ, so we do not have a type-independent proof in this case. For type
An, this can be done by taking z to be the union of x and y as subsets of [n].

Part (d) of Theorem 2.3 is included as part of the definition of the higher Bruhat
order in our case, while part (a) was a definition in [MS89, Theorem 3]. We do not show
a bijection in part (c) because as we have defined things such a bijection does not always
exist; some chains may not match ρ∗i+1 or its reverse in some packets, where two flips may
be interchanged without changing the inversion set. This phenomenon does not occur
in type A, but it can in type B with d > 2. The other only detail not generalized by
Theorem 3.7 is the uniqueness of the minimal and maximal elements of B(Φ, i, ρ∗i ), and
again this is because it is false in general. Even in type A, if an ordering other than the
lexicographic one is used, there may not be a unique minimum or maximum. In [FW00,
Section 3] certain reorientations of the usual level-2 higher Bruhat order are considered,
and an example of an order ρ∗2 is given which would not be the unique minimal element
in B(A6, 2, ρ

∗
2).

The key to determining what the higher Bruhat order should look like for Φ is
choosing the sequence of orders ρ∗1, . . . , ρ∗d. So far we have not even shown that any such
sequence of orders must exist. We now describe a general procedure for constructing at
least some valid higher Bruhat order for any Φ.

Definition 3.8. Suppose H is the hyperplane arrangement in Rn for an irreducible root
system Φ. Let B = (e1, . . . , en) be an ordered basis for Rn which is in a generic position
relative to H. Then the affine space Ed := ed + span(e1, . . . , ed−1) intersects each of the
spaces V ∈ C(Φ, d) at a point, since V has codimension d−1 and B is generic. Let ρ1(B)
denote the chamber of H which e1 lies in, and for d > 1, let ρd(B) be the total order
which lists the inversions V ∈ C(Φ, d) in increasing order according to the ed-coordinate
of the intersection point Ed ∩ V . The sequence ρ1(B), . . . , ρn(B) is called a geometric
higher Bruhat order on Φ.

In order to show that geometric higher Bruhat orders satisfy Definition 3.5, we con-
struct a diagram like the “light leaves” diagrams shown in [EW14, Definition 1.14] for
d = 3, to demonstrate that ρd(B) defines a path from ρd−1(B) to its opposite. This idea
is described for type A after the statement of Theorem 3 in [MS89].
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Proposition 3.9. Suppose B = (e1, . . . , en) is a generic basis relative to a hyperplane
arrangement H in Rn for the irreducible root system Φ. Then the geometric higher
Bruhat order ρ1(B), . . . , ρn(B) actually defines a higher Bruhat order on Φ.

Proof. It suffices to show that for each 1 ≤ d < n, the order ρd+1(B) gives a valid
sequence of packet flips from ρd(B) to its reverse. In the affine subspace Ed+1 = ed+1 +
span(e1, . . . , ed), each of the elements of C(Φ, d) is a line, and the elements of C(Φ, d+1)
are the points of intersection of these lines. We can project this picture onto the affine
plane P := ed+1 + span(ed−1, ed) by forgetting the other coordinates, and lines still
represent C(Φ, d), and elements of C(Φ, d + 1) are still points of intersection (although
keep in mind that other intersections may have been introduced by this projection).

All points of intersection of the lines in P have ed−1-coordinate less than x0, for some
x0 � 0, since there are finitely many of them. The line v · ed−1 = x0 in P crosses the
lines labeled by C(Φ, d) in the order listed by ρd(B), since it was defined to list these
points of intersection by ed-coordinate in Ed.

As we sweep the line v ·ed−1 = x0 down by decreasing x0, the order in which the lines
are crossed changes exactly at the intersection points of the lines. When the intersection
point corresponds to a subspace V ∈ C(Φ, d+ 1), it includes exactly the lines labeled by
an element of P (V ), and so moving the line v · ed−1 = x0 across that intersection point
performs the packet flip of V . If the intersection point is not a subspace in C(Φ, d+ 1),
then the intersection of any pair of subspaces whose lines go through the point must
have smaller dimension. Therefore the elements of C(Φ, d) which go through the point
must all commute in the sense that they do not share a packet, and so may be freely
interchanged without changing the inversion set.

In the process of decreasing x0 until the line v ·ed−1 = x0 has passed every intersection
point in C(Φ, d+1), we perform each of the packet flips in the order specified by ρd+1(B),
and no other packet flips (since all other moves are commutation). We started at ρd(B),
so we must end at its reverse, as required.

In type A, a geometric higher Bruhat order can also be visualized as a hyperplane
arrangement in the following sense. For each i ∈ [n], let Hi be the hyperplane in Rd of
points v = (v1, . . . , vd) such that v1 is the xi-coordinate of v1e1+v2e2+ · · ·+vd−1ed−1+ed
in the root hyperplane arrangement. Then places where these planes intersect represent
places in Ed where xi = xj, and so packet flips again correspond to vertices. A similar
phenomenon can occur in type B, as we will see in the following section.

4 Construction for Type B
In this section we explicitly describe a sequence ρ∗1, ρ

∗
2, . . . , ρ

∗
n of total orders ρ∗d on

C(Bn, d) which is a higher Bruhat order on the type Bn root system. First we have
to describe the inversion sets C(Bn, d). The same inversion sets were used in [SV16] for
their take on the type B higher Bruhat order. Recall the definitions from Section 1.1
regarding signed subsets, which are crucial for type B.
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Lemma 4.1. The subspaces V ∈ C(Bn, d) can be described by linear equations in
x1, . . . , xn in one of two ways. The first way is by equations xi1 = xi2 = · · · = xid−1

= 0,
in which case we correspond V to the set {i1, . . . , id−1} ∈

(
[n]
d−1

)
= C(An, d−1). The other

possibility is that V is described by equations xi1 = ε2xi2 = · · · = εdxid for εj ∈ {±1},
in which case we correspond B to the set {i1, ε2i2, . . . , εdid} ∈

(
[±n]
d

)
. In this way we

bijectively correspond C(Bn, d) with
(

[n]
d−1

)
∪
(
[±n]
d

)
.

Proof. The hyperplanes in the hyperplane arrangement H corresponding to Φ = Bn are
of one of three forms: xi = 0, or xi = xj, or xi = −xj. If V satisfies condition 1 in
Definition 3.1 then it is equal to the intersection of some collection of these hyperplanes.
Any such intersection can be described by (possibly multiple) chains of equations of the
form in the statement of the Lemma. If multiple chains are required, then they involve
disjoint sets of variables. Therefore any root system producing hyperplane arrangement
in V ⊥ described in condition 2 of Definition 3.1 is reducible by expressing the space as a
sum of the spaces using just the variables corresponding to each chain of equalities. We
conclude that if V is an inversion for Bn, then a single chain of equations can describe
V , completing the proof.

Remark 4.2. In type D, a similar proof shows that for d > 2, we have C(Bn, d) =
C(Dn, d). When d = 2, we rather have C(Dn, 2) ⊂ C(Bn, 2), and we can obtain a higher
Bruhat order for type D from a higher Bruhat order for type B by simply removing
all the of the inversions which don’t exist in type D. The discussion in this section can
therefore be seen as also applying to type D.

Now we need to define our total orders on C(Bn, d) =
(

[n]
d−1

)
∪
(
[±n]
d

)
, for each n and

d. First we assign to each element S of
(
[±n]
d

)
an element A(S) of

(
[n]
d−1

)
by removing all

of the signs and also the smallest element. Then we order the subsets S according to
A(S) first, then by looking at the signs. In the case when d ≤ 3, Elias and Williamson
used the same ordering this definition [EW14].

Definition 4.3. We represent inversions V ∈ C(Bn, d) =
(

[n]
d−1

)
∪
(
[±n]
d

)
by the set

SV := {a, x1, ε2x2, . . . , εd−1xd−1} for ε2, . . . , εd−1 ∈ {±1} and |a| < x1 < · · · < xd−1,
setting a = 0 if V ∈

(
[n]
d−1

)
. Let A(SV ) := {xi : i ∈ [d− 1]} ∈

(
[n]
d−1

)
, and let f(SV ) := 0 if

a = 0 and f(SV ) = a + a
|a| ·

d−1∑
i=2

εi
(−3)i otherwise. Then we say that V <B W in C(Bn, d)

if A(SV ) <lex A(SW ), or A(SV ) = A(SW ) and f(SV ) < f(SW ).

Example 4.4. When n = 5 and d = 4, the following is the total order <B on C(Bn, d),
where each inversion V is represented by the set SV with elements concatenated in
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increasing order of absolute value, and negative signs in superscripts to save space.

0123, 0124, 0125, 0134, 0135, 0145,

1− 2 3− 4, 1− 2 3− 4− , 1− 234, 1− 23 4− , 0234, 123 4− , 1234, 12 3− 4− , 12 3− 4,

1− 2 3− 5, 1− 2 3− 5− , 1− 235, 1− 23 5− , 0235, 123 5− , 1235, 12 3− 5− , 12 3− 5,

1− 2 4− 5, 1− 2 4− 5− , 1− 245, 1− 24 5− , 0245, 124 5− , 1245, 12 4− 5− , 12 4− 5,

2− 3 4− 5, 2− 3 4− 5− , 2− 345, 2− 34 5− , 1− 3 4− 5, 1− 3 4− 5− , 1− 345, 1− 34 5− ,

0345, 134 5− , 1345, 13 4− 5− , 13 4− 5, 234 5− , 2345, 23 4− 5− , 23 4− 5.

In order to show that the orders <B define a higher Bruhat order, we will show that
they in particular define a geometric higher Bruhat order (Definition 3.8), and so by
Proposition 3.9 they are also a higher Bruhat order.

Take 0 < z1 < · · · < zn so that the cyclic hyperplane arrangement correspond-
ing to the zi gives the lexicographic order as discussed in Section 2, and let v±i =
(1, zi, z

2
i , . . . , z

d−1
i ,±ai), where the signs on i and ai are equal and ai is arbitrarily large

relative to any polynomials in zj (for all j) as well as a1, . . . , ai−1. The motivation is that
this can be a sort of type B analogue of the cyclic vector configuration. Let H be the
corresponding arrangement of normal hyperplanes to these vectors, as well as the plane
x1 = 1. We will show that the vertices in the x1 = 1 plane, when labeled by the subset
of [±n] of indices of hyperplanes involved, are sorted by <B in terms of xd−1-coordinate.
It follows from the discussion in Section 3 that this means that <B corresponds to a
geometric higher Bruhat order.

Theorem 4.5. Let H be the hyperplane arrangement of 2n planes H±i in Rd+1|{x0=1}
with equations x0 + zix1 + z2i x2 + · · · + zd−1i xd−1 ± aixd = 0 with zi and ai as described
before. Then for any subset S ⊆ [±n], the intersection vS :=

⋂
s∈S Hs is a vertex if and

only if S ∈ C(Bn, d). For any V,W ∈ C(Bn, d), the xd−1-coordinate of vV is less than
the xd−1-coordinate of vW if and only if V <B W .

Proof sketch. For S ⊆ [±n], the intersection vS is the solution to the system of equations
zisx1+· · ·+zd−1is

xd−1+εsaisxd = −1 for all εsis = s ∈ S, where is = |s| and εs is the sign of
s. There is a unique solution when there are d such equations and they are independent,
which is captured by

(
[n]
d−1

)
∪
(
[±n]
d

)
= C(Bn, d) as desired. Next, by Cramer’s rule the

xd−1-coordinate of the solution to this system is given by the ratio of determinants:

det


...

... · · · ...
...

...
zis z2is · · · zd−2is

−1 εsais
...

... · · · ...
...

...

 ·
det


...

... · · · ...
...

...
zis z2is · · · zd−2is

zd−1is
εsais

...
... · · · ...

...
...



−1

.

We compute these determinants by expanding cofactors along the last column. When
we do this, the resulting minors will be Vandermonde determinants which we could
compute but will just denote by VS := det(zj−1is

)s∈S,j∈[d−1]. Letting sk be the s in the

k-th row of the matrix, the first determinant is equal to ±
d∑

k=1

(−1)k · εskaisk · VS\{sk}.
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The second determinant is equal to ±
d∑

k=1

(−1)k · εskaisk · VS\{sk} ·
∏

s∈S\{sk}
zis . How do we

compare this ratio for S ∈ C(Bn, d) to the ratio for another S ′ ∈ C(Bn, d)? The key is
that a1 � a2 � · · · � an � zn, allowing us to just look at one term in these sums at a
time.

If i1 < · · · < id are the indices is in increasing order, then the ratio is very close

to ±
(∏

k∈[d]\{1} zik

)−1
, by just looking at the dominant terms in the numerator and

denominator. It follows that sorting by xd−1-coordinate, like sorting by <B, first com-
pares the sets A(S) using the lexicographic order. If those are equal, then the next step
is to look at the next largest terms in the numerator and denominator, whose ratio is

±ε2
(∏

k∈[d]\2 zik

)−1
. This means that the ratio is slightly shifted either towards or away

from the first approximation, depending on ε2, and the amount depends most upon the
value of zi1 . This means that this order, just like <B, compares the (signed) values of
the smallest index next after checking that the sets agree on the rest of the (unsigned
values). Note that this corresponds to the fact that the a term in the expression for
f(S) in Definition 4.3 dominates. Finally, if the two sets have the same unsigned values
completely, then it remains to compare each of the subsequent adjustments due to lower
order terms, in increasing order of index. For these, the comparison is only of the signs
εi, and when they differ, we look to the parity of i to determine whether the set with
negative εi should have larger or smaller xd−1-coordinate. This again coincides with the
behavior of the order <B, where the size of f(S) depends in the same manner on the εi
when the unsigned sets are the same.

We have now completed our construction of the type B higher Bruhat order to
arbitrary levels, which we can now denote B(Bn, d) with the ρ∗i being implicit. We have
not yet shown that it has any particularly desirable properties that other type B higher
Bruhat orders might not have.

Proposition 4.6. For any S ( [n] with |S| = m, the poset B(BS, d) obtained from
B(Bn, d) by throwing out all inversions including elements of [n] \ S is isomorphic to
B(Bm, d).

Proof. In Definition 4.3, the order <B depends only on the order <lex on unsigned
subsets, and the function f . The lexicographic order does not change when numbers are
relabeled but magnitudes are preserved, and the function f only cares about the relative
sizes of the smallest element a and the signs εi. Therefore relabeling the elements of S
with the numbers 1 through m in order provides the needed poset isomorphism.

This proposition establishes the “parabolic-compatible” condition desired in [Eli16].
Do the other conditions discussed there hold for our order? We expect that at least one
does.

Conjecture 4.7. The higher Bruhat orders B(Bn, d) as defined in this paper have
a unique minimal element (namely <B, with inversion set ∅), and a unique maximal
element (namely >B, with inversion set

(
[n]
d−1

)
∪
(
[±n]
d

)
).
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5 Zonotopes?
Warning to the reader: this section is highly speculative, and not to be taken too
seriously.

As discussed in Section 2, the cyclic vector arrangement (formed by choosing n points
v1, . . . , vn on the moment curve (1, x, x2, . . . , xd−1)) produces a hyperplane arrangement
corresponding to the lexicographic order on C(An, d). The cyclic zonotope Z(n, d) is de-
fined to be the Minkowski sum of the segments [0, vi], and elements of the higher Bruhat
order B(An, d) can be realized as fine zonotopal tilings of this polytope. The picture is
most interesting when d = 3, where cross-sections correspond to plabic graphs [Gal18].
In Theorem 4.5, we showed that our type B higher Bruhat order can similarly be realized
by a vector configuration. It is natural to ask what happens when we look at the zono-
topes generated by this configuration. When d = 2, we can even correspond elements
B(Bn, 2) to symmetric tilings of Z(2n, 2) with rhombi. However, when d ≥ 3, the shape
formed by the Minkowski sum of the vectors is not the same as Z(2n, d) anymore, so it
will not be as simple as looking at symmetric tilings.

The order we chose for type B is not necessarily the best one, however. At least for
d ≤ 3, there is another order one can choose (for d = 2 it can be described by repeating
the lexicographic order on

(
[n]
2

)
twice for the different signings, with the unsigned sets

(
[n]
1

)
interspersed) which matches up better in this context. In particular, the polytope formed
for d = 3 is isomorphic to Z(2n, 3), and we believe that elements of the order B(Bn, 3, ρ

∗)
do correspond to almost-fine symmetric tilings, where there are tiles along the plane of
symmetry which are copies of Z(4, 3) instead of parallelepipeds. Unfortunately it is
hopeless for d ≥ 4, as the nature of type B requires any vector configuration to create
linear dependencies which do not exist in type A. We also did not mention this order
in the previous sections because we do not see a natural continuation of it for d ≥ 4.
Nevertheless, it would be interesting to look at the cross-sections of the symmetric tilings
in three-dimensions. They ought to be some sort of symmetric plabic graph, although a
different sort than that described in [KS18].
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