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Abstract

In this paper, we construct an algebra homomorphism from the pos-
itive part of the elliptic Hall algebra to the K-theoretic Hall algebra of
surfaces.

1 Introduction

Let S be a smooth projective surface over C. Quot and Flag schemes can be
defined on S, which parametrize certain coherent sheaves on S of finite lengths.
Let KG(X) denote the G-equivariant K-theory group of coherent sheaves on X
and Quot◦n the moduli space of framed length-n coherent sheaves on S. Accord-
ing to [7], the following graded abelian group

K(Quot) =
⊕
n≥1

KGLn
(Quot◦n),

can be equipped with a graded algebra structure. This is called the K-theoretic
Hall algebra of Quot schemes on S.

Moreover, we also consider the (positive part of) elliptic Hall algebra A>0,
which can be explicitly defined by generators and relations. The main result of
this paper is the following theorem:

Theorem 1.1. There exists a homomorphism of algebras A>0 → K(Quot).

The motivation of this theorem originates from several previous results. In
[4], Nakajima studied the cohomology of Hilbert scheme of points and proved
that it carries a Heisenberg algebra action. Generalizing Nakajima’s result in
[5], Negut studied the moduli space of stable sheaves on certain surfaces and
proved that its K-theory group carries an elliptic Hall algebra action. In another
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perspective, in [6], Schiffmann and Vasserot studied the equivariant K-theory
of Hilbert scheme of A2 and showed that its convolution algebra is isomorphic
to the elliptic Hall algebra.

The structure of this paper is as follows. In section 2, we introduce Quot,
Flag schemes and study some geometric properties of moduli spaces related to
length-2, length-3 coherent sheaves on surfaces. In section 3, we introduce the
equivariant K-theory and K-theoretic Hall algebra of Quot schemes of surfaces.
We also construct K-theory classes e(d1,...,dn) ∈ KGLn

(Quot◦n) corresponding
to certain generators E(d1,...,dn) of A>0 and compute the commutator relations
[e(k), e(d1,...,dn)] for the case n = 1, 2. In section 4, we prove Theorem 1.1 based
on commutator relations computed in section 3.

Here are some notations in this paper. Let M be a certain Quot or Flag
scheme. M◦ denotes the open subscheme of M where every coherent sheaf F
appeared in quotients or flags is framed, i.e., equipped with a framing O⊕I → F
(I is an index set). If H is a closed subgroup of a reductive group G and H

acts on M, we often use M̃ to denote the orbit space M×H G. In the case
when G = GLn and H is a parabolic subgroup of G,M×H G will be a quotient
scheme (G×M)/H (see Chapter 5.2 of [2]). Cx denotes the length-1 skyscraper
sheaf supported at a single closed point x. “�” denotes a surjection map.

2 Moduli spaces and their geometry

Let S be a projective smooth surface over C. For any positive integer d, define
Quotd to be the moduli spaces of length-d coherent sheaves on S. Explicitly,
Quotd has the following functor-of-points description. For any scheme T , there
is a one-to-one correspondence between maps T → Quotd and the following
data:

• A quotient O⊕dS×T � Ed, where Ed ∈ Coh(S × T )1 is flat of length d over
T . In other words, for every point t ∈ T , Ed|t is a length-d coherent sheaf
on S × {t}.

There is an open subscheme Quot◦d ⊂ Quotd, which has T -points correspond-
ing to the above data, with an extra constraint

• The induced map O⊕dT → prT∗ Ed is an isomorphism, where prT : S×T →
T is the projection.

Example 2.1. As a basic example, we have Quot1 = Quot◦1
∼= S, since a

length-1 coherent sheave on S corresponds uniquely to its support (which is a
closed point of S).

For a sequence of positive integers d• = (d1, . . . , dk) with 0 < d1 < · · · < dk,
define the moduli space of flags Flag◦d• to be a subscheme of Quot◦dk , such that
the set of T -points (i.e., maps from T to Flag◦d•) is in bijection with the following
data:

1Here, Coh(X) denotes the set of coherent sheaves on a scheme X.
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• A flag of quotients

O⊕dkS×T O⊕dk−1

S×T · · · O⊕d1S×T 0

Edk Edk−1
· · · Ed1 0

where Edi is flat of length di over T .

• The induced map O⊕diT → prT∗ Edi is an isomorphism for all i.

When T = Flag◦d• , the identity map corresponds to a universal flag of quotients
over S × Flag◦d• , which we often denote as Udk � · · ·� Ud1 . The pushforward
of Udi along the projection S × Flag◦d• → Flag◦d• is a vector bundle of rank di
on Flag◦d• . Abusing notations, we will also denote this vector bundle Udi .

In the later sections, we will use the notation Flag◦mk,mk−1,...,m1
to denote

the scheme Flag◦d• defined in the previous paragraph, where d• = (m1,m1 +
m2, . . . ,m1 + · · ·+mk). For example, Flag◦m,n = Flag◦(n,n+m).

Let Pn,m denote the parabolic subgroup of the general linear group GLn+m
consisting of lower-triangular block matrices of the form(

A 0
C D

)
, where A ∈ Matn×n, D ∈ Matm×m, C ∈ Matm×n.

We observe that Pn,m acts on Flag◦m,n by acting (in the functor-of-points de-

scription) on O⊕(m+n)
S×T as well as its quotient O⊕nS×T . Furthermore, as a subgroup

of GLm+n, the right action of Pn,m on GLm+n is free. As a result, Pn,m acts
on GLm+n×Flag◦m,n by h · (g, x) = (gh−1, hx). Since this action is free and
proper, its orbit space GLm+n×Pn,mFlag

◦
m,n is equipped with a scheme struc-

ture: namely, the quotient (Flag◦m,n × GLm+n)/Pn,m. We shall denote this

scheme as ˜Flag◦m,n.

Proposition 2.2. ˜Flag◦m,n has the following functor-of-points description. For

any scheme T , the set of T -points of ˜Flag◦m,n is in bijection with the following
data:

(i) O⊕(n+m)
S×T � En+m � En, where Ei is flat of length i over T for i ∈
{n, n+m}.

(ii) Let prT : S×T → T , then the data above induce an isomorphism O⊕(n+m)
T

∼=
prT∗ En+m.

Proof. A T -point of (Flag◦m,n ×GLm+n)/Pn,m consists of the data

• A T -point of Flag◦m,n, i.e., a flag of quotients

O⊕(n+m)
S×T O⊕nS×T 0

En+m En 0
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and isomorphisms prT∗ Ei ∼= O
⊕i
T .

• A T -point of GLn+m, which acts on O⊕(n+m)
S×T on the left.

Combining the two pieces of data, we obtain

O⊕(n+m)
S×T → O⊕(n+m)

S×T � En+m � En

where the first arrow comes from the T -points of GLn+m and the other two
come from the T -point of Flag◦m,n. This is essentially the data (i) and (ii), and
we could check that the above construction is invariant by Pn,m actions.

For the other direction, suppose we are given the data (i) and (ii). En+m �

En induces a surjection of vector bundles O⊕(n+m)
T � prT∗ En on T . This is

exactly the data of a morphism f : T → Grn,n+m, where Grr,k is the Grassman-
nian of r-dimensional quotient subspaces in a k-dimensional vector space. In
particular, prT∗ En = f∗Sn,n+m, where Sn,n+m is the universal subbundle over
Grn,n+m.

Consider the standard action of GLn+m on Grn,n+m: this action is transitive
with stablizer Pn,m. Thus, α : GLn+m → Grn,n+m is a principal Pn,m-bundle.
Let the fiber product

T̃ := T ×Grn,n+m
GLn+m,

which is a principal Pn,m-bundle over T . We shall define a Pn,m-equivariant

morphism T̃ → Flag◦m,n ×GLn+m. Set the map T̃ → GLn+m to be the projec-

tion. To construct T̃ → Flag◦m,n, it suffices to find the data

O⊕(n+m)

S×T̃
Fn+m

O⊕n
S×T̃

Fn

(1)

Denote π : T̃ → T the projection and we pick Fn := (idS ×π)∗En,Fn+m :=

(idS ×π)∗En+m. We already have the data O⊕(n+m)

S×T̃
� Fn+m by pullback. It

remains to identify the map O⊕n
S×T̃

� Fn to make (1) commute.

We claim that π∗ prT∗ En ∼= O⊕nT̃ . Assuming this holds, then from the ad-
junction pr∗T prT∗ En � En, we have

O⊕n
S×T̃

∼= (idS ×pT )∗ pr∗T prT∗ En � (idS ×pT )∗En = Fn,

as desired. To prove this claim, consider the diagram

T̃ T

GLn+m Grn,n+m

π

f

α
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Since prT∗ En = f∗Sn,n+m, it suffices to show that α∗Sn,n+m = O⊕nGLn+m
. The

standard action of GLn+m on Grn,n+m is a morphism GLn+m×Grn,n+m →
Grn,n+m. The fiber of the pullback of Sn,n+m along this action over a point
(g, V ) ∈ GLn+m×Grn,n+m is gV ; restricting to GLn+m×{V } for a fixed V with
basis {v1, . . . , vn}, we see that α∗Sn,n+m has everywhere linearly independent
global sections gvi and hence must be O⊕nGLn+m

.
By the universal property of quotient, the data of a Pn,m-equivariant mor-

phism from a principal Pn,m-bundle T̃ to Flag◦m,n × GLn+m corresponds to a
morphism

T → (Flag◦m,n ×GLn+m)/Pn,m,

as desired.
Finally, we can check that these two natural transformations are inverse to

each other, so the proof is complete.

Similarly, Pn,m,` acts on Flag◦`,m,n and we can form moduli spaces such as

˜Flag◦−`,m,n := (Flag◦`,m,n × Pn+m,`)/Pn,m,`
˜Flag◦+`,m,n := (Flag◦`,m,n × Pn,m+`)/Pn,m,`

˜Flag◦`,m,n := (Flag◦`,m,n ×GLn+m+`)/Pn,m,`

Then these moduli spaces have functor-of-points descriptions analogous to Propo-
sition 2.2.

In later sections, we will mostly focus on Flag◦1,1, Flag◦1,1,1 and their vari-
ations. We shall also introduce a closed subscheme Flag◦x,x of Flag◦1,1 whose
T -points are in bijection with the data:

• A commutative diagram

O⊕2S×T OS×T 0

E2 E1 0x x

,

where x : S → T is a map such that there exists line bundles L1,L2 on T
satisfying

E1 ∼= Γx∗L1, ker(E2 → E1) ∼= Γx∗L2.

• The quotient maps above induce isomorphisms O⊕iT ∼= prT∗ Ei for i = 1, 2.

Alternatively, Flag◦x,x is “cut out” by the condition that E2 is supported on

a single point. As before, P1,1 acts on Flag◦x,x and we define F̃ lag◦x,x to be the

quotient (Flag◦x,x ×GL2)/P1,1, which is a closed subscheme of F̃ lag◦1,1.
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Analogously, we can define a few closed subschemes of Flag◦1,1,1: Flag◦x,x,y,
Flag◦x,y,x, F lag

◦
y,x,x, and Flag◦x,x,x. For example, Flag◦x,x,y parametrizes the

data

O⊕3S×T O⊕2S×T OS×T 0

E3 E2 E1 0x x y

The parabolic subgroup P1,1,1 acts on these schemes and we can define

˜Flag◦−x,x,y := (Flag◦x,x,y × P2,1)/P1,1,1

˜Flag◦+x,x,y := (Flag◦x,x,y × P1,2)/P1,1,1

˜Flag◦x,x,y := (Flag◦x,x,y ×GL3)/P1,1,1

and also for variants of Flag◦x,y,x and Flag◦y,x,x.

On each of the moduli spaces Flag◦1,1, F̃ lag◦1,1, Flag◦x,x, and F̃ lag◦x,x, there
is a universal vector bundle U2 � U1. This abuse of notation is acceptable,
since the pullback of Ui is still Ui along any of the following morphisms:

F̃ lag◦x,x → Flag◦x,x, F̃ lag
◦
1,1 → Flag◦1,1, F lag

◦
x,x ↪→ Flag◦1,1, F̃ lag

◦
x,x ↪→ F̃ lag◦1,1.

On each of these schemes, denote L2 = ker(U2 → U1) and L1 = U1, then Li is

a line bundle. On Flag◦x,x and Flag◦1,1, Li is P1,1-equivariant; on F̃ lag◦1,1 and

F̃ lag◦x,x, we will see that Li is in fact GL2-equivariant.

On moduli spaces of variants of Flag◦1,1,1 (including Flag◦x,x,y,
˜Flag◦−x,x,y,

etc.), we denote similarly the universal vector bundles as U3 � U2 � U1 and
line bundles Li = ker(Ui → Ui−1) (where U0 = 0). On each of these moduli
spaces, Li will carry a corresponding equivariant structure.

2.1 Moduli spaces related to length-2 coherent sheaves

As we defined previously, the scheme Quot◦2 parametrizes length-2 coherent
sheaves on S. To understand its geometry, we consider a stratification of the
closed points [O⊕2S � E2] of Quot◦2. Suppose E2 is supported on closed points
x, y ∈ S (x, y could be the same point). Then

• When x 6= y, E2 ∼= Cx ⊕ Cy and the map O⊕2S � E2 is parametrized

by a matrix

(
a b
c d

)
∈ Mat2×2: it sends a pair of rational sections

(f1, f2) in O⊕2S (defined on an open subset U containing x, y) to (af1(x)+
bf2(x), cf1(y) + df2(y)). Since it induces isomorphism on H0, we re-

quire

(
a b
c d

)
∈ GL2. The equivalence relations are given by

(
a b
c d

)
∼(

a′ b′

c′ d′

)
if [a : b] = [a′ : b′] and [c : d] = [c′ : d′] as elements in P1.
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• When x = y, E2 corresponds to a length-2 OS,x-module. There are two
cases:

– E2 is the direct sum Cx⊕Cx. Then the mapO⊕2S � E2 is parametrized
by GL2(C) with certain equivalence relations.

– E2 is not a direct sum of length-1 modules. Since S is smooth, we can
assume that locally S is the affine plane A2, so OS,x ∼= C[X,Y ](X,Y ).
Then E2 corresponds to a colength-2 ideal in C[X,Y ](X,Y ), which has
the form (X2, Y 2, aX + bY ), parametrized by [a : b] ∈ P1.

To understand the scheme structure near the locus x = y better, we state the
following local description of Quot◦2, in the special case that S is birational to
A2.

Proposition 2.3. Suppose that S is birational to A2, then Quot◦2 is birational
to the following affine scheme:

Quotloc2 := {X,Y ∈ Mat2×2 : XY = Y X}.

Proof. Suppose that U is an open subscheme of S isomorphic to an open sub-
scheme of A2 = SpecC[X,Y ]. We shall prove that locally on U , the Quot
scheme Quot◦2 is isomorphic to an open subscheme of Quotloc2 . In other words,
consider the open subscheme Q of Quot◦2 consisting of closed points described
by the data φ : O⊕2S � E2 (with isomorphism φ∗ : H0(S,O⊕2S ) ∼= H0(S, E2)),
such that supp(E2) ⊂ U ; we claim that Q is isomorphic to an open subscheme
of Quotloc2 .

Since E2 is supported on U , the local sections X ∈ OS(U) gives rise to a

map E2
·X→ E2 and hence a linear isomorphism

X : H0(S, E2)→ H0(S, E2).

Similarly, the multiplication-by-Y map induces a linear endomorphism Y on
H0(S, E2). Apparently, the maps X,Y commute with each other. Note that φ
determines a basis on H0(S, E2) and we can write X,Y as 2×2 matrices using the
basis determined by φ. Therefore, this gives an open embedding Q ⊆ Quotloc2 .

On the other hand, from the information of a pair of commuting 2 × 2
matrices X,Y , we can build a length-2 C[X,Y ]-module E2 = Cv1 ⊕ Cv2, such
that (1) the map φ : O⊕2S � E2 is defined on U by φ(1, 0) = v1 and φ(0, 1) = v2;
(2) X,Y acts on E2 as matrices X,Y with respect to the basis (v1, v2). These
data determine the structure of a closed point of Q.

Remark 2.4. For general surface S (not necessarily birational to A2) and any
point p ∈ S, we can find an open neighborhood U of p such that a certain
deformation of U is isomorphic to an open subscheme of A2. This implies that
locally we can deform Quot◦2 into Quotloc2 .

We can use such local descriptions to prove properties of Quot◦2 which are
invariant by deformation, such as the Cohen-Macaulay, normality, and reduced-
ness.
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Similar to Quot◦2, Flag◦1,1 and F̃ lag◦1,1 have similar stratifications and local

descriptions. For example, when S is birational to A2, Flag◦1,1 is also birational
to

Flagloc1,1 = {X,Y ∈ B1,1 : XY = Y X},

where B1,1 is the set of all lower-triangular 2×2 matrices. If U ⊂ S is identified

with an open subset of A2, then for a closed point [O⊕2S � E2
x
� E1

y
� 0] (here,

the label x on the arrow E2
x
� E1 means that ker(E2 → E1) is supported on a

single point x ∈ S) such that x, y ∈ U , the corresponding data (X,Y ) ∈ Flagloc1,1

will satisfy
x = (X22, Y22), y = (X11, Y11) ∈ A2.

The P1,1-action on Flag◦1,1 can be locally described as

g · (X,Y ) = (gXg−1, gY g−1), for g ∈ P1,1, (X,Y ) ∈ Flagloc1,1,

since it is essentially a change of basis. Thus, we can describe F̃ lag◦1,1 locally as

F̃ lagloc1,1 = {X,Y ∈ B1,1, g ∈ GL2 : XY = Y X}/ ∼

where (X,Y, g) ∼ (gXg−1, gY g−1,1). We also note that there is a morphism

F̃ lag◦1,1 → Quot◦2 which, by Proposition 2.2, can be functorially defined by the
natural transformation

[O⊕2S×T � E2 � E1] 7→ [O⊕2S×T � E2].

This map can be locally described as

[(X,Y, g)] 7→ (gXg−1, gY g−1).

For a fixed point p = [O⊕2S � E2] of Quot◦2, the fiber of F̃ lag◦1,1 above p is:

• If E2 is supported on two points x 6= y, then E2 ∼= Cx ⊕ Cy and hence
E1 = Cx or Cy. In this case, the fiber consists of two points.

• If E2 is supported on a single point x, then E1 = Cx. We have two subcases:

– E2 ∼= Cx ⊕ Cx. Then the map E2 � E1 is parametrized by P1.

– E2 is not a direct sum of length-1 sheaves supported on x. Then
E2 is a subsheaf of OS . The quotient map E2 � E1 is unique (up
to isomorphism), since E2 → E1 is determined by the image of the
constant section 1 ∈ E2. In this case, the fiber above p consists of a
single point.
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We define Y to be the fiber product

Y F̃ lag◦1,1

F̃ lag◦1,1 Quot◦2 × S × S

pr

pr′ φ

φ′

(2)

where the map φ, φ′ are defined as follows. Let p = [O⊕2S � E2
x
� E1

y
� 0] be a

closed point of F̃ lag◦1,1 as in Proposition 2.2. Set φ(p) = ([O⊕2S � E2], x, y) and

φ′(p) = ([O⊕2S � E2], y, x).

Proposition 2.5. Y has the following functor-of-points description. For any
scheme T , the set of T -points of Y is in bijection with the following data:

• A commutative diagram

E1

O⊕2S×T E2 0

E ′1

yx

y x

where Ei, E ′i are flat of length i over T , and x, y are maps T → S such that
there exist line bundles L1,L2,L′1,L′2 on T with

ker(E2 → E1) ∼= Γx∗L2, E1 ∼= Γy∗L1

ker(E2 → E ′1) ∼= Γy∗L′2, E ′1 ∼= Γx∗L′1
(Here Γx,Γy denote the graph of x, y, respectively.)

• The projection map induces an isomorphism O⊕2T ∼= prT∗ E2.

Proof. This follows from a functor-of-points description of F̃ lag◦1,1 equivalent to
that of Proposition 2.2: its T -point consists of the data

O⊕2S×T � E2
x
� E1

y
� 0,

where x, y : T → S such that there exists line bundles L1,L2 on T satisfying

ker(E2 → E1) ∼= Γx∗L2, E1 ∼= Γy∗L1.

Furthermore, the projection map induces an isomorphism O⊕2T ∼= prT∗ E2.
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By the functor-of-points description, we can find universal vector bundles on
Y, denote as U2,U1,U ′2,U ′1. They are the pushforward of corresponding universal
sheaves on Y ×S. Again, the abuse of notation is acceptable since (referring to
diagram (2))

pr∗ Ui = Ui,pr′∗ Ui = U ′i .

We denote the line bundles Li = ker(Ui → Ui−1) and L′i = ker(U ′i → U ′i−1).

We can also analyze the fiber of the projection Y → F̃ lag◦1,1. Similar to the

case of the morphism Flag◦1,1 → Quot◦2, the fiber is either a single point or P1.
This motivates the following result:

Proposition 2.6. Let U2 be the universal rank-2 vector bundle on F̃ lag◦1,1.
There is a closed embedding ι : Y → P(U2) such that the following diagram
commutes:

Y P(U2)

F̃ lag◦1,1

ι

pr

Proof. A morphism Y → P(U2) consists of the following data: a map f : Y →
F̃ lag◦1,1, a line bundle L on Y and a surjective homomorphism f∗(U2) � L. Let
f = pr and L = L′1 where L′1 is the universal line bundle on Y. We claim that
corresponding map ι is a closed embedding.

By Theorem 1.7.8 of [3], it suffices to show that above each closed point p =

[O⊕2
F̃ lag◦1,1

� F2 � F1] of F̃ lag◦1,1, the map between the fibers ιp : Yp → P(U2)p

is a closed embedding, i.e., the restriction of L to Yp is a very ample line bundle
on Yp. By our previous discussions,

Yp ∼=

{
P1, if F2

∼= C⊕2x ,

a point, otherwise.

It suffices to consider the situation Yp ∼= P1, i.e., F2
∼= C⊕2x for some x ∈ S. We

see that O⊕2Y×S � E ′1 induces

O⊕2Yp
� Lp := L|Yp

.

Restricting to a closed point [C⊕2x � F ′1] 2 of Yp, this map is (canonically)

C⊕2 = H0(S,C⊕2x ) � H0(S,F ′1)

As a result, OYp
� Lp is precisely the universal quotient O⊕2 � Q1,2 of the

Grassmannian Gr1,2 ∼= P1. Hence, Lp ∼= Q1,2
∼= OP1(1) is very ample on Yp, as

desired.
2By the functor-of-points description, a closed point of Yp should correspond to the data

of a certain commutative diagram. Since the data C⊕2
x � F1 is fixed, only the part C⊕2

x � F ′1
will parametrize Yp.
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Proposition 2.7. The morphism pr : Y → F̃ lag◦1,1 is proper and satisfies

Ri pr∗OY =

{
O
F̃ lag◦1,1

, if i = 0,

0, if i > 0.

Proof. (The proof is analogous to Proposition 2.30 of [5].) By Proposition 2.6,

we can embed Y into a P1-bundle P(U2) over F̃ lag◦1,1. Denote the projection

π : P(U2) � F̃ lag◦1,1, then

Riπ∗(OP(U2)) = 0 for all i ≥ 1,

and for any coherent sheaf F on P(U2),

Riπ∗(F) = 0 for all i ≥ 2.

Now, from the exact sequence

0→ K → OP2(U2) → ι∗OY → 0,

(where K is the kernel sheaf) we obtain the long exact sequence

· · · → Riπ∗(OP2(U2))→ Ri pr∗(OY)→ Ri+1π∗(K)→ · · ·

This implies that Ri pr∗(OY) = 0 for i ≥ 1. The i = 0 case follows from Stein
factorization and the following facts:

• F̃ lag◦1,1 is normal. (Lemma 5.3)

• Y is reduced. (Lemma 5.4)

• pr is proper and all its fibers are either a point or P1. This is addressed
by previous discussions.

Proposition 2.8. The natural map

ker(E2 → E1) ↪→ E2 → E ′1

on Y × S induces a map of line bundles on Y:

L2 → L′1.

The zero section of corresponding line bundle L′1 ⊗ L−12 consists of the data

{(E1, x) = (E ′1, y)} ⊂ Y,

which is isomorphic to F̃ lag◦x,x.
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Proof. (The proof is analogous to Proposition 2.28 of [5]) By the functorial
description, a map from T to the zero locus of L′1⊗L−12 corresponds to the data

E1

O⊕2S×T E2 0

E ′1

yx

y x

such that
πT∗ ker(E2 → E1)→ πT∗E ′1

is the zero map. Denote ker(E2 → E1) = K and ker(E2 → E ′1) = K′. Since πT is
flat, this means that

K → E ′1
is also zero. Thus, K ⊂ K′, i.e., Γx∗(L2)→ Γy∗(L′2) is injective. This gives x = y
and that L2 → L′2 is injective (since Γx∗ is exact). From the exact sequence

0→ K′/K → E1 = E2/K → E ′1 = E2/K′ → 0,

we also see that L1 � L′1 is surjective. Note that L1 ⊗ L2
∼= L′1 ⊗ L′2 ∼= OT

since we have an exact sequence

0→ L2 → O⊕2T → L1 → 0.

As a result, we have

OT ↪→ L′2L−12
∼= L′1L−11 � OT

This shows that OT is a direct summand of L1L′−11 and hence they must be
equal. Therefore, E1 = E ′1, as desired.

2.2 Moduli spaces related to length-3 coherent sheaves

Similar to Flag◦1,1, Flag◦1,1,1 has the following local description:

Flagloc1,1,1 = {X,Y ∈ B1,1,1 : XY = Y X}.

This also applies to Flag◦1,2, F lag
◦
2,1, etc.

Define Y+ to be the fiber product

Y+ ˜Flag◦+x,y,x

˜Flag◦+y,x,x Flag◦2,1 × S × S

pr+

pr′+ φ

φ′

12



where φ, φ′ are defined as follows. For a closed point p = [E3
x
� E2

y
� E1

x
� 0]

of ˜Flag◦+x,y,x (here the framings of E3 and E1 are not written out), set

φ(p) := ([E3 � E1 � 0](with the same framings), x, y).

In analogy, for a closed point q = [E ′3
y
� E ′2

x
� E ′1

x
� 0] of ˜Flag◦+y,x,x (the framings

at E ′3 and E ′1 are not written out), set

φ′(q) = ([E ′3 � E ′1 � 0](with the same framings), x, y).

We also define Y− to be the fiber product

Y− ˜Flag◦−x,x,y

˜Flag◦−x,y,x Flag◦1,2 × S × S

pr−

pr′− φ

φ′

Proposition 2.9. Y+ has the following functor-of-points description. For an
scheme T , the set of T -points of Y+ is in bijection with the data

• Commutative diagrams

O⊕3S×T OS×T

E3 E1

E2

E3 E1 0

E ′2

yx

y

x

x

(3)

with maps x, y : T → S such that there exist line bundles L1,L2,L3,L′2,L′3
on T satisfying

ker(E3 → E2) ∼= Γx∗L3, ker(E3 → E ′2) ∼= Γy∗L′3, . . .

• The above data induce isomorphisms O⊕iT ∼= prT∗ Ei for i ∈ {1, 3}.

A similar functorial description also applies to Y−, i.e., it is parametrized by
the data

O⊕3 O

E3 E2

,

E1

E3 E2 0

E ′1

y

x

x

y x

13



Proposition 2.10. On ˜Flag◦+x,y,x, denote U = ker(U3 � U1), a rank 2 vector
bundle. There is a closed embedding ι : Y+ ↪→ P(U) such that the following
diagram commutes:

Y+ P(U)

˜Flag◦+x,y,x

ι

pr+

Similar results apply to Y+ → ˜Flag◦+y,x,x, Y− → ˜Flag◦−x,y,x, and Y → ˜Flag◦−x,x,y.

Before proving this proposition, we would like to discuss the fiber of Y+
above a closed point p = [E3

x
� E2

y
� E1

x
� 0] of ˜Flag◦+x,y,x (the framings at E3

and E1 are not written out). The fiber is parametrized by a length-2 sheaf E ′2 on
S which fits into diagram (3). Up to isomorphism, the maps E3 � E ′2 � E1 have
the same data as a length-1 subsheaf ker(E3 → E ′2) ⊆ ker(E3 → E1) supported
on y. Thus, by previous discussions we have

Y+,p ∼=

{
P1, if x = y and ker(E3 → E1) ∼= C⊕2x ,

a point, otherwise.

Proof of Proposition 2.10. This is similar to the proof of Proposition 2.6.

Proposition 2.11. The morphism pr+ : Y+ → ˜Flag◦+x,y,x is proper and satisfies

Ri pr+∗OY+ =

{
O ˜Flag◦+x,y,x

, if i = 0,

0, if i > 0.

Similar results apply to Y+ → ˜Flag◦+y,x,x, Y− → ˜Flag◦−x,y,x, and Y− → ˜Flag◦−x,x,y.

Proof. This is similar to the proof of Proposition 2.7. We first apply Proposition
2.10 to show that Ri pr+∗OY+

= 0 for i > 0. For the i = 0 case, we need to
verify the following statements:

• ˜Flag◦+x,y,x is normal. (Lemma 5.3)

• Y+ is reduced. (Lemma 5.4)

• The fiber of pr+ is either a point or P1. This is already addressed in the
previous discussions.

As in the previous section, there are universal vector bundles U3,U2,U ′2,U1
and universal line bundles L3,L2,L1,L′3,L′2 on Y+.

14



Proposition 2.12. The natural map

ker(E3 → E2)→ ker(E ′2 → E1)

induces a map of line bundles on Y+:

L3 → L′2

The zero section of corresponding line bundle L′2 ⊗ L−13 consists of

{(E2, x) = (E ′2, y)} ⊂ Y+,

which is isomorphic to ˜Flag◦+x,x,x.
A similar result applies to L′1 ⊗ L−12 on Y−.

Proof. This is analogous to the proof of Proposition 2.8.

3 K-theoretic Hall algebras and commutator re-
lations

3.1 Equivariant K-theory

In this section, we recall some basic definitions and properties of equivariant
K-theory. Let G be a reducitive group and X be a scheme over C. All objects
and morphisms in this section will be equipped with G-equivariant structures.
Suppose X is a scheme over C.

The Grothendieck group KG(X) of G-equivariant coherent sheaves on X is
an abelian group generated by G-equivariant coherent sheaves on X, modulo
the relation [F ] = [F1] + [F2] if there exists a G-equivariant exact sequence

0→ F1 → F → F2 → 0.

Let f : X → Y be a G-equivariant morphism of quasi-projective schemes. If
f is proper, then there is a pushforward map

f∗ : KG(X)→ KG(Y )

defined by

f∗[F ] =
∑
i

(−1)i[Rif∗F ].

This is well-defined since Rif∗F vanishes for large i.
On the other hand, if f has finite Tor dimension (for example, when f is flat

or smooth), then there is a pullback map

f∗ : KG(Y )→ KG(X)

defined by

f∗[G] =
∑
i

(−1)i[TorOY
i (OX ,G)].
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3.2 Refined Gysin maps

A morphism f : X → Y is called a local complete intersection (l.c.i.) morphism
if f is the composition of a regular embedding and a smooth morphism. In this
case, f has finite Tor dimension.

Definition 3.1. Suppose we have a Cartesian diagram

X ′ X

Y ′ Y

f ′ f

where f is a l.c.i. morphism. The refined Gysin map f ! : K(Y ′) → K(X ′) is
defined by

f !([F ]) =
∑
i

(−1)i[TorOY
i (OX ,F)].

An important property of refined Gysin maps is the following.

Lemma 3.2 (Lemma 3.1 of [1]). Suppose we have Cartesian squares

X ′′ X ′ X

Y ′′ Y ′ Y

h′

f ′′ f ′ f

h

where h is proper and f is l.c.i. Then

f !h∗ = h′∗f
! : K(Y ′′)→ K(X).

The definition and properties of refined Gysin maps carry verbatim to the
equivariant K-theory.

3.3 Induction

This section follows from Chapter 5.2 of [2]. Let H ⊂ G be a closed algebraic
subgroup and X be a scheme with H-action. We can form the induced space
G ×H X: it is the space of orbits of H acting freely on G × X by h · (g, x) =
(gh−1, hx). G×H X can be identified as the quotient scheme (G×X)/H.

The projection G × X → G induces a flat morphism (G × X)/H → G/H
with fiber X. For any G-equivariant coherent sheaf F on G ×H X, we can
restrict F to the fiber over the base point e ∈ G/H. Such a restriction gives an
equivalence of categories

res : CohG((G×X)/H)→ CohH(X).

This gives a canonical isomorphism

res : KG((G×X)/H)→ KH(X)
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and the inverse map is called the induction from H to G:

indGH : KH(X)→ KG((G×X)/H).

The functoriality of this construction implies:

Corollary 3.3. Suppose H is a closed algebraic subgroup of H1, H2, which are
closed algebraic subgroups of G. Let X be an H-scheme.

(a) We have

indGH1
◦ indH1

H = indGH2
◦ indH2

H : KH(X)→ KG((G×X)/H).

(b) Suppose f : X → Y is an H-equivariant, proper morphism. Then we have
a commutative diagram

KH(X) KH(Y )

KG((G×X)/H) KG((G× Y )/H)

indG
H indG

H

3.4 Derived fiber squares

Consider a Cartesian diagram

X ′ X

Y ′ Y

g

f ′ f

g′

(4)

where f : X → Y is a l.c.i. morphism and g′ : Y ′ → Y is a regular closed
embedding.

Definition 3.4. In diagram (4), if X ′ has the expected dimension, i.e., if

dimX ′ − dimY ′ = dimX − dimY,

then we say that (4) is a derived fiber square.

A derived fiber square has the following property:

Proposition 3.5. Suppose (4) is a derived fiber square, then f ′∗ and f ! agree
on locally free sheaves as maps K(Y ′)→ K(X ′).

Proof. Since every l.c.i. morphism can be factored into a composition of a
smooth morphism and a regular closed embedding, we can write f = f2 ◦ f1,

17



where f1 : X → Z is a regular embedding and f2 : Z → Y is smooth. Consider
the Cartesian diagram

X ′ X

Z ′ Z

Y ′ Y

f ′1 f1

f ′2 f2

Since relative dimension is preserved under base change of smooth morphism,
we have

dimZ − dimY = dimZ ′ − dimY ′.

This implies that
dimX − dimZ = dimX ′ − dimZ ′.

Therefore, we can assume in our original diagram that f is a smooth morphism
or a regular closed embedding.

If f is smooth, then f ′ is also smooth and hence flat. Thus, both f ′∗ and f !

agree with the usual non-derived pullback.
If f is a regular closed embedding, then X ′ having the expected dimension

implies that both g and f ′ are also regular embeddings. It suffices to consider
the case when X,Y are affine, since the refined Gysin map can be computed
affine-locally. By inducting on the codimension of X in Y , it suffices to prove the
case when codim X = 1, i.e., X is cut out by a single function a of Y = SpecA.
In this case,

TorOY
i (OX ,F) = 0

for all i ≥ 2 and
TorOY

1 (OX ,F) = ker(F ·a→ F).

Since f ′ is also regular, ker(F ·a→ F) = 0 when F is free on X, in which case

f !([F ]) = TorOY
0 (OX ,F) = F ⊗OX′ OY ′ = f ′∗([F ]),

as desired.

3.5 K-theoretic Hall algebra of Quot schemes

This section mainly follows from [7]. Define

K(Quot) :=

∞⊕
n=0

KGLn(Quot◦n)

as a graded abelian group. [7] constructed a homomorphism

∗Quot : KGLn(Quot◦n)⊗KGLm
(Quot◦m)→ KGLn+m

(Quot◦n+m)
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which provides K(Quot) with an algebra structure. (K(Quot), ∗Quot) is called
the K-theoretic Hall algebra of Quot schemes. It can be shown that this algebra
is associative.

The key ingredient of the contruction of ∗Quot is a homomorphism

ψ!
m,n : KGLn×GLm

(Quot◦n ×Quot◦m)→ KPn,m
(Flag◦n,m)

The map ψ!
m,n is given by a refined Gysin pullback in the following fiber diagram:

Flag◦n,m Wn,m

Quot◦n ×Quot◦m Vn,m

ψn,m

where Wn,m and Vn,m are vector bundles over Quot◦n ×Quot◦m. With ψ!
m,n, we

can define ∗Quot as the composition

KGLn
(Quot◦n)⊗KGLm

(Quot◦m) KGLn×GLm
(Quot◦n ×Quot◦m) KPm,n

(Quot◦n ×Quot◦m)

KPm,n(Flag◦n,m) KGLn+m( ˜Flag◦n,m) KGLn+m(Quot◦n+m)

ψ!
n,m

(5)

3.6 K-theory classes corresponding to e(d1,...,dn)

For n = 1, 2, 3, we would like to associate a K-theory class corresponding to the
element e(d1,...,dn) which will appear in the elliptic Hall algebra. We shall define
e(d1,...,dn) as a class in a certain equivariant K-theory group of Quot◦n.

• n = 1. Consider the C×-equivariant K-theory group KC×(S), where C×
acts trivially on S. For each integer d, define e(d) to be the class [Ld] ∈
KC×(S), where L is the structure sheaf OS with a weight-1 C×-action
(i.e., a ∈ C× acts on a section of L by multiplication).

• n = 2. Let d1, d2 be two integers. Consider the subscheme Flag◦x,x ↪→
Flag◦1,1 with P1,1-action and P1,1-equivariant universal line bundles L1,
L2 on Flag◦x,x. We define

e(d1,d2) := Ld11 L
d2
2 ∈ KP1,1(Flag◦x,x)

Via the pushforward Flag◦x,x ↪→ Flag◦1,1, we can think of e(d1,d2) as the
class

Ld11 L
d2
2 [OFlag◦x,x

] ∈ KP1,1
(Flag◦1,1).

Finally, consider the homomorphism

KP1,1
(Flag◦x,x)

ind
GL2
P1,1−→ KGL2

(F̃ lag◦x,x)→ KGL2
(Quot◦2)
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where the first arrow is given by the induction from the closed sub-
group P1,1 of GL2 and the second arrow induced by the proper morphism

F̃ lag◦x,x → Quot◦2. Abusing notations, We also denote the image of e(d1,d2)
in KGL2

(Quot◦2) as e(d1,d2).

• n = 3. Generalizing the idea of n = 2 case, we define

e(d1,d2,d3) := Ld11 L
d2
2 L

d3
3 ∈ KP1,1,1

(Flag◦x,x,x).

Furthermore, consider the homomorphism

KP1,1,1(Flag◦x,x,x)
ind

GL3
P1,1,1−→ KGL3( ˜Flag◦x,x,x)→ KGL3(Quot◦3).

We abuse our notations to denote the image of e(d1,d2,d3) along the above
composition by e(d1,d2,d3) as well.

For general n, it is possible to construct e(d1,...,dn) in an analogous way.
However, the moduli spaces involved in the construction will be highly singular
and it is unclear whether the commutator relations generalizing Proposition 3.6
and Proposition 3.7 will hold.

3.7 Commutator relations

Proposition 3.6. Suppose d, k are integers with d ≥ k, then

[e(d), e(k)] := e(d) ∗ e(k) − e(k) ∗ e(d) =

d−1∑
a=k

e(a,d+k−a) ∈ KGL2
(Quot◦2).

Proof. In diagram (5), we consider the image of e(d)⊗e(k) along the composition:

e(d) ⊗ e(k) = [Ld]⊗ [Lk] ∈ KC×(S)⊗KC×(S)

7→ [Ld(1) ⊗ L
k
(2)] ∈ KC××C×(S × S)

7→ [Ld(1) ⊗ L
k
(2)] ∈ KP1,1(S × S)

where L,L(1),L(2) are isomorphic to the structure sheaves. L has a weight-1 C×
action, L(1) has a weight-(1, 0) C× × C× action, and L(2) has a weight-(0, 1)
C× × C× action. By Proposition 3.5, we have

ψ!
1,1[Ld(1) ⊗ L

k
(2)] = [ψ∗1,1(Ld(1) ⊗ L

k
(2))] = Ld1 ⊗ Lk2 ∈ KP1,1

(Flag◦1,1).

Thus,

e(d) ⊗ e(k) 7→ [Ld1 ⊗ Lk2 ] ∈ KP1,1(Flag◦1,1) 7→ [Ld1 ⊗ Lk2 ] ∈ KGL2
(F̃ lag◦1,1).
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Now consider the commutative diagram

Y F̃ lag◦1,1

F̃ lag◦1,1 Quot◦2 × S × S

Quot◦2

pr

pr′ φ

φ′

p

By Proposition 2.7 and the projection formula, the map

pr∗ pr∗ : KGL2
(F̃ lag◦1,1)→ KGL2

(Y)→ KGL2
(F̃ lag◦1,1)

is an identity on classes of locally free sheaves. The same applies to pr′∗ pr′∗. This
shows that we could compute the corresponding element [e(d), e(k)] on KGL2

(Y)
and then push forward to KGL2

(Quot◦2). As a result,

[e(d), e(k)] 7→ [Ld1Lk2 ]− [Lk1Ld2] ∈ KGL2
(F̃ lag◦1,1)

7→ [Ld1Lk2 ]− [L′k1 L′d2 ] ∈ KGL2
(Y),

where in the second line, we pullback the class [Ld1Lk2 ] via pr and the class [Lk1Ld2]
via pr′ - this is acceptable since pr∗ pr∗ = pr′∗ pr′∗ = id on locally free sheaves
and p ◦ φ ◦ pr = p ◦ φ′ ◦ pr′ as maps Y → Quot◦2.

By Proposition 2.8, there is an exact sequence of GL2-equivariant coherent
sheaves on Y:

0→ L′−11 ⊗ L2 → OY → O ˜Flag◦x,x

→ 0

Since L1L2
∼= L′1L′2, on KGL2

(Y) we have

[L1]− [L′2] = [O ˜Flag◦x,x

⊗ L′2] = [O ˜Flag◦x,x

][L′2]

From this, we can calculate on KGL2
(Y) that

[Ld1Lk2 ]− [L′k1 L′d2 ] = [Lk1Lk2 ]([L1]d−k − [L′2]d−k)

= [Lk1Lk2 ]([L1]− [L′2])

d−k−1∑
i=0

[Li1L′d−k−i−12 ]

= [Lk1Lk2 ][L′2][O ˜Flag◦x,x

]

d−k−1∑
i=0

[Li1L′d−k−i−12 ]

Again, by Proposition 2.7 and projection formula, we can essentially view this
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as a class on KGL2(F̃ lag◦x,x). On F̃ lag◦x,x, L′1 ∼= L1 and L′2 ∼= L2, so

[e(d), e(k)] 7→ [Lk1Lk+1
2 ]

d−k−1∑
i=0

[Li1Ld−k−i−12 ] ∈ KGL2(F̃ lag◦x,x)

=

d−k−1∑
i=0

[Lk+i1 Ld−i2 ] ∈ KGL2
(F̃ lag◦x,x)

7→
d−1∑
a=k

e(a,d+k−a) ∈ KGL2(Quot◦2).

This completes the proof.

Proposition 3.7. Suppose d1, d2, k are integers, then

[e(d1,d2), e(k)] =

{
−
∑k−1
a=d1

e(a,d1+k−a,d2), if k ≥ d1,∑d1−1
a=k e(a,d1+k−a,d2), if k < d1.

+

{
−
∑k−1
a=d2

e(d1,a,d2+k−a), if k ≥ d2,∑d2−1
a=k e(d1,a,d2+k−a), if k < d2.

Proof. • Step 1. We first show that the following diagram is a Cartesian
diagram:

Flag◦1,1,1 Flag◦2,1

Flag◦1,1 × S Quot◦2 × S

Let T be a scheme, then a map from T to the fiber product consists of
the following data:

O⊕3S×T OS×T

E3 E1

,

O⊕2S×T OS×T

E ′2 E ′1

such that we have exact sequences

0 O⊕2S×T O⊕3S×T OS×T 0

0 E ′2 E3 E1 0

Denote K = ker(E ′2 → E ′1), then we can form a commutative diagram

OS×T O⊕2S×T O⊕3S×T OS×T 0

K E ′2 E3 E1 0
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Define E2 := E3/K, then E3 � E1 induces E2 � E1 and we obtain a
commutative diagram

O⊕3S×T O⊕2S×T OS×T 0

E3 E2 E1 0

which is the data of a map T → Flag◦1,1,1. This data defines a morphism
from the fiber product of Flag◦2,1 and Flag◦1,1×S (above the base Quot◦2×
S) to Flag◦1,1,1. The construction of the morphism in the other direction
is clear. We can also check that these two morphisms are inverses to each
other.

• Step 2. Note that we have another Cartesian diagram

˜Flag◦+x,x,y ˜Flag◦+1,1,1 Flag◦1,1,1

F̃ lag◦x,x × S F̃ lag◦1,1 × S F lag◦1,1 × S

By step 1,

˜Flag◦+x,x,y Flag◦2,1 W2,1

F̃ lag◦x,x × S Quot◦2 × S V2,1

p+

ψ2,1

p×id

is a fiber diagram. By projection formula, e(d1,d2)⊗ e(k) can be thought of

as a class [Ld11 L
d2
2 �Lk] on KGL2×GL1

(F̃ lag◦x,x×S), where L is line bundle

OS with weight-1 C×-action. Since the morphism p : F̃ lag◦x,x → Quot◦2 is
proper, by Lemma 3.2,

ψ!
2,1 ◦ (p× id)∗ = p+∗ ◦ ψ!

2,1 : KP1,2(F̃ lag◦x,x × S)→ KP1,2(Flag◦2,1).

To show that

ψ!
2,1 : KP1,2

(F̃ lag◦x,x × S)→ KP1,2
( ˜Flag◦+x,x,y)

agrees with the usual pullback, we note that V2,1 and W2,1 are vector
bundles over Quot◦2 × S and Quot◦2 × S → V2,1 is the inclusion of zero

section. Let Ṽ2,1 and W̃2,1 be the pullback of V2,1 and W2,1 along F̃ lag◦x,x×
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S → Quot◦2 × S. Then we have a Cartesian diagram

˜Flag◦+x,x,y W̃2,1

F̃ lag◦x,x × S Ṽ2,1

ψ̃2,1
(6)

By [7], ψ̃2,1

!
= ψ!

2,1. Note that

dim ˜Flag◦+x,x,y − dim(F̃ lag◦x,x × S) = 9− 7 = 2

and

dim W̃2,1 − dim Ṽ2,1 = dimW2,1 − dimV2,1 = rankO⊕2/E2 = 2,

so diagram (6) is a derived fiber square. By Proposition 3.5, ψ̃2,1

!
agrees

with the usual pullback. Therefore,

ψ!
2,1[Ld11 L

d2
2 � Lk] = [Ld12 L

d2
3 Lk1 ] ∈ KP1,2

( ˜Flag◦+x,x,y).

• Step 3. In the previous step, we see that e(d1,d2) ⊗ e(k) 7→ [Lk1L
d1
2 L

d2
3 ] ∈

KP1,2
( ˜Flag◦+x,x,y). We can regard it as a class in KP1,1,1

(Flag◦x,x,y) (also

denoted by [Lk1L
d1
2 L

d2
3 ]) via the induction map ind

P1,2

P1,1,1
. Furthermore, by

Corollary 3.3, we have a commutative diagram

KP1,1,1(Flag◦x,x,y) KP1,2( ˜Flag◦+x,x,y) KP1,2(Flag◦2,1)

KP2,1( ˜Flag◦−x,x,y) KGL3( ˜Flag◦x,x,y) KGL3(F̃ lag◦2,1)

KGL3
(Quot◦3)

ind
P1,2
P1,1,1

ind
P2,1
P1,1,1

ind
GL3
P1,2

ind
GL3
P1,2

ind
GL3
P2,1 (7)

The upper-right path agrees with diagram (5). However, we will use the
lower-left path to evaluate the commutator [e(d1,d2), e(k)].

As before,

e(d1,d2) ⊗ e(k) 7→ [Lk1L
d1
2 L

d2
3 ] ∈ KP2,1

( ˜Flag◦−x,x,y)

7→ [Lk1L
d1
2 L

d2
3 ] ∈ KP2,1(Y−)

We consider an auxiliary class [Ld11 Lk2L
d2
3 ] ∈ KP1,1,1

(Flag◦x,y,x). Denote

e ∈ KGL3
(Quot◦3) to be the image of [Ld11 Lk2L

d2
3 ] under the composition

KP1,1,1
(Flag◦x,y,x)

ind
GL3
P1,1,1−→ KGL3

( ˜Flag◦x,y,x)→ KGL3
(Quot◦3).
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Again, by the projection formula and the fact that P2,1 is a P1-bundle over

P1,1,1, we can view this auxiliary class as an element in KP2,1
( ˜Flag◦−x,y,x).

By Proposition 2.11, we can further view it as an element

[L′d11 L′k2 L
d2
3 ] ∈ KP2,1

(Y−).

By Proposition 2.12, there is an exact sequence on Y−:

0→ L′2L−11 → OY− → O ˜Flag◦−x,x,x

→ 0.

After a similar calculation as in the proof of Proposition 3.6, we obtain

[Lk1L
d1
2 ]− [L′d11 L′k2 ] =

{
−
∑k−1
a=d1

[La1L
d1+k−a
2 ], if k ≥ d1,∑d1−1

a=k [La1L
d1+k−a
2 ], if k < d1.

as an element of KP2,1( ˜Flag◦−x,x,x). Moreover, combining the following com-
mutative diagram

KP2,1
( ˜Flag◦−x,x,x) KP2,1

( ˜Flag◦−x,x,y)

KGL3( ˜Flag◦x,x,x) KGL3( ˜Flag◦x,x,y)

ind
GL3
P2,1

ind
GL3
P2,1

and diagram (7), we see that

e(d1,d2) ∗ e(k) − e =

{
−
∑k−1
a=d1

e(a,d1+k−a,d2), if k ≥ d1,∑d1−1
a=k e(a,d1+k−a,d2), if k < d1.

in KGL3(Quot◦3).

• Step 4. We can use similar method to calculate the difference e − e(k) ∗
e(d1,d2) in KGL3(Quot◦3):

e− e(k) ∗ e(d1,d2) =

{
−
∑k−1
a=d2

e(d1,a,d2+k−a), if k ≥ d2,∑d2−1
a=k e(d1,a,d2+k−a), if k < d2.

Combining this with the calculation of e(d1,d2) ∗ e(k) − e in the previous
paragraph, we obtain the desired formula of [e(d1,d2), e(k)].

4 Homomorphism between elliptic and K-theoretic
Hall algebras

4.1 Elliptic Hall algebra

This section follows from section 4 of [5]. Let q1, q2 be formal parameters and
q = q1q2. We define the (positive part of) elliptic Hall algebra A>0 as follows.
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Definition 4.1. The algebra A>0 is defined over the ring Z[q±1 , q
±
2 ]Sym and

generated by symbols {Ek : k ∈ Z}, modulo the following relations:

• [[Ek+1, Ek−1], Ek] = 0,

• (z−wq1)(z−wq2)
(
z − w

q

)
E(z)E(w) =

(
z − w

q1

)(
z − w

q2

)
(z−wq)E(w)E(z),

where E(z) =
∑
k∈ZEkz

−k.

An alternative definition of A>0 uses the elliptic Hall algebra, i.e., it is
generated by symbols En,k, where n, k ∈ Z and n < 0, modulo certain relations
(Theorem 4.4 of [5]). The two equivalent definitions of A>0 are identified by
Ek = E−1,k.

We will also introduce the third definition of A>0. This will be the descrip-
tion that we will use in the later sections.

Proposition 4.2. There exists a unique collection of elements E(d1,...,dn) ∈ A>0

for all d1, . . . , dn ∈ Z such that

• E(d1,...,dn)E(d′1,...,d
′
m) = E(d1,...,dn,d′1,...,d

′
m)−qE(d1,...,dn−1,dn−1,d′1+1,d′2,...,d

′
m),

• E−n,k = qgcd(n,k)−1E(d1,...,dn), where di = dkin e − d
k(i−1)
n e+ δni − δ1i .

An important relation among E(d1,...,dn) is the following.

Proposition 4.3 (Proposition 4.7 of [5]). For any d1, . . . , dn, k ∈ Z, we have

[E(d1,...,dn), E(k)] = (1− q1)(1− q2)

n∑
i=1

{∑k−1
a=di

E(d1,...,di−1,a,di+k−a,di+1,...dn), if di ≤ k,
−
∑di−1
a=k E(d1,...,di−1,a,di+k−a,di+1,...dn), if di > k,

4.2 Proof of Theorem 1.1

Before the proof of our main theorem, we state a key proposition which connects
the definition of elliptic Hall algebra and the commutator relations.

Proposition 4.4 (Proposition 4.8 of [5]). The relations in Definition 4.1 follow
from the special cases n = 1, 2 of Proposition 4.3.

Proof of Theorem 1.1. Define a map A>0 → K(Quot) as follows: for n = 1, 2, 3,

E(d1,...,dn) 7→ −(1− q1)(1− q2)e(d1,...,dn),

and we extend the map linearly (since E(k) already generates A>0). To show
that this map is an algebra homomorphism, by Proposition 4.4, it suffices to
check the commutator relations

[e(d1,...,dn), e(k)] =

n∑
i=1

{
−
∑k−1
a=di

e(d1,...,di−1,a,di+k−a,di+1,...dn), if di ≤ k,∑di−1
a=k e(d1,...,di−1,a,di+k−a,di+1,...dn), if di > k,

when n = 1, 2. These commutator relations are proven in Proposition 3.6 and
Proposition 3.7, as desired.
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5 Appendix

Here are several results related to the geometric properties of Quot and Flag
schemes.

Lemma 5.1. The schemes Flag◦1,1, Flag◦x,x,y, Flag◦x,y,x, and Flag◦y,x,x are
Cohen-Macaulay.

Proof. Since Cohen-Macaulay property is deformation invariant, by Remark 2.4
we can use the local descriptions by matrices. For Flag◦1,1, we have

Flagloc1,1 = {X,Y ∈ B1,1 : XY = Y X}

where B1,1 is the Borel subgroup consisting of all lower-triangular 2×2 matrices.
Write X = (Xij)1≤j≤i≤2 and Y = (Yij)1≤j≤i≤2, then Flagloc1,1 is isomorphic to
A6 cut out by the equation

X21(Y11 − Y22) = Y21(X11 −X22).

This shows that dimFlag◦1,1 = 5 and that it is l.c.i. In particular, Flag◦1,1 is
Cohen-Macaulay.

For Flag◦x,x,y, we have

Flaglocx,x,y = {X,Y ∈ B1,1,1 : XY = Y X,X22 = X33, Y22 = Y33}.

We can compute that Flaglocx,x,y is isomorphic to A10 cut out by equations

X21(Y11 − Y22) = Y21(X11 −X22)

X31(Y11 − Y22)− Y31(X11 −X22) = Y32X21 −X32Y21

It is not difficult to verify that the two equations give rise to a length-2 regular
sequence. Therefore, dimFlaglocx,x,y = 8 and Flag◦x,x,y is l.c.i. By symmetry,
Flag◦y,x,x is also l.c.i.

For Flag◦x,y,x, we can compute that Flaglocx,y,x is isomorphic to A10 cut out
by equations

X21(Y11 − Y22) = Y21(X11 −X22)

Y32X21 = X32Y21

X32(Y22 − Y33) = Y32(X22 −X33)

By the lemma below, Flag◦x,y,x is Cohen-Macaulay of dimension 8.

Lemma 5.2. The ring

R = C[x1, x2, x3, y1, y2, y3]/(x1y2 − x2y1, x2y3 − x3y2, x3y1 − x1y3)

is Cohen-Macaulay of dimension 4.

Proof. We claim that x1, y3, x2 + y1, x3 + y2 form a regular sequence in R.
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• x1 is not a zero divisor in R.

For the sake of contradiction, assume that there existsA,B,C, F ∈ C[x1, . . . , y3]
such that F 6∈ I and

Fx1 = A(x1y2 − x2y1) +B(x2y3 − x3y2) + C(x3y1 − x1y3).

We can further assume that A,B,C do not contain the variable x1. This
implies that {

F = Ay2 − Cy3,
y1(Cx3 −Ax2) +B(x2y3 − x3y2) = 0.

Note that for any polynomial D, by replacing (A,B,C) with (A−y3D,B−
y1D,C − y2D), the above equations are preserved. Therefore, we can
assume that B does not contain the variable y1. This gives B = 0 and
Cx3 = Ax2. Furthermore, we can write C = x2E and A = x3E for some
polynomial E. Thus,

F = Ay2 − Cy3 = E(x3y2 − x2y3) ∈ I,

a contradiction!

• y3 is not a zero divisor in R/(x1) ∼= C[x2, x3, y1, y2, y3]/(x2y1, x2y3 −
x3y2, x3y1).

For the sake of contradiction, assume that there existsA,B,C, F ∈ C[x2, . . . , y3]
such that F 6∈ I1 and

Fy3 = Ax2y1 +B(x2y3 − x3y2) + Cx3y1

We can assume that A,B,C do not contain the variable y3, so{
F = Bx2,

Ax2y1 = x3(By2 − Cy1)

Note that by replacing (A,C) with (A− x3D,C + x2D), the above equa-
tions are preserved. Thus, we can assume that A does not contain the
variable x3. This gives A = 0 and By2 = Cy1. We can write B = y1E
and C = y2E for some polynomial E. Thus,

F = Bx2 = Ey1x2 ∈ I1,

a contradiction!

• x2+y1 is not a zero divisor inR/(x1, y3) ∼= C[x2, x3, y1, y2]/(x2y1, x3y2, x3y1).
Denote x2 = t − y1. We need to show that t is not a zero divisor in
C[x3, y1, y2, t]/((t− y1)y1, x3y2, x3y1)
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For the sake of contradiction, assume that there exists A,B,C, F such
that F 6∈ I2 and

Ft = A(t− y1)y1 +Bx3y2 + Cx3y1.

Assume that A,B,C do not contain the variable t, then{
F = Ay1,

Ay21 = x3(By2 + Cy1)

The second equation implies that A = x3A
′ for some polynomial A. Thus,

F = Ay1 = A′x3y1 ∈ I2,

a contradiction!

• x3 + y2 is not a zero divisor in R/(x1, y3, x2 + y1) ∼= C[x2, x3, y1, y2]/(x2 +
y1, x2y1, x3y2, x3y1) ∼= C[x3, y1, y2]/(y21 , x3y2, x3y1). Denote y2 = s − x3,
then we need to show that s is not a zero divisor in C[x3, y1, s]/(y

2
1 , x3(s−

x3), x3y1).

For the sake of contradiction, assume that there exists A,B,C, F such
that F 6∈ I3 and

Fs = Ay21 +Bx3(s− x3) + Cx3y1.

Assuming A,B,C do not contain the variable s, we obtain{
F = Bx3,

Bx23 = y1(Ay1 + Cx3).

The second equation implies that B = y1B
′ for some polynomial B.

Therefore,
F = Bx3 = B′x3y1 ∈ I3,

a contradiction!

Finally, it is easy to vefiry that x1y2 − x2y1, x2y3 − x3y2 form a regular
sequence in C[x1, x2, x3, y1, y2, y3]. This shows that dimR ≤ 4. However, since
we can find a regular sequence of length 4 in R, dimR ≥ 4. As a result,
dimR = 4 and R is Cohen-Macaulay.

Lemma 5.3. F̃ lag◦1,1, ˜Flag◦±x,x,y, ˜Flag◦±x,y,x, ˜Flag◦±y,x,x are normal.

Proof. Since F̃ lag◦1,1 is P1-bundle over Flag◦1,1, it suffices to show that Flag◦1,1 is
normal. Here we use the fact that a ring R is normal if and only if the polynomial
ring R[t1, . . . , tn] is normal. Furthermore, Flag◦1,1 is Cohen-Macaulay, so we only
need to prove that the singular locus of Flag◦1,1 is of codimension ≥ 2.
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Since normality is deformation invariant, by Remark 2.4 we can use the local
matrix descriptions. From the proof of Lemma 5.1, we see that Flagloc1,1 is cut
out by the equation

X21(Y11 − Y22)− Y21(X11 −X22).

By taking partial derivatives, we can compute that the singular locus is locally
given by

X21 = Y21 = X11 −X22 = Y11 − Y22 = 0,

which is of codimension 4, as desired.
Similarly, for the other cases, it suffices to show that the singular loci of

Flag◦x,x,y, Flag◦x,y,x, and Flag◦y,x,x have codimension ≥ 2. Here we only prove

the Flag◦x,y,x case. In the proof of Lemma 5.1, we computed that Flaglocx,y,x is
isomorphic to

A4 × A6/(x1y2 − x2y1, x2y3 − x3y2, x3y1 − x1y3).

The Jacobian matrix of this ideal is

J =

y2 −y1 −x2 x1
y3 −y1 −x3 x1

y3 −y2 −x3 x2


At general points, the rank of J is 2. The singular locus is the set of points
where rank(J) ≤ 1. This only happens when xi = yi = 0 for all i. Thus, the
singular locus of Flag◦x,y,x has codimension 4, as desired.

Lemma 5.4. Y,Y± are reduced.

Proof. Let Y ′ be the fiber product

Y ′ Flag◦1,1 ×GL2

Flag◦1,1 ×GL2 Quot◦2 × S × S

φ

φ′

(8)

Then Y ′ is a P1,1×P1,1-bundle over Y. As P1,1 is isomorphic to an open subset
of A3, it suffices to show that Y ′ is reduced. Here we use the fact that a ring R
is reduced if and only if the polynomial ring R[t1, . . . , tn] is reduced.

We would like to explicitly describe the maps φ and φ′ locally via matrices.
We have discussed that locally

Flagloc1,1 = {X,Y ∈ B1,1 : XY = Y X}.

Furthermore, for a closed point

p =


O⊕2S OS 0

E2 E1 0x y

 ,
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of Flagloc1,1, the corresponding X,Y ∈ B1,1 satisfies

y = (X11, Y11), x = (X22, Y22) ∈ A2.

As a result, the map φ can be explicitly described as

φ((X,Y ), g) = ((gXg−1, gY g−1), (X22, Y22), (X11, Y11)).

Similarly, φ′ is defined as

φ′((X,Y ), g) := ((gXg−1, gY g−1), (X11, Y11), (X22, Y22)).

Therefore, the closed points of Y ′ can be locally described as:

(X,Y, g;X ′, Y ′, g′) : X,Y,X ′, Y ′ ∈ B1,1, g, g
′ ∈ GL2

such that 
(X11, Y11) = (X ′22, Y

′
22), (X22, Y22) = (X ′11, Y

′
11),

gXg−1 = g′X ′g′−1, gY g−1 = g′Y ′g′−1,

XY = Y X,X ′Y ′ = Y ′X ′.

At this point, we could have computed the explicit expression for Y ′ and
verify that it is indeed reduced. A way to simplify this calculation is to observe
that there is a free GL2-action on Y ′. GL2 acts on fiber diagram (8) by act-
ing on each Flag◦1,1, Quot◦2, and S trivially, while acting on each GL2 by left
multiplication. Locally in terms of matrices, we can describe this action by

h · (X,Y, g;X ′, Y ′, g′) := (X,Y, gh−1;X ′, Y ′, g′h−1)

for h ∈ GL2. We can easily identify the quotient Y ′/GL2 as a scheme: it is the
fiber product

Y ′′ Flag◦1,1 ×GL2

Flag◦1,1 Quot◦2 × S × S

φ

ϕ

where ϕ is the map φ′(·,1). As before, since GL2 is an open subscheme of A4,
the reducedness of Y ′ is equivalent to the reducedness of Y ′′.

Now, the closed points of Y ′′ can be described locally as

(X,Y, g;X ′, Y ′) : X,Y,X ′, Y ′ ∈ B1,1, g ∈ GL2

such that 
(X11, Y11) = (X ′22, Y

′
22), (X22, Y22) = (X ′11, Y

′
11)

gXg−1 = X ′, gY g−1 = Y ′,

XY = Y X,X ′Y ′ = Y ′X ′.
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The condition X ′g = gX is equivalent to
g11(X22 −X11) = g12X21,

g11X
′
21 = g22X21,

g22(X22 −X11) = g12X
′
21

and similar for Y ′g = gY . The condition XY = Y X is equivalent to

X21(Y22 − Y11) = Y21(X22 −X11).

We have two cases (since g ∈ GL2):

• g11 6= 0 (i.e., in the open subset {g11 6= 0} ∩GL2). We obtain{
X22 −X11 = g12

g11
X21,

X ′21 = g22
g11
X21,

and

{
Y22 − Y11 = g12

g11
Y21,

Y ′21 = g22
g11
Y21.

These equations cut out an affine space.

• g12 6= 0. We obtain{
X ′21 = g22

g12
(X22 −X11),

X21 = g11
g12

(X22 −X11),
and

{
Y ′21 = g22

g12
(Y22 − Y11),

Y21 = g11
g12

(Y22 − Y11).

These equations cut out an affine space.

This shows that Y ′′ is reduced, as desired.
For the scheme Y+, by applying the same argument, it suffices to show that

the following fiber product is reduced:

Y ′+ ˜Flag◦+x,y,x

Flag◦y,x,x Flag◦2,1 × S × S

Using the local description

˜Flagloc+x,y,x = {X,Y ∈ B1,1,1, g ∈ P1,2 : XY = Y X,X11 = X33, Y11 = Y33}
Flagloc+y,x,x = {X ′, Y ′ ∈ B1,1,1 : X ′Y ′ = Y ′X ′, X ′11 = X ′22, Y

′
11 = Y ′22}

we can write Y+ locally as points (g,X, Y ;X ′, Y ′) which satisfy:
X11 = X33 = X ′11 = X ′22, X22 = X ′33,

Y11 = Y33 = Y ′11 = Y ′22, Y22 = Y ′33,

X ′ = gXg−1, Y ′ = gY g−1,

XY − Y X = X ′Y ′ − Y ′X ′ = 0.
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The condition X ′g = gX is equivalent to g11X11

g11X
′
21 + g21X11 g22X11 g23X11

g11X
′
31 + g21X

′
32 + g31X22 g22X

′
32 + g32X22 g23X

′
32 + g33X22


=

 g11X11

g21X11 + g22X21 + g23X31 g22X22 + g23X32 g23X11

g31X11 + g32X21 + g33X31 g32X22 + g33X32 g33X11


Since g11 6= 0, we can solve X ′21, X

′
31:

X ′21 =
1

g11
(g22X21 + g23X31)

X ′31 =
1

g11
(g31X11 + g32X21 + g33X31 − g21X ′32 − g31X22)

The other equations are:
g22X

′
32 = g33X32,

g22(X11 −X22) = g23X32,

g33(X11 −X22) = g23X
′
32.

The condition XY − Y X = 0 gives
X21(Y11 − Y22) = Y21(X11 −X22),

X32(Y11 − Y22) = Y32(X11 −X22),

X21Y32 = X32Y21.

Denote X0 = X11 −X22 and Y0 = Y11 − Y22. Then Y ′+ is locally isomorphic to

SpecC[X11, X21, X31, X32, X0, X
′
32, Y11, Y21, Y31, Y32, Y0, Y

′
32, gij ]

cut out by the equations
g22X

′
32 = g33X32,

g22X0 = g23X32,

g33X0 = g23X
′
32.

,


g22Y

′
32 = g33Y32,

g22Y0 = g23Y32,

g33Y0 = g23Y
′
32.

,


X21Y0 = Y21X0,

X32Y0 = Y32X0,

X21Y32 = X32Y21.

On the open subset D(g23) (i.e., {g23 6= 0}∩P1,2), we have X32 = g22X0

g23
and

X ′32 = g33X0

g23
and similarly for Y ’s. Thus, the remaining equation is

X21Y0 = Y21X0,

which is clearly a radical ideal.
On the open subset D(g22g33), we have X ′32 = g33X32

g22
and X0 = g23X32

g22
and

similarly for Y ’s. Thus, the remaining equation is

X21Y32 = X32Y21,
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which is clearly a radical ideal.
Since det g 6= 0, D(g23) ∪ D(g22g33) = Y ′+, so the proof of reducedness is

complete.

Remark 5.5. In fact, following the same proof we can deduce that Y is actually
smooth. This is surprising since Y is the fiber product of singular schemes

F̃ lag◦1,1.
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[5] Andrei Neguţ. Hecke correspondences for smooth moduli spaces of sheaves,
2018.

[6] Olivier Schiffmann and Eric Vasserot. The elliptic Hall algebra and the
K-theory of the Hilbert scheme of A2. Duke Math. J., 162(2):279–366, 2013.

[7] Yu Zhao. On the k-theoretic hall algebra of a surface, 2019.

34


	Introduction
	Moduli spaces and their geometry
	Moduli spaces related to length-2 coherent sheaves
	Moduli spaces related to length-3 coherent sheaves

	K-theoretic Hall algebras and commutator relations
	Equivariant K-theory
	Refined Gysin maps
	Induction
	Derived fiber squares
	K-theoretic Hall algebra of Quot schemes
	K-theory classes corresponding to e(d1,…,dn)
	Commutator relations

	Homomorphism between elliptic and K-theoretic Hall algebras
	Elliptic Hall algebra
	Proof of Theorem 1.1

	Appendix

