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Abstract

Internal DLA (IDLA) is an internal aggregation model in which particles perform random
walks from the origin and stop upon reaching an unoccupied site. Levine and Peres showed that,
when particles start instead from fixed point distributions, the modified IDLA processes have
deterministic scaling limits related to a certain obstacle problem. In this paper, we investigate
the convergence rate of this “extended source” IDLA in the plane to its scaling limit. We show
that, if 6 is the lattice size, the IDLA occupied set is 6%/°-close (in the Hausdorff sense) to its
scaling limit for all time, with probability at least 1 — e~/ 8215



August 30, 2020 A Convergence Rate for Extended-Source Internal DLA in the Plane — David Darrow

Contents
(1__Introductionl 2
2 Background on extended-source IDLA| 3
[3__Main result| 5
3.1 Overview of notation| . . . . . . . . . . . L 6
[3.2  Required lemmas| . . . . . . . .. 6
[3.3  The recurrent potential kernel| . . . . . . . .. .. oo o oo 8
[4 Early points imply late points| 9
4.1 The discrete harmonic function He(z)| . . . . . . . ... .. oL 9
4.2 The martingale Mc(¢)| . . . . . . . .. . 13
4.3 First estimatel . . . . . . . . e e e 16
[5 Late points imply early points| 19
0.1 The Poisson kernelon €| . . . . . .. ..o 19
D.2  Second estimatel. . . . . .. L L e 23
6 Proof of Theorem [3.1] 24
[7~ Concluding Remarks| 25

1 Introduction

Internal Diffusion Limited Aggregation (IDLA) is a probabilistic growth process on the integer lattice Z9,
first proposed by Meakin and Deutch [MDS86] to model electro-chemical polishing. Namely, IDLA follows
the growth of random sets A(n); we set A(1) = {0}, and A(n + 1) is obtained by adding to A(n) the point
at which a centered simple random walk exits A(n). With the right scaling, this process resembles a stream
of particles from the origin barraging (and thus smoothing) the inner surface of an origin-centered sphere.

In line with its applications in smoothing processes, the overall smoothness of IDLA has been an active
area of investigation. Meakin and Deutch first studied this numerically, finding that variations of A(n)
from the smooth ball were of magnitude logn in dimension 2 [MD86]. Significant progress has also been
made in proving these properties. In particular, Lawler, Bramson, and Griffeath proved that A(n)
approaches the ball of radius {/n/ws—where wy is the volume of the d-dimensional unit sphere—almost
certainly as n increases. Several groups [Law95, [AG10, [AGI13] also found convergence rates for this process.
Most recently, Jerison, Levine, and Sheffield proved that the fluctuations away from the disk are bounded
by logn in dimension 2 and y/logn in higher dimensions [JLS12, [JLST3b].

Of considerable interest is the extended-source case of IDLA, wherein particles start from a fixed point
distribution rather than all from the origin. This generalizes the applicability of IDLA to a much wider range
of surfaces, allowing us to see how different geometries interact with this smoothing process. This question
was originally investigated by Diaconis and Fulton [DF91] in the context of a “smash sum” of two domains.
Levine and Peres generalized this notion considerably, proving deterministic scaling limits for IDLA
with a piecewise constant density o : R? — Z>q of starting points. It is worth noting, but beyond the scope
of this paper, that another model with Poisson particle sources was proposed and studied by Gravner and
Quastel [GQO0].

In this paper, we investigate the convergence rate of the extended-source IDLA of Levine and Peres to its
scaling limit in dimension 2, using the techniques of Jerison et al. [JLS12]. Under the additional assumptions
that the initial mass distribution is “concentrated” (see Section [2) and the deterministic limit of its IDLA
flow is smooth, we show that—if ¢ is the lattice size—the fluctuations of extended-source IDLA are of order
83/5 or below, with probability at least 1 — e~ 1/8%°,
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We believe that this bound is non-optimal, and we discuss possibilities for improvement in Section [7}
However, we will see in a sequel to this paper that our bound is strong enough to prove weak scaling limits
of the IDLA fluctuations themselves. The latter question has been investigated in the single-source case
by Jerison, Levine, and Sheffield |[JLS14]—more recently, Eli Sadovnik [Sadl6] has shown scaling limits
for extended-source fluctuations integrated against harmonic polynomials. In the sequel, we will seek to
generalize this result and apply it to fluctuations “through time”, to better understand the covariances
between fluctuations at different times.

In Sections 2 and 3, we will introduce our main result and provide a background on existing theory needed
for our proof. The remaining sections are dedicated to the proof of Theorem Sections 4 and 5 set up the
necessary theory; the former shows that an early point implies a similarly late point, and the latter shows
that a late point implies another very early point. Section 6 combines these results in an iterative argument,
recovering the full theorem.
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for making this project possible. I would like to especially thank David Jerison and Pu Yu (MIT Department
of Mathematics) for their mentorship throughout.

2 Background on extended-source IDLA

We will focus on a specific sort of extended source—a concentrated mass distribution—slightly narrowing
the definitions introduced in [LPO8] in order to capture scaling limits for the partially-completed process.
We will give details on various extensions in the final section.

We define a (concentrated) mass distribution as a triplet (Do, {QF}, {os}) with the following properties:

1. Dg C R? is a compact, connected domain (i.e., a closure of an open set) with a smooth boundary.

2. For each i and for 0 < s <Tj, the sets Q7 CC int(Dy) have the following properties:
a) @7 is a compact domain with Vol(Q7) = s.
b) Q7° C Q' for 0 < 59 < s1 < T;.
c) 0Q is rectifiable, with arclength bounded independently of s.

3. For 0 < s <T:=> T;, wehave o5 = 1p, +Z£\L1 15¢i, where we choose increasing functions s; = s;(s)
satisfying > s; = s.

Given such a mass distribution, we also define the sets Ds, s € [0,T] to be the Diaconis—Fulton “smash”
sums

Dy=Dy@ Q7 @ aQy,
where s; = s;(s) are as above, and with the smash sum operation as defined in [LPOS]:
Definition 2.1. If A, B C %ZQ, we define the discrete smash sum A & B as follows. Let Cy = AU B, and
for each z; € {z1,...,x,} = AN B, start a simple random walk at x; and stop it upon exiting C;_;. Let y;

be its final position, and define C; = C;—1 U {y;}. Then A ® B := (), is a random set.
As proven in [LP0§], if we instead take domains A, B C R?, the smash sums A,, @ B, of

1

" m

1

= —7°NB
m

A, 7% N A, B,

approach a deterministic limit, which we label A & B. An example is pictured in Figure
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AaB

Figure 1: The smash sum A @ B is the deterministic limit of an IDLA-type growth process starting from
the sets A and B, representing the dispersal of particles in A N B to the edges of AU B. In our
setting, we see that IDLA also converges to an iterated smash sum.

Visually, Dy is a smooth outward flow from Dy, with Vol(Ds) = s 4+ Vol(Dy); we can think of D as
the result of allowing the mass at {Q;'} to diffuse (in the sense of Brownian motion) to—and accumulate
at—the edge of Dy. These sets satisfy the following key property:

Lemma 2.2. For (Ds,05) arising from a mass distribution, we have

/h:/ hos
D, R2

Example. Suppose that we take Dy = B; to be the unit disk, and we set Q5 = B\/sTw for s € [0, 7/4] and

i =1,...,N. Further define s;(s) = s/N, so that all sets )} are growing at the same rate. Visually, particles
are emanating evenly (with density V) from outwardly moving rings of radius 0 < r < 1/2, as shown in
Figure

Here, T'= N7 /4. From symmetry considerations, it is clear that Ds = B ey are outwardly expanding

for any harmonic h : Dy — R2.

disks, as in the case of a point-source.

z%' £y

v ~

Figure 2: Here, our starting set Dy = B is the unit disk, and our source points Q) = B N are identical

radially-expanding disks within it (shown in 3D for visual clarity). From symmetry, we see that
the occupied sets Dy are also growing disks.

Next, we restrict attention to smooth flows:
Definition 2.3. The flow Dy is smooth if the flow s € [0,T] — Ds is a smooth isotopy from Dy to Dr.

Note that the disks of [2] form a smooth flow. Now, given a mass distribution, there is a natural way to
discretize it. Fix an integer m, and note that f(s) = )1 ,. 0 is an increasing, piecewise constant function
of s. Let "

0=8m70 < Sm,1 < < Sm,N, =T

be a partition of [0,7] with sy k1 — Smr = O(m™2) and such that f is constant near s, for k # 0, Na.
Define the sequence Sy, = {zm.1, ..., Zm,n,,, } inductively as follows:

1. Let sy, be the smallest s, ; such that

g Lo Tsmm — E Zmyi > 0.
p=

<n
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2. Choose 2z, € %22 such that o, . (2m,n) exceeds the number of times z,, , occurs in {z,; }icn.

Intuitively, we allow the sets Q;* to expand a slight (i.e., O(m~2)) amount, and then we add all new points
to the sequence of z,,;. It is possible that multiple points may satisfy this condition for a given time—in
the limit m — oo, the order in which these “nearby” points appear will not matter.

Given these sequences S, the (resolution m) internal DLA (IDLA) associated to the mass distribution
is the following process:

Definition 2.4 (Internal DLA). Suppose we have a concentrated mass distribution with initial set Dy giving
rise to the sequences S,,. The IDLA A,,(t) associated to the mass distribution is as follows. Define the
initial set A,,(0) = %ZQ N Dy. Then, for each i > 1, start a random walk at z,,;, and let z; be the first
point in the walk outside the set A, (i — 1)—then A, (i) := A (i — 1) U {2}

Importantly, the law of A,, (i) does not depend on the order of {2, 1, ..., Zm i}, as proven by Diaconis and
Fulton [DEF9I].

We know from Levine and Peres [LP08] that the sets A,,(m?s) approach their deterministic limits D
almost surely. That is, for any € > 0, we know that

dH(Am(mzs), D;)<e

almost surely for sufficiently large m. Here and below, we use dy to denote the Hausdorff distance between
sets:

du (A, B) == infyea sup,ep d(z,y).

In the following sections, we will use this result along with an iterative argument to recover a stronger

convergence rate on A,,(m?s).

3 Main result

We will write (D;)¢ and (D). for the outer- and inner-e-neighborhoods of D, respectively. Our primary
result is the following convergence rate on the IDLA occupied sets A,, () to their deterministic scaling limits
Dq:

Theorem 3.1. Suppose D, is a smooth flow arising from a concentrated mass distribution. For large enough
m and any time s € [0,T], the fluctuation of the associated IDLA Ay, (t) is bounded as

2/5

1 B c
]P){(-DS)C5m3/5 N =7%C Ap(m?s) C (D)™ e for alls € [O,T]} <e™
m

for a constant C5 depending on the flow. Equivalently,

2/5

P [dH(Am(mzs),Ds) > Cym—3/° for any s € [O,T]} <e ™,

where dp is the Hausdorff distance.

As mentioned in the introduction, we have reason to believe that the m=3/% convergence rate so described

is non-optimal. Indeed, we will see in Lemma [5.2|that this results from a relatively rudimentary L' bound on
the convergence rate of discrete Green’s functions, rather than from the geometry of IDLA. We will discuss
suggestions for further research in Section [7}
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3.1 Overview of notation

Firstly, we will assume we have fixed a smooth, concentrated mass distribution, and we will use the language
of Section [2| to refer to it. That is, T" will always refer to the total volume of our source sets, z,,; to the ith
source point in the resolution-m discretization of our mass distribution, and Dy to the scaling limit of IDLA
started on the density os.

To discuss fluctuations of IDLA away from its scaling limit, we define the following notions of “earliness”
and “lateness”:

o We say that z € 17?2 is e-early if z € A(rm?) but z ¢ (D-)°. Let &[] be the event that some point
in A(t) is e-early.

e Similarly, we say that z is e-late if z € (D, ), but z ¢ A(tm?). Let L.[t] be the event that some point
in (Dy/p2)e is e-late.

As introduced in the preceding subsection, we will write (A)° and (A). for the outer- and inner-e-
neighborhoods of a set A ¢ R?. That is,

(A)F :={z € R? | d(z,A) < e}, (A)e i ={z€ A|d(z,A°) > €}.
Finally, for convenience and visual clarity, we will use m2s [resp., m?T, etc.] in place of |[m?s] in places
where the meaning is clear. In particular, A(sm?) := A(|sm?]).

3.2 Required lemmas

A number of existing results are necessary in the proof of Theorem [3.1} we collect many of them here.

Firstly, we use the following two estimates on IDLA. The first bounds the probability of so-called “thin
tentacles”—shown in Figure and is simply a transcription of Lemma 2 of [JLS12] in our setting. The
second is a part of the estimate of Levine and Peres [LP0§| earlier described, demonstrating that extremely
late points are unlikely.

Lemma 3.2 (Thin Tentacles). There are positive absolute constants b, Cy, and co such that for all z € %22
with d(z, Do) >,
Plz € A(t), #(A(t) N B(2,7)) < bm?r?] < Coe™ ™"

Proof. The proof can be taken verbatim from Jerison et al. [JLS12], with our scaling in mind. O

Figure 3: It is conceivable that the IDLA set A,, extends out from its limit Dy in thin tentacles, as pictured;
in Lemma we show that this is highly unlikely.

Lemma 3.3. There are absolute constants Cy,co > 0 such that for all real e > 0, T > 7 > 0, and large

enough m, ,
P (ﬁa[TmZD < Cpe—Com”/logm,
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Proof. By Levine and Peres [LPOS](p. 49), the probability P, that some z € 272N (D) is e-late is bounded
as

1
P,:=P [z e —7°n(D;). is s—late} < 4e—cm*/logm
m

for large enough m, where ¢ depends only on Sy, D-, and e. Now, #{z € 722N (D,).} = O(m?), so we
can bound the total probability of £.[rm?] as

P (L. [TmQ]) < Z P, < Cym2ecm’*/logm
zE%Z%’W(DT)E

. 2 2
for some Cp. Choosing some ¢y < ¢, we have m2e=¢m"/logm < g—com”/logm fo1 Jarge enough m, and the
lemma follows. O

The next two lemmas control the flow s — D;,. In short, the first shows that the arclength of 0D; is
uniformly bounded on both sides, and the second shows that D, grows at a linear rate at all points. The
first follows directly from the smoothness of Dy.

Lemma 3.4. For s € [0,T], the arclength of 0Dy is bounded as
u < Len(dDs) < U,
where u,U > 0 are constants depending only on the flow.

Lemma 3.5. For a smooth flow Ds and any times T > s1 > sg > 0,

v(V1+s1—V1+s9) <d(DS,,Dy,) :=inf{d(z,y) | v € DS,y € Dy, }

and

V(V1+s1—V1+s0) > du(Ds,, Dsy) = infeep, Supyep,, d(,y)
where v,V > 0 are constants depending only on Sy, .

Proof. The upper bound follows from the smoothness of Dy and the compactness of the interval [0, T7.

For the lower bound, we will exploit the fact that Dy is also the scaling limit of divisible sandpile processes
on {Zm1, .. Zmnn, t With starting set Dy. We will not give details on the divisible sandpile process here; see
[LPO8|] for more details on scaling limits of divisible sandpiles.

Choose an s € [0,77], and let D™ (t) be the fully occupied set of the divisible sandpile on the lattice 7>

with starting density

m2s+t

1p, + Z 1.,

i=mZ2s
In the interval [s, s + €], a total of em? particles are released—in fact, one particle is started at Zm,n at each
time n/m?. From Lemmas (d) and (a,b), we can bound the exit probability as
m

1
P <zm7n exits —Z N Dy at 2’ € 8D8> > 3,
m

which tells us that, in the divisible sandpile model, we need m/c particles to ensure that the new set
Di/m(m/c) is outside the m~!-ball around 272 N D,:

1 1/m
DY™(m/e) ¢ <Z2 N Ds) :
m
Now, we can apply the same estimate to the expanded set

L220(D,)™ ¢ DYm(mye).
m
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That is, if 2 is in the boundary of both 272 N (D,)Y/™ and D;/m(m/c), we have
1
P (zmn exits Dsl/m(m/c) at z') >P (zmﬁn exits —Z N (Ds)l/m at 2/ € 8Ds> > <
m m

and thus

m m

1 1/m 1/m 1 V2/m
DY™©2m/c) ¢ ( 72N DS) > <22 N Ds> :

Continuing in this manner, we find that

)

1 h/\/im
DY™(hm/c) ¢ <22 N DS>
m

and in particular that
sc/\/i

1
DY™(em?) ¢ <22 N DS>

m
Now, Dgy. is the scaling limit of these sets D;/m(st), so we find that d(DS,,.,Ds) > ec/v2. Then
9-d(DS, ., Dy) > ¢/V/2 for all € > 0, which implies the claim. O

Finally, the following two lemmas control the exit times of Brownian motion from an interval [a, b]. These
are restatements of Lemmas 5 and 6 in [JLS12], so we omit the proofs here. Below, let B(s) be centered,
one-dimensional Brownian motion, and denote

7(—a,b) =inf{s > 0| B(s) ¢ [—a,b]}.
Lemma 3.6. Let 0 <a<b. Ifa+b<3, then
Ee™(=%%) < 1 + 10ab.

Lemma 3.7. For any k,s > 0,

P sup B(s') > ksp < e Ks/2,
s'€(0,s]

3.3 The recurrent potential kernel

Key to much of our analysis will be the so-called recurrent potential kernel g : Z?> — R, which acts as a free
Green’s function for the discrete Poisson equation. We define it in probabilistic terms as

n=0

where P,(z) is the probability that an n-step simple random walk from the origin in Z? ends at z. Impor-
tantly,

Ang(x) = 3(g(z +1) + g(z — 1) + g(w +14) + gz — i) — g(z) = dup-
That is, Apg(0) = 1, but Apg(z # 0) = 0. We will also use the first few terms of the asymptotic expansion
of g:

2 Cy
9(z) = A= ;10g|2’ < W

A complete expansion was discovered by Kozma and Schreiber [KS04], but we will not use it here.
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We also consider discrete derivatives of g. Without loss of generality, choose a unit vector i = a1%X +
az(X +¥) in the “east-northeast” half-quadrant—i.e., with 1 > ay, a2 > 0. Then define

Oag = a1g(z — 1) + azg(z — (1 +1)) — (1 + a2)g(2), (1)

which is discrete harmonic away from {0,1,1 + ¢}. Now, extend both g and 03¢ by linear interpolation to
the grid
G:={(z,y) eR?* |z cZorycZ}.

Choose a constant ¢ > 0 such that 0,g(z) > 0 on the half-plane {z € G | z - i < ¢}; since the arc
[0, 7/4] is compact, we can assume without loss of generality that ¢ holds this property for all i. Numerical
calculations show that we can take ¢ 2 1/5.

For an integer m > 1, let By = Bmng, (mRpi) be the radius mRy disk tangent to the origin in the
direction fi. By Lemma 8(a) of [JLS12], we know that

{2 €G | 0ag < —1/2mR} C (Bp ).
By the above discussion, this means that
{z€G|0ag<—1/2mRo} C{z€G|z-2>c}N(By)" C By, (2)

for any R}, > 4C2Ry/c.

4 Early points imply late points

The following sections make up the proof of Theorem split into three parts. First, we will show that
the existence of an early point at time ¢ implies that of a similarly late point by the same time. For this,
we use a harmonic function H¢(z) that has a pole at the proposed early point, ¢ € %ZQ, and we define a
martingale M (t) by (roughly) summing the values of H¢(2) — H¢(2m,i) over Ay, (t). Since H¢ () is large,
the martingale takes a much larger value than expected at time ¢; we finish up by using Lemma [3.7] to show
that this is unlikely.

In the following two sections, we set up the theory necessary for this first proof.

4.1 The discrete harmonic function H.(z)

Choose ¢ € %Z2 N (D7 \ Dy), and let 7 > 0 be such that ( € dD,. This is possible because the sets 9D, for
s > 0 form a foliation of Dp \ Dy.

Without loss of generality, suppose the outward normal vector fi to 0D, at ( is pointing into the “east-
northeast” half-quadrant, or equivalently that i- %X > fi-§ > 0. This subsumes other cases by reflecting the
plane appropriately.

Now, write i = a1 + ag(1 + 7). Because of the direction of fi, both «; and «g are positive and bounded
below 1.

Define

He(z) = g[alg(mz —m( — 1) + agg(mz —m{ — (1 +1)) — (a1 + a2)g(mz — m()].

We can view this as a directional derivative of the potential kernel in the direction opposite n. We will
extend this by linear interpolation to the grid G, = {(z,y) € 2Z? |z € LZory € 1Z}.
This function is designed to be a discrete-harmonic approximation of the continuum function

o= mo(222),

pictured in Figure [4] where we view fi as a complex number.
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=

I's 'f

Figure 4: A plot of F. The discrete harmonic function H. closely approximates this function away from the
pole .

Now, choose R, = R{(7) such that the two disks BT and B~ of radius R}, tangent to D, at any point lie
entirely inside and outside D, respectively. Note that R{, is bounded away from zero, as [0, 7] is compact
and R{, > 0 for all time. Let Ry = cR(/4C5, as in Equation |2, and define the following subsets of %ZQ:

le“ = gm mDT)

02 = {2 € G | He(2) > 1/2mRo} \ {C +u | u € (0,m ")}

In short, Q% is the discretized version of the Hele-Shaw level set D., and Qg is an approximation of the
“inner” radius Ry circle tangent to 0D, at (. We will combine these as

Q= U

Figure 5: We form our domain € by combining the subsets Qé and Qg; the latter guarantees that H is not
too large on the boundary, but it may also affect the regularity of the boundary.

An example is pictured in Figure We summarize many of the basic properties of H; and ¢ in the
following lemma:

Lemma 4.1. For any m, H¢ and ¢ satisfy the following properties:
(a) H¢ is grid-harmonic in the interior of Q¢, and He > —m.
(b) ¢ € 08, and for all z € 00 \ {C}, we have |H¢(z)| < m.
(c) There is an absolute constant Cy < oo such that
[He(2) = Fe(2)] < Crm™2|z — ¢ 72
In particular, if Ry = inf, d(zms,(), then

[ (2m,) = Fe(zma)l < Crm ™Ry,

10
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(d) 1< H(Q) <2

Proof.

(a) By definition, H¢ is grid-harmonic everywhere except for ¢, ¢ + 1/m, and ¢ + (1 4 4)/m. Firstly, ¢
itself lies on the boundary of ¢ by definition. As the normal vector fi to dD; at ¢ points into the east-
northeast half-quadrant, for large enough m, neither of the remaining points can lie in D, (and thus in Qé)
Furthermore, H¢ is negative at both points, as in [JLS12], so they cannot lie in Qg Thus, they cannot lie
in Q¢, so H¢ is grid-harmonic in that set.
The lower bound follows from Equation

(b) As in part (a), the lower bound H¢(z) > —1/2mRy is clear from Equation [2l The upper bound follows
from the inclusion of Qg, as the boundary of {2 must lie at or outside the boundary of Qg

(¢, d) The last points are exactly Lemma 7(c, d) in [JLS12], as our notions of H¢ and F¢ are simply rotations
of theirs. O

Lemma 4.2.

(a) There is an absolute constant Cy < oo such that
1 2 1 2 Ca/m
—7Z N D; C Qe C —Z7N (D7),
m m

(b) For any U C Q¢, then
1 1

— < H < —
omb = @) = o =6,
whenever md((,U) > Cy and z € U.

(¢) Forall0 <s <,

m=s
Z He(z) — ZHc(ZZ) < Cylog m.
z€D:N-L72 =0

Proof.
(a) As shown in [JLS12], the level sets of H¢ differ from the level curves of F¢ by at most a fixed distance
Ca/m = 2Cy /m. In particular, Q% C (BT)C2/™ where Bt is the disk of radius Ry contained within D, and
tangent to 0D, at (.

By construction, (B1)2/™ c (D,)®2/™. Thus, by adding Qg, we never modify points in Qé outside the
narrow strip (D,)%?/™\ D,.
(b) The proof of this fact is the same as that of Lemma 8(b) of [JLSI2], but now using the fact that
supy Fr < m.
(c) Let sop be maximal such that Ds, C (Dr)sc, /m—by Lemma we know that

d11(9D,,0D,,) < %d(aDT, ODy,) < AV Cy /mo. (3)

Write Dg N %ZQ = AU B, where

1 1
A= <DS N Z2> N Dgy = Dspsy N —7Z2,
m m

1
B=|Dsn=7%)|\ D,,.
( nt )\ 0

Now, choose R > 0 with the following properties:

11
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e The union Ug of the disks of radius R centered at ¢ £ (R + 2C1/m) and at ¢ + (R + 2C1/m) is

connected.
e The connected component of ¢ in R? \ Ug is contained within B¢, /m(0)

e We have Bgr(() \ Bic,/m(¢) C Ur.

Figure 6: An illustration of Ugr. Note that the disks of radius R do not get “too close” to (, so the sum

Y elUn m is of order log m.

Note that, for any r > R, this implies B,(0) \ Byc, /i (0) C U,. Define
R’ = max (R,diam(Dg) +2VV1+ 7).

Importantly, by Lemma
D, C BR' (C)

Since Ds, does not intersect Byc, /m, this means that A C Dg, C Ur/. By Lemma (c)7

m?2(sAso)

> (He(=) = Fe(2) = D (Hel(e) = Fel=) <Zm2rz—<|2 I

z€A i=1
Ch
< -
- 21 m2’2 _ C|2
2€URIN 72
< 32C logmR + |<|2
Co
< ==1
=% ogm,
for an appropriately chosen C5. Using similar arguments, we bound
dA dA
m2/ FC—Z F|<C 72_0 72§877010ng’§
Dinsy A Dansg 17— €l U 12— ¢
and finally
m?(sAsp) ,
mQ/FgasAso Z Fe(z)| < =2 logm
i=1

By Lemma however,

S0

¢

i

2
—=1
G Lo,

12
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and we thus find
C
Se- 3 )| G

Finally, we must show that the contribution of B (if it is nonempty) to the sum is negligible. From Equation
we know that Ds\ Ds, C D; \ (D7)ave, /me and thus that B C Dr \ (Dr)4v e, jme- Thus, there are at
most Um - 4V Cy/mv points in B; since H¢ decreases as 1/md(z, () around the edge of D, we find that

> He(z)

z€B

4 !
oV -Clogm < % log m.

<
v

Similarly, there are at most 4VUC, /v source points between times sg and s, so we bound the final term as

m28

!
E Hc(z) < UG - sup HC(Zm,i) = O(mil) < %IOgm'
v

Zm,i

i=m2sg

Putting these contributions together implies the lemma. O

4.2 The martingale M (?)

The harmonic function H, gives rise to a natural martingale associated to our IDLA process, using the
concept of a grid Brownian motion:

Definition 4.3. A grid Brownian motion starting at the point x € %ZQ is a random process t — W; € G,
defined as follows.

Let B; be an origin-centered Brownian motion, and for each integer n > 1, let 77 > 0 be the n'" time
that B, visits a point in LZ. For each n, choose a uniform random direction @, € {1,i}. For t € [}, 7%, ],

define
n—1
Wi =+ Y (Bu(r11) — Bi(r})) & + (Bu(t) — Bu(7y;)) .
j=1

In short, W; is simply the process By, but turning in a random direction at each lattice point.

For k € {0,1,2,...}, let Bx(s) be independent Brownian motions on the grid G,,, starting at the source
points z, z. We will define a modified IDLA process A¢(t) by induction. Let A¢(0) = A, (0) = LZ? N Dy,
and let

st = inf {s >0 Bils) € (222 \ Ac(k)) U (G \ QC)} .

Then set f(s) = Bk(min (1%, 57)), and set Ac(k+ s) = Ac(k) U{Br(s)} for 0 < s < 1.
Since H¢ is grid-harmonic, the process
lt]—1
M(t) == > (He(Be(1)) — Hlzme)) + He(Be(t = [£])) = He(2m,11))
=0

is a continuous-time martingale adapted to .%#; = o{A¢(s) | 0 < s < t}. By the Dubins-Schwarz theorem
[RY91l, Theorem V.1.6], we can write M¢(t) = B¢(S¢(t)), where S¢(t) = (M, M¢); is the quadratic variation
of M and B is a standard Brownian motion.

For each k, S¢(k) is a stopping time w.r.t. the filtration {Fr,(s)}s>0, where T¢(s) = inf{t | S¢(t) > s}.
Further, B¢(s) is adapted to this filtration. By the strong Markov property, the processes

BE(u) := B(Sc(k) + u) — Be(Sc(k))

are independent Brownian motions started at zero. 3
Finally, for —a < 0 < b, write 74(—a,b) = inf{u > 0 | Bé?(u) ¢ [—a,b]}. We will use these exit times in
accordance with the following lemma, which is just a restatement of Lemma 9 of [JLS12|] in our setting:

13
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Lemma 4.4. Fiz ( € L7%\ Dy, and let

—ap = min (H.(z)— H by = He(z) — H, .
ax Zeg};?(k)( ¢(2) = He(Zm k1)), k ze%f;%k)( ¢(2) = He(Zm k1))

Then
Sc(k? + 1) — Sc(k?) S Tk<—ak,bk).

We now proceed with the technique mentioned above. That is, we will use the martingales M to “detect”
the presence of a late or early point at (; if either is the case, then M, will be either much larger or much
smaller than its mean. In turn, Lemma will imply that this scenario is unlikely for small times S.. With
the following two lemmas, we will be able to show that S is small on the event &, ()¢, allowing the above
argument to go through.

Lemma 4.5. Suppose Dg is a smooth flow arising from an initial mass distribution. For
m > max(3a + C2,2Cy/ inf¢ Ry),
all s € [0,T), and ¢ ¢ (D,)4a+2C2)/m e have

Se¢(m?2s) K
E [e”¢ 15(a+1)/m(m25)c] <m y

where K is a constant depending only on the flow.

Proof. On the event &, 1)/m[t]°, we have A(n) C (Dn/mz)(“+1)/m for all n. < m?2s. Since ¢ ¢ (D,)4e+2C2)/m,
Lemma [3.5 tells us that

d(¢, A(n)) =

>

4a + 2Cy a+1l 1
m m m

+ d(0Ds, 0Dy, jp2) — (Ba+2Cy — 1) +v(V1+s—+/1+n/m?),

and thus (using Lemmas [{.1[(b) and [£.2[b)) that

! ! < He(z) — He(2mi) < ! + 1
- - — He(2m,) < :
2mRy mR;—Cy ~ ¢ crm 3a4+Co+mu(vV1+s—/1+n/m?)—1 2mRo

Now, choose m large enough that mR; — Co > mR;/2, and write Ry = min(Ry/2, R1/4). Then we know
from Lemma [4.4] that

(SC(TL) - SC(TL - 1))15(a+1)/m[t]c S Tn(—C, bn)?

with
1 1 1

—_— b, = + .
mRy 3a+Co+mu(vV1+s—+/1+n/m?)—1 2mRy
Using Lemma along with the fact that 7,,(—c, b,,) are independent,

CcC =

t t t
logE [es<(t>1g(a+1) /mmc} = "logEe™ (%) <3 " log(1 + 10cb,) < > 10chy.

n=1 n=1 n=1

14
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Now, write r1 = 3a + 2C + mv+/1 + s — 1, and calculate

o t dn t
TN ¥
— 0 3a+Cor+mu(v1+s—+/14+n/m?)—1 2mRo

B /mzs dn Lt
0 ri—ovm?2+n  2mRy

vmy/1+s d t
= 22)_1/ rar +
v

m rn—x 2mRy
= /mmv (= y)dy T
ri—vmy/1+s Yy 2mR0

< 2071 log < o ) + !
o r1 —oumy1+s 2mRy

< 4 'my/1 + slog(vmV/1 + 5/Cy) + 2,

so long as mv > 3a + 2C3. We thus find that

40y/1 + s s
IOgE [eSC(t) 1€(a+1)/m[t]ci| S W log(m’u \Y 1 + S/CQ) =+ 2R0R2 .
The theorem follows with K > 40+/1+ T'/vR». O

Lemma 4.6. Suppose D is smooth, and fir a > 2Cy + 2, £ < a, and s € [0,T]. For
m > max(3a + Cy, 5a/ inf¢ Ry)

and ¢ € =Z* N ((Ds)e/m \ Do), we have

K K'a

(at1)/m(m?2s)¢ <m

E |:€SC (m?s) 15

where K is as in Lemmal[{.8 and K' > 0 is another absolute constant.

Proof. Recall that Ry = infzm’i d(2m,i,¢). Since mRy > 5a and a > 2C5 + 2, we can choose ¢y > 1 such that
Dyyjm2 C (Dr)(4a+205+1)/m- By Lemma we can take ¢y to satisfy

myvV1+s—/m2+ty <20 (4a + 2Cy 4 1),

and thus

m?%s —to < 2mV1+ T(mvV1+ s —/m2 +ty) < 4o 'myV1+ T(4a + 20y + 1),
Further, since ¢ ¢ (Dto/mz)(4a+202)/m, Lemma@ gives
S, S, K
E |:e C(to) 15a/m(t0)c:| S E |:€ C(tO)]‘g(a+l)/'m(t0)Ci| S mo.
As discussed in the proof of Lemma, for m > 2Cy/ inf; Ry, we have

1
- <H — He(2m,i),
- < Ho() = )

with Ry = min(Ro/2, R1/4). We also know that H¢(2) — He(2m,) < 2+ m < 5/2 from Lemma (b),
S0 we get
Sc(n) — S¢(n—1) < m(—=1/mR2,5/2)

15
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and thus

m23

logE BSC(t)]-S(a+1)/m(t)c} = logE [BSQ(tO)lf(H—l)/m(to)c] + Z logE [BSC(n)isC(nil)15(a+1)/m(m25)c]
n=tg+1

m25

< Klogm + Z log E [eT”(*l/mRQ’E’/z)}
n=to+1

< Klogm + (m?s — tg) log(1 + 25/mRy)

< Klogm + 1000~ '/1 4 T(4a + 2Cy + 1)/ Ry

< Klogm + 10001 + T(4a + 2C5 + 1) /Ro.

Now, 2C5 + 1 < a by hypothesis, so the claim follows. ]

4.3 First estimate

Choose constants

24V Cy T2V
Cg—IH&X( " 71}17’3/6()) )

- v%b
@ 288UV2ZK"
Lemma 4.7. For large enough m, s € [0,T], 3a + Cy > a > Csm?/5, and ¢ < aa, we have

2/5

P(Eq/m[m?s] N Lojm[m?s]) < e
Step 1. For each integer 1 <t < m?s and each lattice point z, let

Qze = {2 € AW\ At = 1)} N {2 & (Dyjn2) ™} 0 Egymlt = 1I°

be the event that z first joins the cluster at time ¢ and is the first a/m-early point. Now,

U U Qz,t = ga/m[T]

t<T ZG(DQ)T/m

Fix z € (Do)"/™ N 172, and let ( = ((z,t) be the nearest point to z in the annulus

1

72 D V(4a+2C3)/mv+2/m D V(4a+2Cg)/mv. 4
L2 0 (D)) \(Dyjoe) ¢

Since ¢ & (Dy/p2) 4@ F262)/™ e have by Lemma 4.5 that
S K
E |:8 C(t) 15(a+1)/m(t)c] § mo.

Let M = 6m?/®, so that Markov’s inequality gives

2/5

c —6m?2/5 —3m
P (5(a+1)/m(t) N {Sc(t) > M}) <e 0 E [eSC(t)lg(a_‘_l)/m(t)c] <e 3
Now, since A(t — 1) C (Dt/mz)“/m and z is adjacent to A(t — 1), we must have z € (Dt/mg)(‘”l)/m. Thus,
Qzt C Ear1)/m(t)S, s0

2/5

P(Qze N {Sc(t) > M}) < e

16
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Step 2. On the event Q). ;, we know that
Alt] C (D)0, ()

as no points are (m + 1)-early. However, we also know that

di(Dijm2, Dr) 2 d(Dyjm2,¢) > V(da + 2C2) /mo,
which implies by Lemma [3.5] that

d(Dyjzs Dr) > %dH(Dt/mQ,DT) > (da +2C5)/m.
In turn, Equation [5| implies that

d(A(t), D7) = d((Dyjy2) "™, Dr) = d(Dyjy2, Dr) = (a +1)/m > (3a + 203 — 1) /m.

For Cy > 1, this means that A(t) C (D7)c,/m, and thus that A(t) does not meet 9€2¢ by Lemma (a).
This means that we can replace A[t] by A¢(t), which we partition as

Ay = AC(t) N Dto/m27 Ay = AC(t) N Ba/m(z)7 Az = AC(t) \ (Al U A2)7

where o is chosen such that Dy /2 C (Dyjm2)e/m- By Lemma we can satisfy du(Dy/m2, Dyjm2) <
2Ve¢/muv, or

(Dt/m2)2V€/mv C Dto/mQ'
On the event Ly/,,,[t]°, no point in (Dy/,2)4/m is left out of Ac(t), so A1 = %ZQ N Dyy/m2- Since A(t) has t
points and A; has at least t—4¢UVv~tm points (using Lemma |3.4)), we know that #(AsUA3) < 4U Vv~ Im.
Noting that H¢(z") — H¢(2mi) > —1/mRy for any 2’ € Q¢, this implies

_#Ag S _4€UVm B _4€UV
mRs = mwRy  wRy’

3" (He(2) = Helzmie) =

z/€As

where 2, j(.r) is the source point that initially generated the point 2’ € A(t). Next, we try to estimate the
equivalent sum over A;. By the discussion above, we know that only 4¢U Vv~ m points can be outside the
bounds of A;, meaning that {z,, ;. | 2/ € A} differs from {z,; | 0 < i < to} by at most 4UVv~'m
points. Along with Lemma (c), this implies

to
> (He(?) = He(zmn)) = > He(2) =Y Helz) — 8CUVo ™ mmax | He (2m,:)|
€Ay Z'€Aq =1

—Chlogm — 8UVK"{ /v

>
> —Cha/C3 —8UVK"l)v.

Adding up the contributions from A; and As gives

Z (Hc(z,) - HC(ZmJ(Z/))) > —Céa/C?, - 12UVK//£/1) > —vba/12V, (6)
/€ A1UA3

from the definitions of C3 and ¢ above.
Now, since z ¢ (Dt/mz)“/m D (Dp)*™, Lemma [3.2] tells us that
2/5

P (Qz1 N Loy [t] N {#A2 < ba®}) < Coe™ % < Coe ™

for large enough m, using the facts that a > Cym?/5 and Cy > 3/co.

17
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On the event Q. , the point z is a/m early but not (a + 1)/m-early, so a/m < d(z, Dyp,2) < (a +1)/m.
We know that (¢ is the nearest point to z in the annulus 4] which means that (for a > 2C3) we have
md(z,¢) < 5Va/v. Then F¢(z) =v/5Va+ O(a™?), and so by Lemma for all 2’ € B(z,a),

+0(a™?) > Y

2
He () = He(2m i) > — .
C(Z) C(zm,z(z )) ~6Va’

= 5Va mR;
as long as m (and hence a) is large enough. On the event {# Ay > ba?}, this means
vH#As  vba

/
§ _ ., > -
(HC(Z) HC(Zm,z(z))) = 6Va > 6V’
Z'€Ag

and hence (from Equation @ on event {#Ay > ba*} N Ly, [11°N Q.

vba vba vba
Mc(t)= > (He(2) = He(zmien)) > T
Z'€A.(t)

Thus,
{Mc(t) < vba/12V} C {#A2 < ba”} U (L[t N Qi)
and so

2/5

P({M¢(t) < vba/12V} N Lysm[t]° N Qzp) < P Q2 N Loym[t]° N {#Az < ba”}) < Coe ™
Step 3. Since C5 > %, we know that
'Uba UbC3 2/5 2/5
> — > =
v = ey 2 omT =AM
with M as in part 1. Using Lemma we find

P ({S¢ < M} n{M > vba/12V}) <P ({S¢ < M} N {Bc(Sc) > M}) < e M/2 = ypy=3m*"
Finally, we bound

(ta N E@/m[m 3] ) < P(ta N {SC > M})
+P(Qzp N {Mc(t) < vba/12V} N Ly [t])
+P({Se < M} N {M(t) > vba/12V})

S (CQ 4 2)6737712/5,

which implies

[m?s]

IP’(Ea/m[m 8]0 Lol m?s)° Z Z P( taﬂﬁg/m[m s]%)
t=1 ze(Dg)ms
2/5

< m?s - 10m?(diam(Dyg) + ms)? - (Cy + 2)e ™" < m™2™

2/5

18
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5 Late points imply early points

Very roughly, we would like the proof of the second part of Theorem to go as follows. If { is the first
(¢/m)-late point in A¢(t), then at the time T ~ m?r + ml, the set Ac(t) has several particles at every
boundary point z # ¢ in 9Q¢. Since H¢(¢) is much larger than H¢(z # (), this would tell us in turn that
M would have a much lower value than expected. Combined with Lemmas and we would be able
to recover a strong upper bound of the probability of L/, [T] N Eq/m[T]°.

Unfortunately, we are unable to say that the difference H¢(2) — H¢(2,:) that occurs in the expression for
M¢ is even negative, let alone a large negative number. The problem that occurs in the general source (i.e.,
non-disk) setting is that we cannot obtain a positive lower bound on Hg(zm,i), as the source point z,,; may
be “behind” the pole ¢, as shown in Figure [7]

Figure 7: The original harmonic H; is negative on a half-plane cut out by the pole (. While this does not
come into play in the case of a point-source, it is critical in extended-source IDLA, forcing us to
define a new harmonic function H; to continue with the proof.

To remedy this issue, we introduce a second harmonic function I:IC, defined to be the discrete Poisson
kernel on a slightly modified domain Q¢ ~ D,. We will see that the difference H¢(z) — H¢(zm,;) is negative
and bounded away from zero, so our program will go through roughly as mentioned above.

On the other hand, we will not be able to get a strong replacement for Lemma (c), which tells us that
H¢ closely approximates a continuum harmonic function. This leads to an overall m?2/> error—rather than
the logarithmic errors we saw in Lemma (c)—when summing .FNIC over the set D, and it eventually creates
the m—3/5 error of Theorem [3.1]

5.1 The Poisson kernel on (¢

We introduce a new, positive harmonic function on the new set
A L, o . 2
Qe = DTQEZ \{¢Ltiu|ue(0,1/m?)}.

If W,(¢) is a (grid) Brownian motion in QC starting at z, and 7* is the first exit time of W, () from QC’ we
define .
He(z) :==P[W.(77) = (].

We can recognize this as the Poisson kernel associated to the set QC' In particular, it satisfies the following
key properties:

Lemma 5.1. For any m, ﬁg satisfies the following:

(a) He is grid harmonic in Q¢, and He > 0.

19
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(b) He(¢) = 1. For all z € 9Q¢ \ {¢}, we have He(z) = 0.
(c) For any U C Q¢ with md(¢,U) > Cs,

(d) Let ¢’ =¢—1/m € Q. Then )
A(2) = ¢cGy, (¢ 2)

on Qg\Bl/m(C); where 1/16 < ¢ <1 and
Go (y,2) == Eg(W=(7") —y) —g9(z — )
is the Green’s function associated to QC'

Proof.

(a,b) The first two points follow from the definition of H,.
(¢) From [4.1f(a,d), we know that

>0
2mRy —

on all of Q¢ C Q¢, and that He(¢) + ﬁ > 1. In particular,

H: +

H > H
<+2ng_ ¢

on the boundary of QO so we know from the maximum principle and Lemma (b) that

Hely < Ho+— | <L . !
(v = ¢ 2mRy U 2mRy md(C,U)“I‘CQ'

(d) This follows from the last-exit decomposition for simple random walks [LL10, Prop. 4.6.4]. O
Lemma 5.2. Suppose Dy is smooth. Then,
(a) For any z € Dy N,

Cy n Cy
m2d(z, 0007 | m2d(z,C)%

G (€)= Gp.(¢2)| <

where Gp_ is the continuous Green’s function of D, .

(b) For any z € D,

/

C
‘Gmc’,z)—%(z) < & Ca

m2d(z, O | m2d(z, OF

m

where c’C € [2712,1] depends only on ¢ and Jp, is the Poisson kernel on D,.

(¢) The following mean-value property holds:

|m?7)
Y He(z) = Y Hel(zmg)| < Cym®P.
2€QenL 72 i=1
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Proof. (a) For this, we use the estimate

1
=1 —yl+ A —
g(z,y) =logmlz —y|+ A+ O <m2|m_y|2)

mentioned in Section [3.3] This implies

Gin(21€') = Eg(Wo (+).2) = 9(¢'2) = Blog W () 2| = logl¢' =21 +0 i ).
as the logm and A terms cancel out. Fixing z, we see that Elog |W./(7*) — 2| is a discrete harmonic function
of 2/, with boundary values log |2' — 2| for 2’ € 9Q,. With the possible exception of the points ¢ 4 im =2, all
boundary points of Q¢ also lie on the boundary of D ; then we can compare fo(2') = Elog |W,/(7*) — 2| with
the continuous harmonic function f1(z’) = Gp_(2/,2) 4+ log |z’ — z|. Indeed, the latter has fourth derivative
bounded above by C/d(z,z")3, so we know

. C
‘Ah (Elog Wi (%) — 2| — (Gp. (7, 2) + log |2/ — z\))‘ = !Ah (GDT(Z/,Z) +log |2/ — z|)| < W,

where Ay, is the five-point stencil Laplacian. Furthermore, Elog |W.,(7*) — z| and Gp_(2/, z) + log |2’ — z|
differ by at most O(m~2) on the boundary (at ¢ & im~2), so the maximum principle gives

* 1 C _
|Elog [W.i(7%) — 2| = (Gp, (2, 2) + log |2’ — 2|)| < A}, (”W 4+ O(m™2).

The claim follows, as Agl (W) approaches ¢’ no faster than O(z73).

(b) This follows from the general formula J¢(2) = 04Gp, (?, 2)|/=¢, along with the fact that ¢’ is at most
an angle /4 away from the normal direction inwards from (.

(c) Set ap = m~2/% and €0 = m*1/5, and let Bf{ C D, and B; C D¢ be the disks of radius Ry tangent to
dD; at v. For each o > 0, we partition ¢ := QC N %ZQ by sets A%, B* C%, and D% as follows:

A= {2 €0 [d(z000) > a},  B* =0\ (47U B, (Q)),

C* =Q¢\ (A“UBYUBY), D*=Q¢\ (A*UB*UC?).

Figure 8: An illustration of our partition A*U B*U C* U D of ﬁc.

We will bound the error ’Z GQC (¢,) —m? [ Gp. (¢, .“)ver each of these sets (with o = ap) in turn.

For any o > Co/m, we know that A% C D, from Lemma [4.1{a), so part (a) implies

’Ggg (Clvz) - GDT(</72)‘ < CQ/(WO[)Q
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on A%. This allows us to bound

Y Go (¢z)=m? [ Gp,(
A0 A0

<2m/ da LenaAO‘ —1—2/
(047 (Dr)ag 42 C)

[e.e]
< 2/ da —\/1 + 7+ 2Chay?
(0%

0

with C large enough, and using the fact that Len(0A®) < Len(D,). This immediately gives

ZHC — ccccm/ Jg

A0

from Lemma [5.1(d) and part (b) above.
Next, we control the sum over B*. The points outside D, contribute only Cslogm to the total, so we
will consider only B’ = B* N D,. Since D, is smooth, the probability of a point z near the boundary to

exit Qg at ¢ is bounded by C%’

md(z, 8Q<)
Boo m2d(2,¢)* T 2

Lot m?2/5
< ;0

which we estimate as

Zﬁc(z) <20m? . CQm/ afey = C'Qmozo/eg = 1C’Qm /5,
BY0

For the remaining sets, we introduce slice coordinates (x,y) for D, near -, such that v = (0,0). For C?0,
we again consider only C’ = C*° N D,. These points are bounded outside the disk BZ, so the probability of

their associated random walks exiting QC at ¢ is bounded by
- 1 1

H¢(z) < P[W, enters B at 7] < ol m(y + O(2% + y?)).

ZﬁCSmQ / daz/o <2y +C>
z? + y?

ceo

Then we find

< 4m/ dz (log(1+ Ry'a?) + CRalmQ)
0
€0
< imCé/O dz 2 = 1Chmed = 1Chm?/®,

and similarly for ccctm [oag Je(2)-
Finally, for z € D*_ we can bound

P[W exits B at 7] < H¢(z) < P[W, enters B at 1],

which gives

~ 1 1
He(z) = —  ———(y+ O(2* + y*
¢(2) - $2+y2(y+ (= + 7))
and similarly
/
“CC 1 1 2, .2
g == (y+ O .
—de(z) = — x2+y2(y+ (x° +y))

The error is dominated by the second order part:

= 0 ? +y° 1, 2/5
< 4m dx dy C— 5 = 4mCeoap = ;Com™°.
0 0 ety

Z ﬁé(z) — ceceem Je(2)
D<o Deo

The proof finishes as does Lemma (c), but including the extra factor ¢, from Lemma (d) O
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Just as with H,, we associate the following martingale to I:.TC:

|t]—1
Ne(t) = Y (He(Be(1) = Helzme)) + He(Belt = [£)) = Helzm 1)),

=0

using the same notation as in Section Now, the rescaled function (1+1/2mRo)H; — 1/2mRy satisfies
the properties outlined in Lemmas [4.1f(a,b,d) and Lemma [£.2b), so we can prove the following parallels to
Lemmas [.5] and [4.6] exactly as before:

Lemma 5.3. Suppose Dg is a smooth flow arising from an initial mass distribution. For
m > max(3a + C2,2Cy/ inf¢ Ry),
allt > 1, and ¢ ¢ (Dt/mg)(4“+202)/m7 we have

]E: BSC(t)lg(a+1)/m(t)c] S mK’

where Se(t) = (M¢, Mc)y.
Lemma 5.4. Suppose Dy is smooth, and fit a > 2Cy+ 2, £ < a, andt > 0. For
m > max(3a + Ca,5a/ inf¢ Ry)

and ¢ € %ZQ N ((Dt/mz)g/m \ Do), we have

Se(t) K _K'a
E [e ¢ 1g(a+1)/m(t)c <m> e “.

5.2 Second estimate

Lemma 5.5. There is an absolute constant Cy > 0 such that, for large enough m, if s € [0,T], ¢ > Cym?2/5,
and a < 0%2/Cym?/°, then

P(Lyj[m?s] N Eqymm?s]©) < e 2.
Proof. Without loss of generality, let a = 62/C4m2/5 > (. We can further suppose that m > max(3a +
Co,5a/ inf¢ Ry). Indeed, otherwise we have a = em for a constant ¢ = inf(1/4,inf R;/5); by Lemma we
know that we can choose m large enough that

(ﬁz/m[m s] ﬂga/m[m s]9) < P(ﬁg/m[m s]) < Cpe™ ™ 2/logm < e_2m2/5,

Fix ( € 17°n ((Ds)esm \ Do) and set T1 < m?s minimal such that ¢ C (Dr,)¢/m- Then we know that
d(¢, Dr,) = £/m—Dby Lemma [3.5] this implies that

2ml
v

T —m?r > 2m*V1+17(/1+ T /m2 — V14 71) >
Let L[¢] = {¢ ¢ A,,(m*T1)} be the event that ¢ is (¢//m)-late. Then
Lo/ml m?s] U L[¢
On the event L[(], we know that any particles in A¢(77) that hit the boundary must do so away from (;

that is, H: = 0 for these particles. As in [JLSI2], this implies that M¢(Ty) is maximized if the interior of
Q¢ N 272 is fully occupied by A¢(T1), so we can bound M (T}) as follows:

M(T) < > (0= He(zmue)) + Y (ﬁc(z) - E[C(Zm,i(z))> 7

2€0QNA:(Th) 2€Q¢
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where z,, ;(.) is the source point from which the particle landing at 2z € ﬁ( started, and weighting each term
of the first sum by its number of occurrences in the multiset A-(77). First, we reorganize the source terms
of the two sums:

) i) m27~
AT DI AR o NEE 3y Ao
i=1

i=m27+1 Z2€Q¢
m27—

< —(Th — m?7)inf; He(2m,) + Z He(z) — e (2m.1)

zeﬁg i=1

m2’T
< —2mlV " tinf; HC Zm,i) Z HC Zﬁ (2m.i)
zng i=1
m T
§—2c€+2ﬁ< ZFI Zm.i)
2€8Q¢ i=1

for a constant ¢ > 0 depending only on the flow, using Lemmas a,b) to deduce that inf; f[g(zm,i) =
O(m~!). Next, notice that the two right-hand sums are the same that appear in Lemma (c)7 implying
that

M(T1) < —2¢f + Chm?/® < —¢t,
so long as Cy > C% /c.
Choose m large enough that e® > Cam?/® > m. By Lemma

E |:e§4(m2T1)1 < mKeK a < e(KJrK’)a.

g(a+l)/m(m2T1)c:|
Let M = (K + K' 4+ 1)a, so Markov’s inequality implies

<e %

P ({Sg(mm) > M}n Ea/m[mQTl]C) < e ME [GSC(mQTl)lg(aH) /m(mQTl)c} <

Since M¢(m?T1) < —cf on the event L[(], this means that
P (Eapm[m*T1]° N L[C)) < P ({Sc(m?Th) > M} 0 Eqm[m?T1]7) + P ({Sc(m?T1) < M} N LIC])
<P ({Sg(mm) > M} N Ea/m[m2T1]C> P {Sg(mm) < M, Mc(m2Ty) < —cz}

—a 4 6—0262/2M

e

—e 04 e—CQC4m2/5/2(K+K’+1) < 26_4m2/5 < e—3m2/5

IN

for Cy > 4(K 4+ K’ 4+ 1)/c?, using Lemma [3.7/and the fact that M¢(t) = B¢(S¢(t)) for a centered Brownian
motion B;. We conclude that

2/5

P (L) [m?s]) N Eqimlm?s]®) < > P (Eu/m[m>T1]° N L[]) < 2Vol(Dy)m2e ™" < e=2m
CEL220((Ds) ¢/ \ Do)

6 Proof of Theorem 3.1]

Choose m large, € < a/4, and s € [0,T]. From Lemma [3.3] we know

]P)(E [m 5]) < C e—com 2/logm < 6_2m2/5.
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Set £y = em, and define values a;, by, as follows:

1 /
ap = by, b =/ Cam?/Pay,_yq,

where o, Cy > 0 are as in Sections and respectively. Now, if £, > a~10ym?/5, we know that

£2
> a~20um?°

A—1 = C4m2/5 2

and thus that

b1 = aag_1 > a~toym?/s.

Thus, if ¢, > a_104m2/5, we know that ¢, > C’4m2/5 and that a, > Cgm2/5 for all n < k, assuming without
loss of generality that a=2Cy; > C3. We also know (from the choice of €) that ag < m/4; in general, if

ar < m/4, then
1
app1 = a1/ Cym2/ay, < 5(1_1\/ Cym™/> < m/4

for large enough m. Then the pair (¢,, a,,) satisfies the hypothesis of Lemma and similarly for (¢, a,—1)
and Lemma By induction, this implies

2/5

P<Sak/m [mQSD < P(ﬁék/m [mQS]C n gak/m[mgs]) + P<£€k/m [mQS]) < (2]’6 + 2)6_2m

and
2/5

P(Ly, jm[m?s]) < P(Lo, jmlm®s] N Eayy jm[m?s]%) +P(Eg,_ ymm?s]) < (2k +1)e ™",
so long as £ > a~t0ym?2/5.

Now, set A = a~1Cym?/5, so that ¢, = A1_27k€%7k and my = Al_gfkmgik. With this formula, we see
that the first time ¢;, < 2A occurs is when

k = [logy logy(A™"4p)] < cloglogm,

for some ¢ > 0 independent of m. Fix k' = [log,logy(A~14y)]; iterating k' times, the above calculation
shows that

2/5

P(L10ypn-a/3[m?s]) < P(Ly,, pmlm?s]) < (2K + 1)e=2m° <

_m2/5

l\')\»i

and
2/5

P(E, 20y 3/5[m2s]) < P(E,, jmlm?s)) < (2K +2)e 2" < e,

1
2
Set C5 = a~2Cy. Putting these bounds together, we get

1
P{(DT)CSm_3/5 N =22 C Ap(m?7) € (D)%™ for all 7 € [0, s }
m

< B(L s/ [m?s]) + (€, psyolm?s]) < e %, O

7 Concluding Remarks

There are a number of possible improvements to the results proven here. Most importantly, it would be
interesting to improve the m=3/®> bounds on the fluctuations; we expect that fluctuations are truly of order
m~!logm, as in the point-source case. Hypothetically, this result could be proven using our technique—
the primary obstacle is that we need a stronger version of Lemma (c), which quantifies how closely JEIC
approximates a continuum harmonic function. If we were able to get an order logm bound on the L'
difference between I;Q and its harmonic scaling limit, the final result would improve accordingly.
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Furthermore, it would be interesting to lift some of the hypotheses we set on the flow. However, we
imagine that it is less likely our techniques would apply without the requirements of a concentrated mass
distribution or a smooth flow. Indeed, both hypotheses are necessary to guarantee that Ry is bounded away
from 0, and thus that H. is small enough on the boundary. However, if an independent bound on ﬁg could
be obtained, showing that it satisfies fIC(z) < m without comparing it to H, it could be used in
place of H for both parts of the proof.

There are also closely related settings that have not been studied extensively. An interesting example
would be to replace the “solid” initial sets ()7 with submanifolds of Dy. Since these would be zero volume,
they could eject particles evenly from all points rather than having a moving interface 9Q);. We intend to
study this particular question in the sequel.

Finally, another question we will investigate in the sequel is that of the scaling limits of the fluctuations
themselves. Jerison, Sheffield, and Levine [JLS14] studied this question for same-time fluctuations in the
point-source case, and they found that, when the fluctuations are scaled up by a factor of m?/2 (in dimension
d), they have a weak limit in law of a certain Gaussian random distribution. They found a similar result in
the case of a discrete cylinder Z x Z/mZ with source points along a fixed-height circumference |[JLS13a]; here,
they further studied the correlations between fluctuations at different times in the flow. The same question
has been studied by Eli Sadovnik [Sad16] in the extended-source case, focusing on same-time fluctuations
and using harmonic polynomials as test functions; we are interested in strengthening his result to allow
smooth test functions and to investigate correlations between fluctuations at different times.
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