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Abstract. We show that the sum of max{0,degF − 6.5} over faces F in a zone in
a pseudoline arrangement of n + 1 pseudolines is at most n. This bound is tight up
to constant terms, and the value 6.5 is optimal. We also prove a similar bound for
half-zones.
We introduce the quantities LI and L̃I , defined for each I ⊆ Z>0 as limits involving
the proportion of faces in the zone or half-zone of a pseudoline ` whose number of sides
lie in I. We determine the values of L̃I for all sets I of positive integers. We determine
the values of LI for infinitely many sets I; in particular, we show that for each fixed
k > 10, the maximum possible number of k-gons in the zone of a pseudoline in an
arrangement of n pseudolines, as a function of n, is n

k−6.5 + o(n).
We define a class of closed polygonal chains corresponding to circular permutations of
2n vectors, and give a criterion on whether they could be embedded in the 1-skeleton
of a zonotopal tiling of a 2n-gon.

Contents

1 Introduction 2

2 Preliminaries 4

3 Bounds for half-zones 5

4 Bounds for zones 10

5 LI and L̃I 22

1



6 Configurations 33

7 Extendable polygonal chains 43

8 Comments and remarks 53

§1 Introduction

Pseudoline arrangements are generalizations of line arrangements in which lines are replaced
by pseudolines, which are not necessarily straight. With fewer geometrical constraints, pseu-
doline arrangements can be treated in a more combinatorial way. A pseudoline arrangement
divides the plane into regions called faces. The number of pseudolines supporting a face
is called its degree. The complexity of a finite set of faces, named due to its applications
to analysis of certain algorithms in computational geometry, is defined to be the sum of
degrees of the faces in the set.

The zone of a pseudoline ` in an arrangement A, first defined in [CGL85], is the set
of faces of A having a side on `. The so-called Zone Theorem, proved in its strongest
form by Pinchasi [Pin11] based on work in [CGL85] and [BEPY91], states that the maxi-
mum possible complexity of a zone in an affine arrangement of n+1 pseudolines is 19n/2−3.

Our paper consists of three main components. The first component (Sections 3 and
4) is on inequalities related to the Zone Theorem. The Zone Theorem concerns the sum∑

F degF over faces F in a zone. We consider sums of the form
∑

F max{0, degF − c} for
varying c. Our main result (Theorem 4.1) in this part is a strong upper bound on this sum
for c > 6.5. Specifically, we show that in an affine arrangement of n+ 1 pseudolines,∑

F

max{0,degF − 6.5} 6 n,

where the sum is over faces in a zone. This inequality does not hold if n is replaced by
(1 − ε)n for any ε > 0, and the constant 6.5 in degF − 6.5 is also the smallest possible
constant. We also prove a related inequality, Theorem 3.1, in which zones are replaced by
half-zones. A half-zone is defined to be the set of faces supported by one side of a pseudo-
line. (For projective arrangements, this is defined as the set of faces in the zone of a line `
in one of the two regions bounded by ` and another given line.)
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The second component of our paper, Section 5, concerns the number of faces with various
degrees in a zone or half-zone. In his monograph Arrangements and Spreads [Grü72], Grün-
baum asks about the maximum number of k-sided faces in an arrangement of n pseudolines.
This problem is deeply linked to incidence geometry and particularly the Szemerédi-Trotter
theorem. We consider a question similar to Grünbaum’s but for zones. Specifically, we ask
for the maximum number of faces in a zone whose degree lie in I, where I is a given set
of positive integers. We prove that for all sets I, this maximum number is asymptotically
linear in n. Using in part the inequalities we proved earlier, we obtain in our second main
result (Theorem 5.6) the leading coefficient LI for various sets I. (For a formal definition
of LI , see Definition 5.1.) In particular, using Theorem 4.1, we show that for fixed k > 10,
Lk = 1

k−6.5 , i.e. the maximum number of k-sided cells in a zone in an arrangement of
n pseudolines is n

k−6.5 + o(n). We also reduce the problem of finding LI for all sets I of
positive integers to eight remaining unsolved sets.

We also consider quantities L̃I , defined in a similar way as LI but for half-zones. The
half-zone problem is substantially easier, and we obtain in another main result (Theo-
rem 5.5) the value of L̃I (see Definition 5.2) for all sets I of positive integers.

In the last component of our paper, Section 7, we study the local structure of pseudo-
line arrangements. We introduce the concept of closed polygonal chains corresponding to
circular permutations of 2n vectors, and our main result in this part is a criterion (Theo-
rem 7.8) on whether a closed polygonal chain can be realized as a curve in the 1-skeleton
of a zonotopal tiling, which is the dual of a pseudoline arrangement.

Our paper is structured as follows. Section 2 is a preliminaries section in which we
formally define various notions related to pseudoline arrangements. In Section 3, we prove
a strong inequality on the degrees of faces in half-zones. In Section 4, we prove a strong
inequality on the degrees of faces in zones. In Section 5, we introduce the quantities LI
and L̃I , then determine the exact values of L̃I for all sets I ⊆ Z>0 and the values of LI
for various sets I, including all sets I ⊆ Z>10. We also give lower and upper bounds on LI
for other sets I. In Section 6, we present explicit configurations attaining the bounds we
give in previous sections. In Section 7, we define proper closed polygonal chains, explore
various properties of them, and give a criterion on when a proper closed polygonal chain is
extendable to a zonotopal tiling. Finally, in Section 8, we give various comments, including
a discussion of the differences between affine and projective arrangements as it applies to
our results.
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§2 Preliminaries

We review standard terminology and results. In the projective plane P2, a pseudoline
is a simple closed curve whose removal does not disconnect P2. A projective pseudoline
arrangement is a family of pseudolines in P2 in which each pair of pseudolines intersect
exactly once [FG18].

In the affine plane R2, a pseudoline is an infinite curve that can be sent to a line under
a homeomorphism of R2,and an affine pseudoline arrangement is a family of pseudolines in
R2 in which each pair of pseudolines intersect exactly once and cross at their intersection.

Projective pseudoline arrangements and affine pseudoline arrangements are distinct but
closely related objects. In many arguments it will be useful to switch between the two
types of pseudoline arrangements, and we will often do so. One way to relate projective and
affine arrangements is to pair each affine arrangement A with the projective arrangement
A+ created by reanalyzing the underlying plane as a projective plane and adding the line
at infinity `∞. An explicit example is given in Figure 1. Further discussion of the difference
between projective and affine pseudoline arrangements is given in Section 8.

Figure 1: A relation between projective and affine pseudoline arrangements.

Unless specified otherwise, the following definitions apply to both projective and affine
pseudoline arrangements. Two pseudoline arrangements are said to be isomorphic if there
is a homeomorphism of the underlying plane which sends one pseudoline arrangement to
the other. A pseudoline arrangement A is said to be simple if no three pseudolines pass
through a single point, and stretchable if A is isomorphic to a line arrangement.

Pseudoline arrangements divide the underlying plane into faces. Given a pseudoline `
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in a pseudoline arrangement A, the collection of faces which is supported by ` is called the
zone of `.

We now define the notion of half-zones. In affine arrangements it is possible to distin-
guish between two sides of a pseudoline; a half-zone is simply a collection of faces supported
by one side of a pseudoline `. In projective arrangements, defining half-zones requires an
auxiliary pseudoline.

Definition 2.1. Let A be a projective pseudoline arrangement. Let ` and q be two distinct
pseudolines of A. The pseudolines ` and q divide the projective plane into two regions. A
half-zone of ` with respect to q is the collection of faces in the zone of ` lying within the
same region determined by ` and q.

The number of sides of a face F is often referred to as the degree of F . The sum of
the degrees of a collection of faces is called the complexity of that collection. The Zone
Theorem gives a tight upper bound on the complexity of a zone.

Theorem 2.2 (Zone Theorem; [BEPY91], [Pin11]). The complexity of the zone of a pseu-
doline ` in an affine arrangement of n + 1 pseudolines is at most 19n

2 − 3, and this bound
is tight.

A strong upper bound on the complexity of a half-zone is also known, due to a theorem
by Chazelle, Guibas, and Lee [CGL85] which we will refer to as the “Half-Zone Theorem.”

Theorem 2.3 (Half-Zone Theorem; [CGL85]). The maximum complexity of a half-zone in
an affine arrangement of n+ 1 pseudolines is 5n+O(1).

Both the Zone and the Half-Zone theorems are also known to hold for projective arrange-
ments, up to constant terms. This can be shown by an argument similar to Corollary 3.3.

§3 Bounds for half-zones

In this section we derive an inequality related to a generalization of the notion of complexity
of half-zones. Specifically, we consider the quantities Q̃(h, c) :=

∑
F∈h max{0, degF − c},

where h is a half-zone in an affine arrangement and c is a constant. These quantities are
generalizations of the complexity of half-zones. Theorem 3.1, the main result of this section,
is an inequality giving an optimal bound on these quantities for c > 5, and is a counterpart
of the Half-Zone Theorem, which gives an optimal bound for c 6 3.
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Theorem 3.1. Let h be a half-zone in an affine arrangement of n pseudolines. Then∑
F∈h

max{0,degF − 5} 6 n− 1,

where degF is the number of sides of F . This bound is tight up to constant terms.

Remark 3.2. As all but two regions of a half-zone must have degree at least 3, the Half-Zone
Theorem shows that

max
A,h

Q̃(h, c) = (5− c)n+O(1)

holds for c 6 3, where the maximum is over all half-zones h in affine arrangements of n
pseudolines. In contrast, Theorem 3.1 shows that

max
A,h

Q̃(h, c) = n+O(1)

for c > 5. The fact that this bound is optimal for any c > 5 comes from the arrangement
where the half-zone h contains an n-gon, in which case it is clear that Q̃(h, c) > n − c.
Furthermore, Configuration 6.6 gives Q̃(h, c) > (7 − c)n/2 + O(1) for c 6 7, which shows
that 5 cannot be replaced by a smaller constant.

Theorem 3.1 also applies to projective arrangements.

Corollary 3.3. Let h be a half-zone in a projective arrangement of n pseudolines. Then∑
F∈h

max{0, degF − 5} 6 n+O(1),

where degF is the number of sides of F . This bound is tight up to constant terms.

Proof. Let A+ be a projective arrangement, and let h be the half-zone of ` with respect to
q, where ` and q are two pseudolines in A. Take a transformation sending q to the line at
infinity `∞.

Consider the affine pseudoline arrangement A′ formed as follows. First we remove
q = `∞ from A+ and view the resulting arrangement as an affine arrangement A. Draw a
large disk which includes all intersections in A, and then add two pseudolines q1 and q2 to
A, each covering around half of the large circle. (See Figure 2.) The resulting arrangement
A′ will contain four more faces in the zone of ` compared to A, and at most 2 faces in the
zone of ` will have their degrees increased by 1 or 2.
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Figure 2: Creating an affine arrangement A′ from a projective arrangement A.
.

Let h′ be the half-zone of ` above ` in A′. It follows that∑
F∈h

max{0, degF − 5} 6
∑
F∈h′

max{0,degF − 5}+O(1)

6 n+O(1).

The arrangement in which h contains an n-gon gives
∑

F∈h max{0, degF − 5} = n− 5, so
this bound is tight up to constant terms.

The rest of this section is dedicated to proving Theorem 3.1. Throughout the rest of this
section, let A be an affine arrangement of n pseudolines, one of which is a horizontal line `.
We can make this assumption because there is always a homeomorphism of R2 that sends
a fixed pseudoline in an affine arrangement to a fixed straight line. We also assume that
A is simple; this assumption is allowed because making a simple arrangement nonsimple
always increases the degrees of faces. We will also assume that the half-zone h in question
is the half-zone of ` above `.

With this setting in mind, we now introduce the notions of left, right, roof, and normal
edges. These notions are similar to the notions of left, right, top, and bottom edges in
[Pin11], which were used to give a concise proof of the Half-Zone Theorem. Figure 3 shows
examples of left, right, roof, and normal edges.

Definition 3.4. Let ` be a horizontal line in a simple affine pseudoline arrangement A.
For each face F , possibly unbounded, in the zone of `, let i(F ) be the set of intersections
of the pseudolines supporting F (except `) with `. We say an edge e of F is
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• left if the pseudoline containing e intersects ` to the left of F ’s edge on e,

• right if the pseudoline containing e intersects ` to the right of F ’s edge on e,

• roof if the pseudoline containing e intersects ` at either the leftmost or rightmost
points in i(F ), and

• normal if e does not have an endpoint on ` and e is not a roof edge.

The above definition covers unbounded edges. If F is unbounded then the roof edges
of F are the two unbounded edges of F .

Figure 3: Examples of left, right, roof, and normal edges

The previous definition allows us to state succinctly the following lemma, which is our
key observation. This lemma is in much of the same spirit as Pinchasi’s [Pin11] phrasing
of the main observation Chazelle, Guibas, and Lee [CGL85] used to prove the Half-Zone
theorem.

Lemma 3.5. Each pseudoline q 6= ` contains at most one normal edge, in total, across all
faces in a given half-zone of `.

Proof. Suppose a pseudoline q 6= ` contains a normal edge of a face F in the half-zone h
of ` above `. Pick such a normal edge e that lies closest to the intersection ` ∩ q on q. We
show that e must in fact be the only normal edge on q above `.
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Figure 4: If a pseudoline q 6= ` contains normal edge (in blue) above `, then it
cannot contain another normal edge above `.

Consider the two edges of F adjacent to e. As e is normal, the pseudolines q1 and q2
containing these two edges intersect ` at two points on ` which lie on the same side of the
edge of F on `. It follows that the section of q which is further from ` than e lies in the
region bounded by q1, q2 which does not intersect `. (See Figure 4.) Faces in this region
cannot lie in the zone of ` and therefore cannot contain a normal edge. Consequently, q
cannot contain a normal edge above ` other than e.

With Lemma 3.5, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Each pseudoline q 6= ` can contain at most one normal edge in h,
the half-zone of ` above `. As there are n − 1 pseudolines other than `, there can be at
most n− 1 normal edges in h.

Each face F in h can contain at most five non-normal edges: three edges with at least
one endpoint on `, and two roof edges. Therefore, each face F must contain at least
max{0, degF − 5} normal edges. Summing over all faces F gives the inequality∑

F∈h
max{0,degF − 5} 6 n− 1.

The affine arrangement in which all n pseudolines form an n-gon above ` shows that the
sum given above can be at least n−5. Therefore the above inequality is tight up to constant
terms.
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§4 Bounds for zones

In this section we derive an inequality comparable to the Zone Theorem. We define quan-
tities Q(`, c) for zones analogous to the quantities Q̃(h, c) for half-zones. Whereas the Zone
Theorem gives an upper bound of Q(`, c) for c 6 3, our main result, Theorem 4.1, gives an
upper bound of Q(`, c) for c > 6.5.

Theorem 4.1. Let ` be a pseudoline in an affine arrangement of n pseudolines. Then∑
F∈zone(`)

max{0, degF − 6.5} 6 n− 1,

where degF is the number of sides of F . This bound is tight up to constant terms.

Remark 4.2. Theorem 4.1 is to the Zone Theorem what Theorem 3.1 is to the Half-Zone
Theorem. Formally define the quantities Q(`, c) by

Q(`, c) =
∑

F∈zone(`)

max{0,degF − c},

where ` is a pseudoline in an affine arrangement and c is a constant. On one hand, for
c 6 3, the Zone Theorem gives the tight bound

max
A,`

Q(`, c) = (9.5− 2c)n+O(1),

where the maximum ranges over all zones in affine arrangements of n pseudolines. On the
other hand, Theorem 4.1 gives the optimal bound

max
A,`

Q(`, c) = n+O(1)

for c > 6.5. This bound does not hold for c < 6.5, as Configuration 6.13 gives Q(`, c) >
(10− c)n/3.5 +O(1).

An argument identical to Corollary 3.3 shows that Theorem 4.1 also applies to projective
arrangements.

Corollary 4.3. Let ` be a pseudoline in a projective arrangement of n pseudolines. Then∑
F∈zone(`)

max{0,degF − 6.5} 6 n+O(1),

where degF is the number of sides of F . This bound is tight up to constant terms.
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The rest of this section is dedicated to proving Theorem 4.1. We make the same as-
sumption as in the previous section: we assume that A is a simple affine arrangement of
n pseudolines, one of which is a horizontal line `. We again use the notions of left, right,
roof, and normal edges, as defined in Definition 3.4. Our strategy is as follows.

We first introduce the notions of bases and eaves, which will simplify arguments involv-
ing relations between faces. We start by defining bases and eaves, which are segments on `
associated to faces. We then define a partial order on the set of segments of `.

We construct auxiliary graphs G,G↑, G↓, corresponding to various pairs of normal edges
lying on the same pseudoline. We then construct another auxiliary graph H based on G.
By considering possible orders of segments on ` and faces in the zone of `, we show that H
has no cycles. This gives a strong upper bound on the average degree of G which in turn
implies Theorem 4.1.

Definition 4.4. For each face F in the zone of `, define the base F to be the edge, either
bounded or unbounded, of F on `.

Definition 4.5. For each face F in the zone of `, define the eave F̂ of F to be the
segment on ` joining the leftmost and rightmost points of i(F ). (Recall that i(F ) is the set
of intersections of ` and the pseudolines supporting F .) Given faces F1 and F2 in the zone
of `, we say F1 dominates F2 if F̂1 ) F̂2 .

We also define a partial order on the closed intervals of `, including points, which will
be useful in arguments involving the relative order of points or pseudolines.

Definition 4.6. Identify ` with the real line, with −∞ to the left and +∞ to the right.
We give a partial order on the closed intervals of ` as follows.

Let a = [a1, a2] and b = [b1, b2] be closed intervals of `, possibly single points (when
a1 = a2 or b1 = b2). We say a 6 b if a2 6 b1 as real numbers, and we say a < b if a 6 b
and a 6= b.

When restricted to the set of bases of faces in a half-zone of `, the partial ordering
defined above becomes a total order. From now on, if faces F1 and F2 are on the same side
of `, we may use the interval notation such as [F1, F2) to mean the set of faces F such that
F lies on the same side of ` as F1 and F2, and F1 6 F < F2.

Lemma 3.5 implies that a pseudoline q 6= ` can contain at most two normal edges: one
in each half-zone of `. In the next lemma, we show that the two normal edges cannot be
both left or both right edges.
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Lemma 4.7. If a pseudoline q 6= ` contains two normal edges, then one of them is a left
edge, and the other is a right edge.

Figure 5: If a pseudoline q 6= ` contains a left normal edge of F and a left
normal edge of F ′ then F ′ < F .

Proof. By symmetry, it suffices to show that a pseudoline q 6= ` cannot contain two left
normal edges. Suppose for the sake of contradiction that a pseudoline q 6= ` contains left
normal edges e1 and e2 of distinct faces F and F ′. We show that F ′ < F .

See Figure 5. Let P = q ∩ `. Consider the two edges of F adjacent to e1. Let the
pseudolines q1 and q2 containing them intersect ` at points P1, P2. One of these points, say
P1, must be closer to F than P . As F ′ has a left normal edge on q, it follows that F ′ is in
the region below ` bounded by q and q1, so F

′
< F .

Finally, we observe that we have not made any special distinction between F and F ′,
so the same argument shows that F < F

′ as well, and this is our desired contradiction.

We introduce notions of up-relatedness and down-relatedness for pairs of faces containing
normal edges on the same pseudoline. We then introduce graphs G↑, G↓, and G which
captures relations between faces. Our goal is to show that these graphs have low average
degree. This would imply that few pseudolines can contain two normal edges, which in
turn implies that the total number of normal edges is low. A strong enough bound on the
average degree of G will imply Theorem 4.1.

Definition 4.8. We say faces A above ` and B below ` are up-related if there is a pseudoline
q 6= ` that contains a left normal edge of A and a right normal edge of B. We say faces A
above ` and B under ` are down-related if there is a pseudoline q 6= ` that contains a right
normal edge of A and a left normal edge of B. We say two faces A and B are related if
they are either up-related or down-related.
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Define a graph G↑ with vertices vF representing faces F with at least two normal edges,
and edges joining pairs of up-related faces. Analogously define G↓ for down-related faces
and G for related faces (either up-related or down-related). The edge set of G is the union
of the edge sets of G↑ and G↓.

Lemma 4.9. Neither G↑ nor G↓ contains a cycle.

Proof. By symmetry, it suffices to prove that G↑ does not contain a cycle. Suppose for the
sake of contradiction that G↑ contains a cycle C. Let F be the face above ` in this cycle
whose base F lies rightmost on `. Suppose the cycle C consists of faces F −F1−F2−· · ·−
Fr − F in this order. As each edge of G↑ connects two faces on opposite sides of `, the
graph G↑ is bipartite. Cycles in G↑ must therefore contain at least 4 edges, so r > 3.

Without loss of generality, assume that F1 < Fr. Let q be the pseudoline containing
the normal edges of F and F1. As F1 < Fr, it is clear that Fr and F must lie on the same
side of q. See Figure 6.

Figure 6: Fr and F must lie on the same side of q.

Consider F2. As F lies rightmost, we have F2 < F . In fact, F2 and F1 must lie on the
same side of q (with F and Fr on the opposite side).

The two endpoints of the path F2 − · · · − Fr in C are on opposite sides of q, so there
must be a pair of consecutive faces Fs − Fs+1, distinct from F and F1, such that Fs lies
on the F1 (and F2)-side of q, but Fs+1 lies on the F (and Fr)-side of q. Let qs be the
pseudoline containing normal edges of both Fs and Fs+1.
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Figure 7: Depending on the location of P (above or below `), either Fs or Fs+1

cannot be in the zone of `.

If Fs+1 lies above ` then as Fs+1 < F , the face Fs+1 must lie in the region bounded by
`, q and F . It follows that qs necessarily intersects the interior of F , which is impossible.
Therefore Fs lies above ` and Fs+1 lies below `. Now suppose qs intersects q at P , as in
Figure 7. If P lies above ` then Fs cannot be in the zone of `, and if P lies below ` then
Fs+1 cannot be in the zone of `; in either case, there is a contradiction. Therefore G↑ does
not contain a cycle.

We establish some basic properties of bases and eaves, which will be helpful in arguments
related to the order of segments on `.

Lemma 4.10. If faces F1 and F2 in the zone of ` are both above ` or both below ` and
F1 ⊆ F̂2 then F̂1 ( F̂2 .

Figure 8: If F1 ⊆ F̂2 then F1 is located in one of the regions bounded by F2

and the lines containing its roof, and hence F̂1 ( F̂2 .

Proof. Without loss of generality, suppose that F1 > F2. Then F1 must be in the region
bounded by `, F2, and the right roof of F2. The left roof of F1 cannot intersect F2, so
it must intersect ` to the right of F2. The right roof of F1 also cannot intersect F2, so it
cannot intersect ` to the right of the right roof of F2; it follows that F̂1 ( F̂2 .
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Lemma 4.11. If faces A and B are related then A ( B̂ and B ( Â .

Figure 9: If faces A and B are related then B ( Â .

Proof. It suffices to show B ( Â . Without loss of generality, assume A lies above ` and
B lies below `. Also assume that A and B are up-related by a pseudoline q. The left roof
of A cannot intersect B, so it must intersect ` to the left of B, which implies B ( Â .

Lemma 4.12. Let A,A1, A2 be faces in the zone of ` above `, and let B,B1, B2 be faces
in the zone of ` below `. Assume that A1 < A2 and B1 < B2.

a) If A is up-related to B1 and B2 then B̂ ( B̂1 for all B ∈ (B1, B2].

b) If A is down-related to B1 and B2 then B̂ ( B̂2 for all B ∈ [B1, B2).

c) If B is up-related to A1 and A2 then Â ( Â2 for all A ∈ [A1, A2).

d) If B is down-related to A1 and A2 then Â ( Â1 for all A ∈ (A1, A2].

Proof. It suffices to prove a); all other parts are equivalent to a) by horizontal and/or
vertical flipping.

Let q be the line containing a left normal edge of A and a right normal edge e1 of B1, and
let P = q∩ `. Let q′ be the right roof of B1, and let q′ intersect ` at P ′. From Lemma 4.11,
we have A ( B̂1 . As P ′ is the rightmost point of B̂1 , it follows that A < P ′.
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Figure 10: If faces A and B1 are up-related then A lies to the left of the
intersection of the right roof of B1 and `.

As A and B2 are up-related, B 6 B2 < A < P ′. Therefore B ⊆ B̂1 , so by Lemma 4.10
it follows that B̂ ( B̂1 .

We now define a multigraph H whose vertices are the faces in the half-zone of ` below
` with at least two normal edges. The edges of H are colored either blue or green, and are
defined according to the following procedure:

• For each face A above ` that is up-related to at least two faces B1, . . . , Br below
` such that B1 < · · · < Br, we add blue edges connecting Bi and Bi+1 for each
i = 1, . . . , r − 1.

• For each face A above ` that is down-related to at least two faces B1, . . . , Br below
` such that B1 < · · · < Br, we add green edges connecting Bi and Bi+1 for each
i = 1, . . . , r − 1.

Our end goal is to show that H has no cycles, which would give an upper bound on the
number of edges in G strong enough to imply Theorem 4.1. Our strategy will be to eliminate
various configurations of edges ofH and show that a cycle inH must contain a configuration
that has been eliminated.

Lemma 4.13. The graph H is in fact a simple graph.

Proof. By its definition, H has no loops. Suppose H has a double edge between B1 and
B2. The two edges cannot be of the same color because that would lead to a cycle in either
G↑ or G↓. The two edges cannot have different colors either because Lemma 4.12 would
imply B̂1 ( B̂2 and B̂1 ) B̂2 .
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Lemma 4.14. Let B1, B2, B3, B4 be faces in the zone of ` below `. The following two
configurations are impossible:

a) B1 < B2 6 B3 < B4, B1B3 is a blue edge in H, and B2B4 is a green edge in H.

b) B1 6 B2 < B3 6 B4, B1B3 is a green edge in H, and B2B4 is a blue edge in H.

Figure 11: The two configurations shown in this figure are impossible.

Proof. a) Let A13 be a face above ` up-related to B1 and B3, and let A24 be a face
above ` down-related to B2 and B4. As A24 and B2 are down-related, A24 < B2 and
A24 ⊆ B̂2 . As A13 and B3 are up-related, B13 ⊆ B3. Lemma 4.12 gives B̂1 ⊃ B̂2 .
It follows that B1 < B̂2 , which implies B1 < A24 < B2 6 B3 < A13.

As B1 is up-related to A13, B1 ⊆ A13. Now A24 lies between B1 and A13, which are
both segments of Â13 . Therefore, A24 ⊆ Â13 . Lemma 4.10 then implies Â24 (
Â13 . However, a similar argument implies Â13 ( Â24 , which is a contradiction.

b) As B2B4 is blue, Lemma 4.12 implies B̂3 ( B̂2 . As B1B3 is green, Lemma 4.12
implies B̂2 ( B̂3 . These two relations clearly contradict.

Lemma 4.14 implies the following corollary.

Corollary 4.15. a) If B1B2 is a blue edge in H then for each green edge e in H, either
none of its endpoints lie in the interval (B1, B2], or both of its endpoints lie in the
interval (B1, B2].

b) If B1B2 is a green edge inH then for each blue edge e inH, either none of its endpoints
lie in the interval [B1, B2), or both of its endpoints lie in the interval [B1, B2).

Proof. The two parts are equivalent under a reflection over ` so it suffices to prove a). Sup-
pose there is a green edge B3B4 (with B3 < B4) with exactly one endpoint in (B1, B2]. Then
either B3 6 B1 < B4 6 B2 or B1 < B3 6 B2 < B4; the former violates Lemma 4.14(b) and
the latter violates Lemma 4.14(a).
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We show that one last configuration is forbidden in cycles.

Lemma 4.16. Let B1, B2, B3, B4 be faces in the zone of ` below `. If B1 6 B2 < B3 6 B4,
and B1B4 and B2B3 are differently colored edges in H, then the edges B1B4 and B2B3

cannot be part of the same cycle in H.

Proof. Without loss of generality assume B1B4 is blue and B2B3 is green. (The case where
B1B4 is green and B2B3 is blue is equivalent to this case under a reflection over a line
perpendicular to `.) From Lemma 4.14(b) we know that B1 6= B2.

Recall that our partial ordering of bases gives a total ordering of faces below `. Consider
the union U of the half-open intervals [L,R) where L,R are faces below ` such that B1 <
L < R 6 B4 and LR is a green edge of H. The set U can be written as the union⋃
i[Li, Ri) of disjoint half-open intervals such that Li and Ri are distinct. (See the top part

of Figure 12.) As [B2, B3) ⊆ U , there is an interval [Lj , Rj) which contains [B2, B3).
Call an edge of H splitting if exactly one endpoint of the edge is in the interval [Lj , Rj).

We claim that all splitting edges have Rj as an endpoint.

Figure 12: The top half of this figure shows the union U of the half-open
intervals [L,R) where L,R are faces below ` such that B1 < L < R 6 B4 and
LR is a green edge of H. The bottom half of this figure shows some invalid
positions for a splitting edge B5B6; this shows that all splitting edges must
have Rj as an endpoint.
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Suppose there is a splitting edge B5B6 such that neither B5 nor B6 is Rj .

• If B5B6 is green then without loss of generality assume B5 < B6. Since at least one
of B5 and B6 [Lj , Rj) ⊆ (B1, B4], by Corollary 4.15(a) the other must lie in (B1, B4]
as well. It follows that [B5, B6) is an interval of the form [L,R) in the union U , and
therefore it must be contained within one of U ’s disjoint intervals; since one of B5, B6

lies in [Lj , Rj), this interval must be [Lj , Rj). It follows that B5, B6 ∈ [Lj , Rj ], so
B5B6 cannot be a splitting edge unless B6 = Rj .

• If B5B6 is blue then consider its endpoint within [Lj , Rj). WLOG assume it is B5.
Then B5 must be contained within one of the intervals [L,R) in the union U , so
by Corollary 4.15(b), B6 must lie in [L,R) as well, so in this case B5B6 cannot be
splitting either.

Therefore all splitting edges must have Rj as an endpoint. Now assume for the sake of
contradiction that B1B4 and B2B3 are in the same cycle in H. Consider the disjoint paths
p1 from B2 to B1 and p2 from B2 to B4 in this cycle. As B2 ∈ [Lj , Rj) but B1, B4 6∈ [Lj , Rj),
both p1 and p2 contains a splitting edge. It follows that both p1 and p2 passes through Rj ,
which is impossible because p1 and p2 does not have a vertex in common except for B2,
and B2 6= Rj . This is our desired contradiction.

We have now eliminated enough configurations of edges in H.

Lemma 4.17. H does not contain a cycle.

Proof. Suppose for the sake of contradiction that H contains a cycle c = B1B2 · · ·BrB1.
If c is monochromatic, without loss of generality assume it is blue. For each i = 1, . . . , r,

let Ai be the face above ` up-related to Bi and Bi+1 (where Br+1 = B1). It follows
that B1A1B2A2 · · ·BrArB1 is a closed walk in G↑, so G↑ must contain a cycle, and this
contradicts Lemma 4.9.

Therefore c must contain both blue and green edges. In particular, there must be
consecutive edges in c having distinct colors. Without loss of generality we may assume
that these edges are B1B2 and B2B3, and that B1B2 is green and B2B3 is blue. As H is
a simple graph, B1, B2, B3 are all distinct. There are six orderings of B1, B2, B3, and we
show that none is possible.

Case 1: B1 < B2 < B3.
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Figure 13: In the case where B1 < B2 < B3, there cannot be an edge BiBi+1

such that Bi+1 < B2 < Bi.

In this case, since c contains the path B3B4 · · ·BrB1, there must be an edge BiBi+1

in c such that Bi+1 < B2 < Bi. Without loss of generality assume this edge is green.
If Bi 6 B3 then Bi+1 < B2 < Bi 6 B3, but Bi+1Bi is green and B2B3 is blue. This
contradicts Lemma 4.14(b). On the other hand, if Bi > B3 then Bi+1 < B2 < B3 < Bi,
and this contradicts Lemma 4.16.

Case 2: B3 < B2 < B1. In this case B3 < B2 = B2 < B1 violates Lemma 4.14(a).

Case 3: B1 < B3 < B2, B2 < B1 < B3, B2 < B3 < B1, or B3 < B1 < B2. These four
orderings all violate Lemma 4.16.

We have shown that none of the orderings of B1, B2, B3 is possible; this is a contradiction,
and therefore H cannot contain a cycle.

The fact that H cannot contain a cycle gives an upper bound on the average degree of
H, which in turn gives an upper bound on the average degree of G.

Lemma 4.18. The average degree of G is less than 3.

Proof. Let A1, . . . , Ar be the vertices of G above `, i.e. faces with normal edges above `.
Let B1, . . . , Bs be the vertices of G below `. By the definition of H,

# edges in H =
r∑
i=1

(
max{0, degG↑ Ai − 1}+ max{0,degG↓ Ai − 1}

)
>

r∑
i=1

(
{degG↑ Ai − 1}+ {degG↓ Ai − 1}

)
=

(
r∑
i=1

degGAi

)
− 2r
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As H has no cycles, the number of edges in H is less than the number of vertices in H,
which is s. Therefore

r∑
i=1

degGAi < 2r + s.

Similarly we can show that
∑s

i=1 degGBi < 2s+ r. It follows that∑
v∈G

degG v < 3(r + s) = 3|V |,

so the average degree of G is less than 3.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let B be the set of faces F in the zone of ` with at least two normal
edges, and let b = |B|.

Call a normal edge mundane if it is on a face with at least two normal edges. By
Lemma 4.7, each line other than ` contains at most two mundane edges, and each line
with two mundane edges corresponds to an edge in G. By Lemma 4.18, it follows that the
number of lines with two mundane edges is at most 1.5b. As there are n − 1 lines other
than `, the number of mundane edges is at most n− 1 + 1.5b.

As each face F in the zone of ` has at most five normal edges, a face F with at most
one normal edge has at most six sides, hence max{0,degF − 6.5} = 0. Therefore

∑
face F∈zone(`)

max{0,degF − 6.5} =
∑
F∈B

max{0,degF − 6.5}

=

(∑
F∈B

max{1.5, degF − 5}

)
− 1.5b

6

(∑
F∈B

# normal edges of F

)
− 1.5b

6 n− 1,

and we are done.
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§5 LI and L̃I

We introduce the quantities LI and L̃I , defined for each I ⊆ Z to be limits involving the
proportion of faces in the zone or half-zone of a pseudoline ` whose degree lies in I. In
particular, when I = {k} is a singleton, the quantities Lk and L̃k gives upper bounds on
the number of k-sided faces in a zone or half-zone.

Our main results are given in two theorems. In Theorem 5.5, we determine the values
of L̃I for all sets I ⊆ Z. In Theorem 5.6, we determine the values of LI for various sets
I ⊆ Z and reduce the question of determining LI for remaining sets I to determining I for
eight specific finite sets I. For these eight remaining sets I, we give our best known lower
and upper bounds on the value of LI .

In this section we will work with simple projective arrangements. Let ` be a pseudoline
in a simple projective arrangement A of n pseudolines. For each positive integer k, we count
the number uk(`,A) of k-sided faces in the zone of `. For each set I of positive integers,
we define uI(`,A) :=

∑
k∈I uk(`,A) to be the total number of faces in the zone of ` whose

degree lies in I. We now define LI as the limit of the maximum possible value of uI(`,A)
over simple projective arrangements A with n pseudolines.

Definition 5.1. For each set I ⊆ Z, we define the quantity LI by the following limit.

LI := lim
n→∞

MuI(n)

n
where MuI(n) := max

simple projective A of n pseudolines
pseudoline `∈A

uI(`,A).

We define L̃I as an analogue of LI for half-zones. For each half-zone h in a simple
projective arrangement A of n pseudolines, we count the number ũk(h,A) of k-sided faces
in h. For each set I of positive integers, define ũI(h,A) :=

∑
k∈I ũk(h,A). The quantity L̃I

is defined to be the limit of the maximum possible value of ũI(h,A) over simple projective
arrangements A with n pseudolines.

Definition 5.2. For each set I ⊆ Z, we define the quantity L̃I by the following limit.

L̃I := lim
n→∞

MũI(n)

n
where MũI(n) := max

simple projective A of n pseudolines
half-zone h∈A

ũI(h,A).

When I = {k} is a singleton, the shorthand Lk and L̃k may be used in place of L{k}
and L̃{k}.

Our first goal is to show that the limits LI and L̃I do exist, and therefore can be
meaningfully discussed. We start with a lemma.
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Lemma 5.3. Let A+ be a projective pseudoline arrangement, and let ` and q be distinct
pseudolines in A. Then there is a half-zone h of ` with respect to q such that h contains at
most two faces supported by both q and `.

Proof. Take a transformation sending q to the line at infinity, and consider the affine pseu-
doline arrangement A created by viewing A+ \ {q} as an affine arrangement. Half-zones
of ` with respect to q in A+ become half-zones of ` in A, and faces supported by q in A+

become unbounded faces of A. Therefore, it suffices to show that, given a pseudoline ` in
an affine arrangement A, there is a side of ` on which the faces supported by a segment of
` are all bounded. (The two extreme faces supported by rays of ` are always unbounded.)

Figure 14: The pseudolines r and r′ through P1 and P4 can intersect on neither
side of `.

Let F be an unbounded face supported by a segment P1P2 of `, and suppose that there
were another unbounded face F ′ supported by a segment P3P4 of ` on the opposite side
of `. The segments P1P2 and P3P4 cannot coincide, so without loss of generality we may
assume that P1, P2, P3, P4 lie in this order. Let r and r′, distinct from `, be the pseudolines
supporting F and F ′ passing through P1 and P4 respectively. As F and F ′ is unbounded,
it follows that r and r′ can intersect on neither side of `, which is impossible. Therefore,
for each pseudoline ` in an arrangement A, there is a side of ` on which the faces supported
by a segment of ` are all bounded.

Proposition 5.4. The limits LI and L̃I exist for all sets I of positive integers.

Proof. We first show that the limit LI exists for all sets I of positive integers. Let A1 and
A2 be projective arrangements of pseudolines. Let `1 and q1 be distinct pseudolines of A1

and let `2 and q2 be distinct pseudolines of A2. Without loss of generality we may assume
that each of q1 and q2 is the line at infinity.
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By Lemma 5.3, for i ∈ {1, 2}, there is a half-zone hi of `i with respect to qi such that
contains at most two faces supported by both qi and `i. Call the half-zone hi the good
half-zone of `i with respect to qi.

We now create a combined arrangement A as in Figure 15. We first draw pseudolines
` and q with q being the line at infinity. We then place parts corresponding to A1 and A2

far apart on ` so that the good half-zones h1 and h2 coincide, and make the pseudolines in
A1 \ {`1, q1} and A2 \ {`2, q2} intersect in the good half-zones.

Figure 15: We can combine arrangements A1 and A2 to create an arrangement
A. The zone of A will contain all faces from the zones of A1 and A2 except the
faces marked with a yellow dot.

If A1 has m pseudolines and A2 has n pseudolines then A has m + n − 2 pseudolines.
As A preserves all but eight faces in the zone of ` from A1 and A2,

MuI(m+ n− 2) >MuI(m) +MuI(n)− 8.

Define f(n) = MuI(n+ 2)− 8. It follows that

f(m+ n) > f(m) + f(n).

As MuI(n) 6 2n, it follows that f(n)
n 6 2 for all positive integers n. Therefore the

supremum s = sup
{
f(n)
n : n ∈ Z>0

}
exists. From the above inequality it also follows that

for all n ∈ Z>0 and ε > 0, there is an N such that the inequality

f(m)

m
>
f(n)

n
− ε
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holds for all m > N . Therefore, for all ε > 0, f(n)
n > s − ε for all sufficiently large n.

Consequently,

lim
n→∞

f(n)

n
= s,

and it follows that LI = limn→∞
MuI(n)

n = s.
The proof for L̃I is similar, with the main difference being that we want lines from

A1 and A2 intersect on the half-zone of ` that is not h instead of the “all-bounded” half-
zone.

We now state our main results on L̃I and LI . Theorem 5.5 gives a simple procedure to
determine the values of L̃I for all sets I ⊆ Z>0.

Theorem 5.5. For all sets I ⊆ Z, the value of L̃I can be determined as follows.

a) For all sets I ⊆ Z, L̃I = L̃I∩{3,4,5,...}. For all sets I ⊆ Z>4, we have

L̃I = L̃min I and L̃{3}∪I = L̃{3,min I}.

b) For each k > 3, the value of L̃k is given by the following table.

k L̃k
3 1/2
4 1
5 1
6 2/3

> 7 1/(k − 5)

c) For each k > 4, the values of L̃{3,k} is given by L̃{3,k} = min
{

1, 12 + L̃k

}
.

Theorem 5.6 gives exact values of LI for various sets I, and gives lower and upper
bounds for LI for other sets I. The problem of finding the exact value of LI for all sets
I is also reduced to eight remaining cases: I = {k} with 5 6 k 6 9 and I = {3, k} with
7 6 k 6 9.

Theorem 5.6. Bounds for LI are given as follows.
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a) For all sets I ⊆ Z, LI = LI∩{3,4,5,...}. For all sets I ⊆ Z>4, we have

LI = Lmin I and L{3}∪I = L{3,min I}.

Therefore it suffices to determine LI for sets I of the form I = {k} with k > 3 and
I = {3, k} with k > 4.

b) For each k > 3, bounds on Lk are given by the following table. When there are two
numbers listed for Lk, the smaller number is the lower bound, and the larger number
is the upper bound. When there is a single number listed for Lk, it is the exact value
of Lk.

k Lower bound of Lk Upper bound of Lk
3 1
4 2
5 14/9 7/4
6 9/8 7/6
7 9/13 5/6
8 1/2 5/8
9 3/8 2/5

> 10 1/(k − 6.5)

c) For each k > 4, bounds on L{3,k} are given by the following table.

k Lower bound of L{3,k} Upper bound of L{3,k}
4 2
5 2
6 2
7 5/3 11/6
8 3/2 13/8
9 11/8 7/5

> 10 1 + 1/(k − 6.5)

The rest of this section is dedicated to proving Theorems 5.5 and 5.6. We start by
proving a lemma which states, in essence, that for each k > 5 we can reduce all faces F in
a zone to k-gons.
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Lemma 5.7. Let ` be a pseudoline in a projective arrangement A of n pseudolines. Let
F be a face in the zone of `. If degF > 6 then there is a projective arrangement A′ of n
pseudolines such that the following two conditions hold.

• There are pseudolines q ∈ A and q′ 6∈ A such that A′ = A \ {q} ∪ {q′} for some
pseudolines q, q′.

• The zone of ` in A′ is identical to the zone of ` in A except for the face F , which
becomes a face F ′ with degF ′ = degF − 1.

Proof. Let k = degF and let e0, e1, . . . , ek−1 be the edges of F in order, so that e0 lies on `,
and e1 and ek−1 has an endpoint in `. Let `1, . . . , `k−1 be the pseudolines in A containing
e1, . . . , ek−1 respectively.

Figure 16: Replacing q by q′ reduces the degree of F by 1.

Pick q = `2. Draw the pseudoline q′ as follows: q′ agrees with q for the most part,
except q′ is moved around the intersection of e3 and e4. (See Figure 16.) Replacing q by
q′ reduces the degree of F by 1, and does not affect other faces in the zone of ` because q
and q′ only differ in the region bounded by `, `2, and `k−2 that contains F , and the only
face in the zone of ` lying in this region is F .

We now give a proof of Theorem 5.5.

Proof of Theorem 5.5. a) In a projective pseudoline arrangement with at least 3 pseu-
dolines, all faces have at least three sides. As there are no 1-gons or 2-gons, L̃I =
L̃I∩{3,4,5,...}.
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We now show that
L̃I = L̃min I

for I ⊆ Z>4.

• Case 1: min I = 4.
Let J be a set of positive integers with 4 ∈ J . Configuration 6.2 shows that
L̃J > 1. As there are only n− 1 faces in a half-zone of a projective arrangement
of n pseudolines, MũI(n) 6 n − 1 for all n > 2. (Recall that MũI(n) is the
maximum possible number of faces F with degF ∈ I in a half-zone h in a
projective arrangement of n pseudolines.) Therefore

L̃J 6 lim
n→∞

n− 1

n
= 1,

so L̃J = 1 for all sets J with 4 ∈ J . Therefore it follows that

L̃I = 1 = L̃4 and L̃{3}∪I = 1 = L̃{3,4}

for all sets I ⊆ Z>4 with min I = 4.

• Case 2: min I > 5.
Let n be a positive integer, and let k = min I. Let A be a projective arrangement
of pseudolines and let h be a half-zone in A such that ũI(h,A) attains the
maximum possible value, that is,

ũI(h,A) = MũI(n).

As k > 5, by repeatedly applying Lemma 5.7, we obtain a projective arrangement
A′ of n pseudolines which has a k-sided face for every face in A with at least
k sides. Therefore, ũk(h,A′) = ũI(h,A). It follows that Mũk(n) > MũI(n).
However, as k ∈ I, it is clear that Mũk(n) 6MũI(n) as well. Therefore,

Mũk(n) = MũI(n)

for all positive integers n, and hence L̃k = L̃I .

b) We divide into cases based on the value of k.
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• Case 1: k = 3.
We show that in a simple projective pseudoline arrangement A of at least 4 pseu-
dolines, two triangles cannot share an edge. Suppose for the sake of contradiction
that two triangles T1 and T2 share an edge e lying on the pseudoline `. Let q1
and q2, both distinct from `, be the pseudolines passing through the endpoints
of e. (As A is simple, the choice of q1 and q2 is unique.) The pseudolines q1 and
q2 must both support both T1 and T2. It follows that q1 and q2 must intersect
twice, which is impossible.

Figure 17: Two triangles cannot share an edge.

A half-zone h in a projective arrangement of n > 4 pseudolines is a collection of
n − 1 faces F1, F2, . . . , Fn−1 such that Fi shares an edge with Fi+1. It follows
that for each i, at most one of {Fi, Fi+1} can be a triangle. Therefore there are
at most

⌈
n−1
2

⌉
triangles in h, i.e. Mũ3 6

⌈
n−1
2

⌉
. It follows that

L̃3 6 lim
n→∞

1

n

⌈
n− 1

2

⌉
=

1

2
.

The value L̃3 = 1
2 is attained by Configuration 6.1.

• Case 2: k = 4.
In Case 1 of part a) we already showed that L̃4 = 1.

• Case 3: k = 5.
The proof that L̃J 6 1 in Case 1 of part a) applies to all sets J ⊆ Z>0, including
J = {5}, so L̃5 6 1. This upper bound is attained by Configuration 6.4.

• Case 4: k = 6.
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Let n > 3. The Half-Zone Theorem for projective arrangements states that for
a half-zone h in a projective arrangement A of n pseudolines,∑

F∈h
degF 6 5n+O(1).

As there are n− 1 faces in a half-zone, it follows that∑
F∈h

(degF − 3) 6 2n+O(1).

As all faces in A have at least three sides, every term in the sum
∑

F∈h(degF−3)
is nonnegative. Each 6-gon contributes 3 to the sum, so the number of 6-gons
in h is at most 2n

3 +O(1). In other words, Mũ6(I) 6 2n
3 +O(1), so

L̃6 6 lim
n→∞

1

n

(
2n

3
+O(1)

)
=

2

3
.

This upper bound is attained by Configuration 6.5.

• Case 5: k > 7.
Let h be a half-zone in a projective arrangement of n pseudolines. Theorem 3.1
gives ∑

F∈h
max{0, degF − 5} 6 n+O(1).

Each term in the sum is nonnegative, and each k-gon contributes k − 5 to the
sum. Therefore Mũk 6

n
k−5 +O(1). It follows that L̃k 6 1

k−5 . Configuration 6.6
shows that this upper bound can be reached.

c) The bound L̃{3,k} 6 1 follows from the fact that L̃J 6 1 for all J ⊆ Z>0. The bound
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L̃{3,k} 6
1
2 + L̃k can be derived from the definition of L̃ as follows:

L̃{3,k} = lim
n→∞

Mũ{3,k}(n)

n
= lim

n→∞
max

simple proj. A of n pseudolines
half-zone h∈A

ũ{3,k}(h,A)

6 lim
n→∞

 max
simple proj. A of n pseudolines

half-zone h∈A

ũ3(h,A) + max
simple proj. A of n pseudolines

half-zone h∈A

ũk(h,A).


= lim

n→∞

Mũ3(n) +Mũk(n)

n

= L̃3 + L̃k

=
1

2
+ L̃k.

The upper bound L̃{3,k} 6 min
{

1, 12 + L̃k

}
can be reached at Configurations 6.2

(k = 4), 6.3 (k = 5), 6.1 (k = 6), and 6.6 (k > 7).

We close this section by giving a proof of Theorem 5.6, which uses an approach similar
to the proof of Theorem 5.5 in many parts.

Proof of Theorem 5.6. a) The proof of Theorem 5.5(a) also works with LI in place of
L̃I using the bound LJ 6 2; for 4 ∈ J this is attained by Configuration 6.2.

b) We first derive the upper bounds given.

• Case 1: k = 3.
In the proof of Theorem 5.5(b) we showed that a half-zone h in a simple projec-
tive pseudoline arrangement of n > 4 pseudolines contains at most

⌈
n−1
2

⌉
6 n

2
triangles. A zone can be divided into two half-zones. Therefore a zone in a
simple projective pseudoline arrangement of n > 4 pseudolines contains at most
n triangles, hence L3 6 1.

• Case 2: k = 4.
The upper bound L4 6 2 follows from the fact that LJ 6 2 for all sets J ⊆ Z>0.
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• Case 3: 5 6 k 6 6.
Let A be a simple projective arrangement of n > 3 pseudolines, and let ` be a
pseudoline in A. The Zone Theorem, for projective arrangements, states that∑

F∈zone(`) degF 6 19n
2 + O(1). As there are 2n − 2 faces in the zone of `, it

follows that ∑
F∈zone(`)

degF − 3 6
7n

2
+O(1).

As all faces of A have at least three sides, all terms in the sum above is non-
negative. A k-gon contributes k − 3 to the sum. Therefore, there are at most

7n
2(k−3) +O(1) k-gons in the zone of `, and it follows that Lk 6 7n

2(k−3) .
• Case 4: 7 6 k 6 8.

Let A be a simple projective arrangement of n > 3 pseudolines, and let ` be a
pseudoline inA. As triangular faces do not contribute to the sum

∑
F∈zone(`) degF−

3, the inequality from the previous case can be written as∑
F∈zone(`)
degF>4

(degF − 3) =
∑

F∈zone(`)

(degF − 3) 6
7n

2
+O(1).

As there are at most n triangles in the zone of `, there are at least (2n−2)−n =
n− 2 non-triangular faces in the zone of `. Therefore,∑

F∈zone(`)
degF>4

degF − 4 6

(
7n

2
+O(1)

)
− (n− 2) =

5n

2
+O(1).

We finish using the same method as the previous case. All terms in the sum above
are nonnegative, and each k-gon contributes k − 4 to the sum. Therefore, there
are at most 5n

2(k−4) +O(1) k-gons the zone of `, and it follows that Lk 6 5n
2(k−4) .

• Case 5: k > 9.
Let ` be a pseudoline in a projective arrangement of n pseudolines. Theorem 4.1
gives ∑

F∈zone(`)

max{0, degF − 6.5} 6 n+O(1).

Each term in the sum is nonnegative, and each k-gon contributes k − 6.5 to the
sum. Therefore, there are at most n

k−6.5 + O(1) k-gons in the zone of `, and it
follows that Lk 6 1

k−6.5 .
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The lower bounds listed are given by Configurations 6.1 (k = 3), 6.2 (k = 4), 6.7
(k = 5),6.8 (k = 6),6.9 (k = 7),6.11 (k = 8),6.12 (k = 9), and 6.13 (k > 10). For
k = 3, k = 4, and k > 10, the lower bounds given by the configurations agree with
the upper bounds proved, so we obtain the exact value of Lk.

c) The upper bounds listed in the table for L{3,k} is exactly min{2, L3 + Lk}. An
argument similar to 5.5(c) shows that these values are indeed upper bounds on L{3,k}.

The configurations giving the lower bounds are Configurations 6.2 (k = 4), 6.3 (k = 5),
6.1 (k = 6), 6.10 (k = 7), 6.11 (k = 8), 6.12 (k = 9), and 6.13 (k > 10).

§6 Configurations

In this section we give explicit configurations attaining the lower bounds mentioned in
Theorems 5.5 and 5.6. In the diagrams for these configurations, ` is always a horizontal
black line. In configurations for L̃I , we always consider the half-zone above `. We start
with well-known configurations based on the hexagonal and the square lattices.

Configuration 6.1. Choosing ` as the middle diagonal of pattern in which three diagonals
cut through a square lattice gives L̃3 = 1

2 , L3 = 1, L̃{3,6} = 1, L{3,6} = 2.

Figure 18: Configuration 6.1

Configuration 6.2. A line ` in a square lattice gives L̃4 = 1, L4 = 2, L̃{3,4} = 1, L{3,4} = 2.
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Figure 19: Configuration 6.2

Configuration 6.3. A pattern in which the ` is a diagonal line cutting through a square
lattice gives L̃{3,5} = 1, L{3,5} = 2.

Figure 20: Configuration 6.3

We now describe a class of what we call multi-stage configurations. Each of these
configurations contains a foundation and a finite number of stages.

• The foundation is a configuration of pseudolines which contains a high number of
‘outgoing’ parallel pseudolines, which are light blue lines in the box labeled ‘founda-
tion’ in Figure 22 These parallel pseudolines will be used to form a rolling pattern
(see Figure 21) for the first stage.

Figure 21: A rolling pattern of five pseudolines.

• Each stage is a configuration of pseudolines which utilizes ‘incoming’ parallel pseudo-
lines from the previous stage to form a rolling pattern, and also includes ‘outgoing’
parallel pseudolines which will form the rolling pattern for the next stage.
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A general depiction of a multi-stage configuration is given in Figure 22. In a multi-
stage configuration, odd-numbered stages will be located on one side of the foundation, and
even-numbered stages will be on the other side of the foundation.

Figure 22: In a multi-stage configuration, ‘outgoing’ parallel pseudolines from
a stage is used to form a rolling pattern in the next stage. In this diagram,
the pseudolines in green are outgoing pseudolines of the first stage, and form a
rolling pattern in the second stage.

We now give an analysis of the lower bounds on LI and L̃I obtained from multi-stage
configurations. In our multi-stage configurations, each stage will have the same periodic
pattern, though the number of times this pattern repeats in each stage may vary.

Suppose that in each stage, for each incoming pseudoline,

• b additional pseudolines are used,

• t faces with the required number of sides are created (that is, each stage contributes
t to the value of uI or ũI per each incoming pseudoline), and

• c outgoing pseudolines are created.

We now divide into two cases based on the value of c, which is the most important
parameter because the value of c represents the ratio between the number of pseudolines

35



in consecutive stages. For all of our configurations, c 6 1, so we will only consider these
values of c.

• Case 1: c = 1.

When c = 1, our strategy will be to simply take some m parallel pseudolines as our
foundation, and thus in configurations where c = 1 we will only provide a diagram
for the stages.

As c = 1, all stages will contain m incoming and outgoing pseudolines. Each stage
will contain bm+ O(1) non-incoming pseudolines, and contributes tm+ O(1) to the
value of uI or ũI . The O(1) terms account for rounding errors and faces at the fringes
of the stage.

By taking m to also be the number of stages, we have a configuration of bm2 + m
pseudolines giving uI = tm2 +O(m). We therefore obtain a lower bound of

lim
m→∞

bm2 +O(m)

tm2 +O(m)
=
b

t

for LI or L̃I .

• Case 2: c < 1.

In our configurations where c < 1, we will also provide a specific foundation configu-
ration. Suppose that in the foundation, for each outgoing pseudoline,

– b0 pseudolines are used, including the outgoing pseudolines, and

– t0 faces with the required number of sides are created. (In other words, the
foundation contributes t0 to the value of uI or ũI for each outgoing pseudoline.)

Suppose our foundation contains m outgoing pseudolines. These pseudolines will be
incoming pseudolines for the first stage, which will contain cm outgoing pseudolines.
In general, in the jth stage, there will be

– cj−1m+O(1) incoming pseudolines,

– bcj−1m+O(1) additional pseudolines,

– tcj−1m+O(1) faces contributing to uI or ũI , and

– cjm+O(1) outgoing pseudolines,
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where the O(1) terms account for rounding errors and faces at the fringes of the stage.

Take s = − logm
log c −O(1) stages. In our entire configuration, there will be

– b0m+ b(1 + c+ · · ·+ cs−1)m+O(s) =
(
b0 + b

1−c − o(1)
)
m pseudolines and

– t0m+t(1+c+ · · ·+cs−1)m+O(s) =
(
t0 + t

1−c − o(1)
)
m faces with the required

number of sides.

Therefore we will obtain a lower bound on LI or L̃I of

lim
m→∞

(
t0 + t

1−c − o(1)
)
m(

b0 + b
1−c − o(1)

)
m

=
t0(1− c) + t

b0(1− c) + b
.

We now give multi-stage configurations attaining our lower bounds for LI and L̃I for
various sets I. For configurations with c = 1, we will only provide a single diagram rep-
resenting all stages. For configurations with c < 1, we will provide two diagrams: one for
the foundation, and one for the stages. In all diagrams, the incoming pseudolines forming
a rolling pattern will be in red, and outgoing pseudolines will be in green.

Configuration 6.4. A multi-stage configuration for L̃5 based on a square lattice has c = 1
and (b, t) = (1, 1), which gives L̃5 > 1. The overall configuration including the foundation
and stages will look like Figure 22.

Figure 23: A stage in Configuration 6.4

Configuration 6.5. A multi-stage configuration for L̃6 has c = 1 and (b, t) = (3/2, 1),
which gives L̃6 > 2/3.
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Figure 24: A stage in Configuration 6.5

Configuration 6.6. A multi-stage configuration for L̃7 has c = 1 and (b, t) = (2, 1),
which gives L̃7 = 1/2. This configuration is also a configuration for L̃{3,7} with c = 1 and
(b, t) = (2, 2); therefore, L̃{3,7} > 1.

Figure 25: A stage in Configuration 6.6

This configuration can be modified into a configuration for L̃k by adding k− 7 lines per
each 7-gon. This results in a configuration with c = 1 and (b, t) = (k−5, 1), giving a bound
of L̃k > 1/(k − 5) for all k > 7.

The modified configuration also works for L̃{3,k} with c = 1 and (b, t, c) = (k−5, k−4).
Therefore, L̃k > k−4

k−5 = 1 + 1
k−5 for all k > 7.
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Figure 26: To modify a configuration for L̃7 into a configuration for L̃k with
k > 7, we add k− 7 pairs of pseudolines for each incoming pseudoline: first we
add the pseudolines marked in yellow, then we add the pseudolines in gray and
purple. More pseudolines can be added in the same way as the purple pair.

Configuration 6.7. A multi-stage configuration for L5 has c = 2
3 , (b, t) =

(
1, 53
)
, and

(b0, t0) =
(
3
2 , 2
)
. This gives the bound

L5 >
2 · 13 + 5

3
3
2 ·

1
3 + 1

=
14

9
.

Figure 27: The foundation and a stage in Configuration 6.7. The pattern for
stages repeats for every two incoming pseudolines.

Configuration 6.8. A multi-stage configuration for L6 has c = 1
2 , (b, t) =

(
2, 52
)
, and
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(b0, t0) = (2, 2). This gives the bound

L6 >
2 · 12 + 5

4

2 · 12 + 1
=

9

8
.

Figure 28: The foundation and a stage in Configuration 6.8. The pattern for
stages repeats for every four incoming pseudolines.

Configuration 6.9. A multi-stage configuration for L7 has c = 1, (b, t) = (2.6, 1.8), giving
the bound L7 > 9

13 .

Figure 29: A stage in Configuration 6.9 consists of two patterns: when there
are m incoming edges, the pattern on the left uses 0.4m incoming edges, and
the pattern on the right uses 0.6m incoming edges.

Configuration 6.10. A multi-stage configuration for L{3,7} has c = 1, (b, t) = (3, 5), giving
the bound L7 > 5

3 .
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Figure 30: A stage in Configuration 6.10. To ensure c = 1, only half of the
outgoing edges from each stage are used as incoming edges for the next stage.

Configuration 6.11. A multi-stage configuration for L8 has c = 1 and (b, t) = (4, 2),
giving L8 > 1

2 . This configuration also works for L{3,8} with c = 1 and (b, t) = (4, 6), giving
L{3,8} >

3
2 .

Figure 31: A stage in Configuration 6.11. The pattern repeats for every pseu-
doline in the rolling pattern.

Configuration 6.12. A multi-stage configuration for L9 has c = 1 and (b, t) =
(
16
3 , 2

)
,

giving L9 > 3
8 . This configuration also works for L{3,9} with c = 1 and (b, t) =

(
16
3 ,

22
3

)
,

giving L{3,8} > 11
8 .
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Figure 32: A stage in Configuration 6.12. The pattern repeats for every three in-
coming pseudolines (in the rolling pattern). There is a pair of yellow pseudolines
for each incoming pseudoline, and a pair each of blue and purple pseudolines
for every three incoming pseudolines.

Configuration 6.13. A multi-stage configuration for L10 has c = 1 and (b, t, c) = (7, 2),
which gives L10 > 2

7 . This configuration is also a configuration for L{3,10} with c = 1 and
(b, t) = (7, 9); therefore, L̃{3,10} > 9

7 .

Figure 33: A stage in Configuration 6.13. The pattern repeats for every two
incoming pseudolines. There is a pair of yellow pseudolines and a pair of purple
pseudolines for every incoming pseudoline, and a pair of gray pseudolines for
every two incoming pseudolines.

This configuration can be modified into a configuration for Lk by adding k − 10 lines
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per each 10-gon in a way similar to Configuration 6.6. This results in a configuration with
c = 1 and (b, t) = (2k − 13, 2), which gives Lk > 1

k−6.5 for all k > 7.
This modified configuration also works for L̃{3,k} with c = 1 and (b, t) = (2k − 13, 2k −

11); therefore, L̃{3,k} > 2k−11
2k−13 = 1 + 1

k−6.5 for all k > 10.

§7 Extendable polygonal chains

In previous sections we established bounds on the values uk(`,A) and ũk(h,A), which are
global properties of pseudoline arrangements. In this section we seek to establish some
local criteria: whether a pseudoline arrangement can contain certain local patterns. It will
be easier to work with zonotopal tilings of 2n-gons, which are duals of affine arrangements
of n pseudolines. A pseudoline in an arrangement is dual to a set of parallel edges in a
zonotopal tiling.

Figure 34: Zonotopal tilings are duals of affine pseudoline arrangements.

We study a class of closed polygonal chains corresponding to permutations of {1, 2, . . . , 2n}.
Our main result, Theorem 7.8, is a simple criterion to determine whether a closed polygonal
chain can be embedded in the 1-skeleton of a zonotopal tiling.

Throughout this section, let σ be a permutation of {1, 2, . . . , 2n}, and let V = (~v1, . . . , ~vn) ∈
R2×n be an n-tuple of vectors satisfying vi = (xi, 1) and x1 > x2 > · · · > xn. For brevity
define ~vn+k = −~vk for each k = 1, . . . , n.

The set V and the permutation σ together define a closed polygonal chain ΥV,σ : [0, 1]→
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R2 given by linearly interpolating between the points ΥV,σ

(
k
2n

)
defined by

ΥV,σ

(
k

2n

)
=

k∑
i=1

~vσ(k),

for k = 0, 1, . . . , 2n. For brevity we may use Pk to refer to ΥV,σ

(
k
2n

)
.

Figure 35: An example of a closed polygonal chain.

We now formally define the notion of embeddability.

Definition 7.1. A closed polygonal chain ΥV,σ is said to be embeddable if there is a fine
zonotopal tiling τ of Zon(V ) such that (V, σ) is a closed curve in the 1-skeleton of τ . In
this case we say ΥV,σ is embeddable in τ .

Remark 7.2. Let τ be a zonotopal tiling and A be an affine pseudoline arrangement such
that τ and A are dual to each other. If ΥV,σ is embeddable in τ then ΥV,σ corresponds to
a closed curve in A which intersects every pseudoline exactly twice.

We introduce the notion of properness of closed polygonal chains to capture a class of
closed polygonal chains that are close to a Jordan curve oriented counter-clockwise.

We first give an informal definition. Imagine that the segments of ΥV,σ are walls and a
person is walking along them while keeping their left hand on the wall, so that at time t the
person’s left hand is at position ΥV,σ(t mod 1). A closed polygonal chain ΥV,σ is said to be
proper if the aforementioned person traces a simple closed curve, and the region bounded
by this curve is on their left-hand side. We now give a formal definition of properness.

Definition 7.3. Let ΥV,σ be a closed polygonal chain. For each ε > 0, define the oriented
closed curve γε as follows.
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• Draw circles of radii ε around each vertex of ΥV,σ and draw straight lines parallel to
the edges of ΥV,σ lying ε2 to the left of each edge, oriented in the same way as the
edge of ΥV,σ.

• Join these straight lines by arcs going counter-clockwise on the vertex circles; the
resulting curve is γε.

We call ΥV,σ proper if for all sufficiently small ε > 0, the curve γε is a Jordan curve
with a counter-clockwise orientation.

Figure 36: The closed polygonal chain in this figure is proper because the curve
γε in green is a Jordan curve oriented counter-clockwise.

We now define a function θσ which roughly corresponds to the total angle turned by a
person walking on ΥV,σ(t) from t = 0 to t = k

2n .

Definition 7.4. The discrete angle function θσ : Z→ Z is defined by θσ(1) = σ(1) and

θσ(k) =


θσ(k − 1) + σ(k)− σ(k − 1) + 2n if σ(k) 6 σ(k − 1)− n,
θσ(k − 1) + σ(k)− σ(k − 1)− 2n if σ(k) > σ(k − 1) + n, and
θσ(k − 1) + σ(k)− σ(k − 1) otherwise.

for all k ∈ Z, where σ(k) is shorthand for σ(k mod 2n).

It follows that θσ(k) ≡ σ(k) (mod 2n) for all k, and
⌊
θσ(k)−σ(k)

2n

⌋
denotes the number of

full counter-clockwise rotations made by the person. If ΥV,σ is proper then the curve ΥV,σ
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rotates exactly once counter-clockwise, which gives θσ(k+ 2n) = θσ(k) + 2n, implying that
θσ is a bijection.

Finally, we define the quantity ψσ(i, j) which encapsulates the order of i, j, n+ i, n+ j
in σ when viewed as a circular permutation. See Figure 37 for an example.

Definition 7.5. Given a permutation σ of {1, 2, . . . , 2n}, the baseball diagram of σ is
created by writing σ(1), . . . , σ(2n) in this order, equally spaced, clockwise around a circle,
then drawing a chord labeled i joining the points i and n+ i for each i = 1, 2, . . . , n.

Definition 7.6. For each {i, j} ⊆ {1, 2, . . . , n} with i < j, consider the counter-clockwise
order of i, j, n+ i, n+ j in the baseball diagram of σ, and define

ψσ(i, j) =


+1 if i, j, n+ i, n+ j lie in this order,
−1 if j, i, n+ j, n+ i lie in this order, and
0 otherwise.

Also define ψ(σ) =
∑

16i<j6n ψσ(i, j).

Figure 37: An example of a baseball diagram.

Observe that ψσ(i, j) = 0 if the chords labeled i and j in the baseball diagram of σ do
not intersect. We will see later, in Proposition 7.13, that ψ(σ) is equal to the number of
tiles within ΥV,σ.
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We can now characterize embeddable polygonal chains. We do so by introducing another
notion–neatness–of proper closed polygonal chains ΥV,σ based only on properties of the
permutation σ, then showing that neatness is equivalent to embeddability.

Definition 7.7. We say a proper closed polygonal chain ΥV,σ is neat if

• ψσ(i, j) > 0 for all 1 6 i < j 6 n, and

• θσ(k) > θσ(`)− n for all k > `.

Theorem 7.8. A proper closed polygonal chain is embeddable if and only if it is neat.

The rest of this section is dedicated to proving Theorem 7.8. We start by showing that
an embeddable proper closed polygonal chain must satisfy the first condition for neatness.

Proposition 7.9. If ΥV,σ is proper and embeddable then ψσ(i, j) > 0 for all 1 6 i < j 6 n.

Figure 38: In this figure, `i and `j intersect in the interior of ΥV,σ. This implies
ψσ(i, j) = 1.

Proof. Suppose ΥV,σ is embeddable in a fine zonotopal tiling τ of Zon(V ). Consider the
pseudoline arrangement A which is the dual of τ , constructed by joining the midpoints of
opposite sides of each tile of τ .

For each pair (i, j) with 1 6 i < j 6 n, consider the pseudolines `i, `j corresponding
to edges parallel to ~vi, ~vj in τ . The lines `i and `j intersect the boundary of Zon(V ) at
segments corresponding to vectors ~vi, ~vj , ~vn+i, and ~vn+j in this counter-clockwise order.
Consider the unique intersection of `i and `j . If this intersection lies in the interior of ΥV,σ

then `i and `j intersect ΥV,σ in the same order as Zon(V ), hence ψσ(i, j) = 1. If `i and `j
intersect outside ΥV,σ then the lines joining ψσ(i, j) = 0.
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We now show that ΥV,σ rotates by exactly π between each pair of parallel segments
(which are segments corresponding to vectors ~vk and ~vn+k for some k).

Lemma 7.10. If ΥV,σ is proper and embeddable then θ−1σ (k + n) > θ−1σ (k) for all k ∈ Z.

Proof. Consider the segments of ΥV,σ corresponding to a pair of opposite vectors ~vk and
~vn+k. Suppose that ΥV,σ is embeddable in τ , and let `k be the pseudoline in the dual of τ
corresponding to ~vk and ~vn+k. The pseudoline `k only intersects segments of τ parallel to
vk. Therefore, `k intersects ΥV,σ only at the segments corresponding to vk and vn+k.

Figure 39: The curve ΥV,σ must turn counter-clockwise by exactly π between
the segments corresponding to vectors ~vk and ~vn+k.

As ΥV,σ is proper, it turns counter-clockwise around its interior. It follows that from the
segment corresponding to ~vk to the segment corresponding to ~vn+k, the curve ΥV,σ must
turn counter-clockwise by exactly π. Therefore θ−1σ (k + n) > θ−1σ (k).

We also show that ΥV,σ cannot rotate by more than π without containing two parallel
segments.

Lemma 7.11. Let V be a collection of non-parallel vectors, and let P be a path in the
1-skeleton of a zonotopal tiling τ of Zon(V ) consisting of non-parallel segments. Then the
path P cannot turn by more than π.

Proof. Suppose for the sake of contradiction that there is a path in a tiling τ of Zon(V )
which turns a total of α > π, but which consists of nonparallel segments. For each such
path P , consider the length kP and the angle αP of the path. As there are finitely many
possible values of α for each fixed k, there must be an ‘minimal’ path P such that for all
paths Q turning more than π, either

kQ > kP or
(
kQ = kP and αQ < αP .

)
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Let P : p0 → p1 → · · · → pk. Without loss of generality, assume P turns clockwise
by more than π. The segment p0p1 must turn clockwise to p1p2, otherwise we may pick
Q = p1 → · · · → pk.

Figure 40: The path P : p0 → · · · → pk is supposed to be the minimal path
turning by more than π, but either replacing p0 by p′0 or replacing p0 and p1
by p′1 will violate the minimality of P .

Consider edges p1p′ of τ incident to p1 such that −−→p1p2,
−−→
p1p
′, and −−→p1p0 lie in this order

clockwise.

• If there are no such edges, then p0p1 and p1p2 must be sides of the same tile in τ .
Consider the point p′1 opposite p1 on this tile. It follows that Q = p′1 → p2 → · · · → pk
is shorter than P and still turns by more than π.

• On the other hand, if there is such an edge p1p′0, we may replace p0 by p′0 creating a
path Q with αQ > αP .

In either case it follows that P cannot be the minimal path described. This is a contradic-
tion. Therefore, such a path P cannot exist in the first place.

Lemma 7.10 and Lemma 7.11 together imply that an embeddable proper closed polyg-
onal chain must satisfy the second condition of neatness.

Proposition 7.12. If ΥV,σ is proper and embeddable then θσ(k) > θσ(`)−n for all k > `.
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Proof. Let ΥV,σ be an embeddable proper closed polygonal chain. Lemma 7.10 tells us that
θσ(k) cannot be exactly θσ(`)− n for all k > `.

Assume for the sake of contradiction that there are k > ` such that θσ(k) < θσ(`)− n.
Pick such a pair (k, `) which minimizes k− `. We must have k− ` < 2n else we may replace
k by k − 2n.

• If there are t1, t2 ∈ {`, ` + 1, . . . , k} such that ~vσ(t1), ~vσ(t2) are parallel with t1 < t2,
then θσ(t2) = θσ(t1)+n. It follows that either θσ(k) < θσ(t2)−n or θσ(t1) < θσ(`)−n,
and both cases violate the minimality of k − `.

• On the other hand, if the vectors ~vσ(`), ~vσ(`+1), . . . , ~vσ(k) are pairwise nonparallel then
Lemma 7.11 implies that ΥV,σ cannot turn by more than π between ΥV,σ

(
`
2n

)
and

ΥV,σ

(
k
2n

)
. However, a path with |θσ(k)− θσ(`)| > n necessarily turns by more than

π, which is a contradiction.

It follows that for all pairs k, ` with k > `, the inequality θσ(k) > θσ(`)− n holds.

It remains to prove that a neat proper closed polygonal chain must be embeddable. Our
strategy is as follows. In Proposition 7.13, we show that we can divide the interior of ΥV,σ

into ψ(σ) tiles. We then show in Lemma 7.14 that we can extend the interior of ΥV,σ tile
by tile until we obtain the entire zonotope Zon(V ). This gives a tiling of Zon(V ) which
contains ΥV,σ embedded in, and therefore ΥV,σ must be embeddable.

Proposition 7.13. Let ΥV,σ be a neat proper closed polygonal chain. Then the interior of
ΥV,σ can be divided into ψ(σ) rhombic tiles with exactly one tile congruent to Zon(vi, vj)
for each i, j with ψσ(i, j) = 1.

Proof. Consider the baseball diagram of σ. (See Figure 41.) Without loss of generality,
suppose the chord c1 joining 1 and n+ 1 is shortest. Let m be the minor arc subtended by
c1; assume it is counterclockwise from 1 to n+ 1. By the minimality of c1, all other chords
with an endpoint on m must have the other endpoint on the opposite side of c1.

Without loss of generality let σ(1) = 1, so that θ(1) = 1. Let k be such that σ(k) = n+1.
By Lemma 7.10, θ(k) = n+1. We claim that 1 < θ(j) < n+1 for all j such that 1 < j < k.
In fact, if θ(j) > n+ 1 or θ(j) < 1 then ψσ(1, σ(j) mod n) = −1, which contradicts ΥV,σ

being neat. Therefore θ(j) lies between 1 and n+ 1 for all j between 1 and k.
Consider the path Q which is created by translating down the path from P1 to Pk−1 in

ΥV,σ by −~v1. This path splits the interior of ΥV,σ into two parts. (See Figure 42.)
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Figure 41: As c1 is the shortest chord, all chords with an endpoint in m must
intersect c1.

Figure 42: The path from Q divides the interior of ΥV,σ into two parts.

• The part containing the segment parallel to ~v1 can easily be divided into tiles con-
gruent to Zon(v1, v`) for ` = σ(2), . . . , σ(k − 1) mod n, which are exactly the values
of ` for which ψσ(1, `) = +1.

• The remaining part is a neat proper closed polygonal chain of V ′ = V \ {v1} and a
permutation σ′ of {2, . . . , n} with ψ′σ(i, j) = ψσ(i, j) for all 2 6 i < j 6 n.

We have effectively removed ~v1. We may repeat this process with V ′ until we have elimi-
nated all vectors, thus completely dividing the interior of ΓV,σ into tiles, and there will be
exactly one tile congruent to Zon(vi, vj) for each i < j with ψσ(i, j) = 1.
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Lemma 7.14. Let ΥV,σ be a neat proper closed polygonal chain, and let k ∈ {1, . . . , 2n}
satisfy θσ(k + 1) < θσ(k). Define σ′ := σ ◦ (k k + 1), where (k k + 1) is the transposition
swapping k and k + 1. Then the following holds:

(i) ΥV,σ′ is also a neat proper closed polygonal chain,

(ii) the interior of ΥV,σ′ is formed by joining the tile Zon(~vσ(k), ~vσ(k+1)) to the interior of
ΥV,σ, and

(iii) ψ(σ′) = ψ(σ) + 1.

Figure 43: Swapping σ(k) and σ(k + 1) adds a tile to the interior of ΥV,σ.

Proof. Swapping σ(k) and σ(k + 1) only affects the parallelogram region bounded by
~vσ(k), ~vσ(k+1) in ΥV,σ. For ΥV,σ to remain proper, it suffices to show that no other edge of
ΥV,σ can intersect this region. Indeed, if an edge ~vσ(t) intersects this region then one of the
paths joining ~vσ(t) and ~vσ(k) or ~vσ(k+1) must turn clockwise by more than π, violating the
condition that θσ(i) > θσ(j)− n for all i > j. From this it also follows that the interior of
ΥV,σ′ is formed by joining the tile Zon(~vσ(k), ~vσ(k+1)) to the interior of ΥV,σ.

Now let σ(k) ≡ a mod n and σ(k+1) ≡ b mod n. Swapping σ(k) and σ(k+1) in σ does
not affect the order of i, j, i+ n, j + n for all {i, j} 6= {a, b}. Therefore, ψσ′(i, j) = ψσ(i, j)
for {i, j} 6= {a, b}. For ψσ′(a, b) it is easy to verify that ψσ′(a, b) = 1 and ψσ(a, b) = 0. From
these results it clearly follows that ψσ′(i, j) > 0 for all 1 6 i < j 6 n and ψ(σ′) = ψ(σ) + 1.

It remains to show that θσ′(i) > θσ′(j) − n for all i > j. Observe that θσ(i) = θσ′(i)
except at i ≡ k, k+ 1 mod 2n, in which case the values get swapped, so it suffices to check
for pairs {i, j} ≡ {k, k + 1} mod 2n, which is straightforward.
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We now give a proof of Theorem 7.8.

Proof of Theorem 7.8. Proposition 7.9 and Proposition 7.12 imply that an embeddable
proper closed polygonal chain must be neat. Now suppose that ΥV,σ is a neat proper
closed polygonal chain. Proposition 7.13 implies that the interior of ΥV,σ can be divided
into tiles Zon(vi, vj) for pairs i, j with ψσ(i, j) = 1. If ΥV,σ is not the boundary of the zono-
tope Zon(V ) then θσ is not strictly increasing, so there is a k such that θσ(k + 1) < θσ(k).
We apply Lemma 7.14, which adds one more tile to ΥV,σ. As this tile corresponds to a
pair (i, j) with ψσ(i, j) = 0, it is a new tile. This process can be done until θσ(k) becomes
strictly increasing, at which point we have a zonotopal tiling of Zon(V ) which contains ΥV,σ

in its 1-skeleton.

§8 Comments and remarks

While we stated our comprehensive results Theorem 5.5 and Theorem 5.6 for projective
arrangements, most results also hold for affine arrangements.

A key difference between affine and projective arrangements is perhaps best demon-
strated as follows. Let A be an affine arrangement of n pseudolines, and consider the
projective pseudoline arrangement A+ of n+ 1 lines: the lines in A, and the line at infin-
ity `∞. Then the cells of A and A+ are almost exactly the same—an edge is missing for
unbounded cells in A compared to their counterpart in A+ due to the existence of `∞.

The result is that unbounded cells in affine arrangements can behave weirdly. An
example that is relevant to our results is that in affine arrangements, two 3-sided cells
can be adjacent if at least one is unbounded. This affects the values of L̃I and LI for
sets I containing 3. While for projective arrangements, L̃3 = 1

2 and L3 = 1, for affine
arrangements, we instead have L̃3 = 1 and L3 = 3

2 . The increased values of L̃3 and L3

means that our bounds for L{3,k} and L̃{3,k} become much weaker, and therefore the values
of L{3,k} and L̃{3,k} for affine arrangements are still open.

Nevertheless, our bounds on values of LI for sets I such that 3 6∈ I are the same
for affine and projective arrangements, because these bounds are derived from Theorems
Theorem 2.3, Theorem 2.2, Theorem 3.1, and Theorem 4.1. For the purpose of these
theorems, the bounds for affine and projective arrangements only differ by constant terms,
and a simple proof is given in Corollary 3.3.
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