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Abstract
We give an introduction to the Balmer spectrum of a general tensor-triangulated category and a

classification of the tensor-thick ideals of such a category. This framework relies on a notion of support for
each object. We then summarize the work of Benson, Iyengar, and Krause regarding two equivalent
notions of support, namely the triangulated support and the cohomological support. After this, we

specialize to the case of the stable module category stmod(A(1)) and use the previous results to give an
explicit classification of the tensor-thick ideals of this category. These tensor-thick ideals are shown to

correspond to the vanishing of Margolis homologies.



In the 1980s Hopkins and Smith proved the Thick Subcategory Theorem, which is a crucial com-
ponent in the Periodicity Theorem in chromatic homotopy theory. The Thick Subcategory Theorem
says that the thick subcategories of the stable homotopy category of finite p-local spectra are nested
and correspond to the vanishing of Morava K-theories. Hopkins then made the important observa-
tion that their method of classification could be applied to a more algebraic context. To this end,
he sketched a classification result for the thick subcategories of the derived category Db(proj R) of
perfect complexes over a commutative noetherian ring R. More precisely, he established a corre-
spondence between specialization closed sets subsets of proj R and the thick subcategories in the
derived category. This approach was generalized by Balmer and Thomason to arbitrary tensor-
triangulated (tt) categories. In his work, Balmer defined the “prime spectrum” of a tt-category. The
Balmer spectrum consists of prime tt-ideals, which are thick subcategories that behave like prime
ideals in a commutative ring. Balmer then formulated an analog of the support of a module. Using
this notion of support, he established a bijection between radical tt-ideals in a tt-category and the
supports of objects in the category. In this same direction, Benson, Carlson, and Rickard proved an
analog of Hopkins’s theorem in the stable category stmod(kG) of finitely generated kG-modules in
[3], where kG is a finite group algebra. Recently, Benson, Iyengar, Krause, and Pevtsova extended
this classification to finite group schemes in [5].

In this project we were interested in applying these results to the specific case of stmod(A(1)).
The paper is structured as follows. In section 1, we introduce the Balmer spectrum of a tensor-
triangulated category following [2]. We also state Balmer’s classification of tt-ideals in such a cate-
gory. After describing this general setting, in section 2 we introduce the triangulated support and the
cohomological support of a compactly generated triangulated category and establish an equivalence
between them. In section 3 we use this equivalence to give an explicit classification of the tt-ideals
in stmod(A(1)). More specifically, we show that the Balmer spectrum consists of two prime ideals
(h10, h11, v), (h11, v, w) of ExtA(1)(F2,F2). We then show that the vanishing of Q0-Margolis homol-
ogy corresponds to the prime (h11, v, w), while the vanishing of Q1-Margolis homology corresponds
to the prime (h10, h11, v). We end the paper with a section containing some work toward computing
ExtA(1)(F2,M). This is done via a spectral sequence formulated in terms of Q1-Margolis homology.

1 Balmer Spectrum and Support

In this section we outline a framework that generalizes the Thick Subcategory Theorem of Hopkins-
Smith. This framework relies on a notion of support for objects in a given category. The original
notion of support comes from commutative algebra, in which the support of an R-module M is
defined to be the set of primes p ⊂ R such that Mp 6= 0. We will closely follow the exposition of [2].

Definition 1. An additive category in which all Hom-sets take values in the category of abelian
groups. A shift functor Ω−1 on a category T is an automorphism T → T . A triangle (X,Y, Z, u, v, w)
consists of the following data:

X
u−→ Y

v−→ Z
w−→ Ω−1(X)

A triangulated category is an additive category T with a shift functor Ω−1 and a class of triangles
characterized by certain properties.

Given an arbitrary triangulated category T , a thick subcategory S is a full subcategory of T which
is closed under finite direct sums and summands. We will call a subcategory S ⊂ T localizing if it
is thick and closed under small coproducts. Similarly, we will call a subcategory colocalizing if it is
thick and closed under small products.

Definition 2. A tensor-triangulated category is a triple (K,⊗, 1) consisting of a triangulated cat-
egory K, a symmetric monoidal product ⊗ : K × K → K which is exact in each variable. We will
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refer to this product as the “tensor product,” although in arbitrary categories it may not take the
form of the usual tensor product in commutative algebra. The unit is denoted by 1.

We say that a thick subcategory of a tensor-triangulated category is tensor ideal if it is closed
under tensor product with compact objects. We will also refer to such a thick subcategory as a tt-
ideal for short, “tt” being shorthand for “tensor-thick.” Indeed, tt-ideals behave in a category much
like ideals behave in a ring, with closure under tensor product being the analog of multiplicative
absorptivity of ideals. A proper tt-ideal P ( K in a ⊗-triangulated category K is prime if a⊗ b ∈ P
implies a ∈ P or b ∈ P. We denote by Spc(K) the set of primes in K. A proper tt-ideal P ( K is
radical if a⊗ b ∈ P implies that some ⊗-power of a or b lies in P.

Definition 3. Given an object a ∈ K, the support of a is supp(a) := {P ∈ Spc(K) | a /∈ P}.

Having defined the support of a given object in our category, we can endow a topology on Spc(K)
just as in algebraic geometry. We define the Zariski topology on Spc(K) to be generated by the
basis elements {U(a) := Spc(K) \ supp(a) | a ∈ K}. With this topology, we call the resulting space
Spc(K) the prime spectrum of K. This prime spectrum satisfies a certain universal property:

Theorem 4 (universal property, [2]). (a) supp(0) = ∅ and supp(1) = Spc(K)

(b) supp(a⊕ b) = supp(a)
⋃
supp(b)

(c) supp(Ω−1a) = supp(a), where Ω−1 is the shift or suspension operator in K

(d) supp(a) ⊂ supp(b)
⋃
supp(c) for an exact triangle a→ b→ c→ Ω−1a

(e) supp(a⊗ b) = supp(a) ∩ supp(b)

For any pair (X,σ), where X is a topological space and σ an assignment of closed subsets σ(a) ⊂ X to
objects a ∈ K, satisfying the properties above, there exists a unique continuous map f : X → Spc(K)
such that σ(a) = f−1(supp(a)).

The main result of [2] is the following classification:

Theorem 5 (classification of tt-ideals, [2]). Let G be the set of those subsets Y ⊂ Spc(K) which are
unions Y =

⋃
i∈I Yi of closed subsets Yi with quasi-compact complement Spc(K) \ Yi for all i ∈ I.

Let R be the set of radical tt-ideals of K. Then there is an order-preserving bijection G → R given
by Y 7→ KY := {a ∈ K | supp(a) ⊂ Y } with inverse J 7→ supp(J ) :=

⋃
a∈J

supp(a).

In [6] this classification is applied to the case of stmod(kG) to yield a correspondence between
tt-ideals and specialization closed subsets of VG, which is described in section 3.

2 Equivalence of Supports

In this section we summarize [4] to relate triangulated support and cohomological support. The main
result of this section, theorem 16, is an equivalence between the two notions of support, which allows
one to study an object in a tensor-triangulated category by studying its group cohomology. We will
closely follow the exposition of [4].

Definition 6. Each R-module M is guaranteed to admit a minimal injective resolution, unique up
to quasi-isomorphism. We define the cohomological support of M to be

suppRM = {p ∈ Spec R | p occurs in a minimal injective resolution of M}
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At first glance, this notion of support is vastly different from the usual one in commutative algebra,
but Lemma 2.2(1) in [4] shows that they are nearly equivalent:

Lemma 7.
suppRM ⊂ cl(suppRM) = {p ∈ Spec R | Mp 6= 0},

where cl denotes the topological closure. We have equality above when M is finitely generated.

The set of primes defined above can be seen to be the usual support of M in Spec R, so we see that
the cohomological support is a subset of this support. Furthermore, in the setting of subsection 3.4,
all of the A(1)-modules we consider will be finitely generated, so the two notions of support will be
equivalent by the lemma above. Now we define triangulated support, which is formulated in terms
of localization functors:

Definition 8. An exact functor L : T → T is a localization functor if there exists a morphism
η : idT → L such that the morphism Lη : L → L2 is idempotent and Lη = ηL. Let L : T → T be
a localization functor. An object X ∈ T is L-local if ηX is an isomorphism, and it is L-acyclic if
LX = 0.

In particular, we will be interested in the L-acyclic component of objects in our category:

Definition 9. For each X ∈ T , complete the map ηX to an exact triangle

ΓX → X → LX → .

The following lemma shows that the functor Γ : T → T defined in this manner is actually well-
defined.

Lemma 10. The functor Γ is exact and has the following properties:

(1) X ∈ T is L-acyclic if and only if HomT (X,−) = 0 on L-local objects

(2) Y ∈ T is L-local if and only if HomT (−, Y ) = 0 on L-acyclic objects

(3) Γ is a right adjoint to the inclusion ker L→ T

(4) L is a left adjoint to the inclusion im L→ T

Proof. (see [4])

As a result, ΓX is well-defined for every X ∈ T and is related to the kernel of the localization
functor L. We will describe the connection between localization and support using this relation to
the kernel of L, but first we will need to define local cohomology:

Definition 11. The center of a compactly generated triangulated category T , denoted Z(T ), is a
graded-commutative ring with nth component

Z(T )n := {η : idT → (Ω−1)n | ηΩ−1 = (−1)nΩ−1η}

Having defined the center Z(T ) of our category, we now fix a graded-commutative noetherian ring
R and a homomorphism of graded rings R → Z(T ). With these data, we will call T an R-linear
triangulated category. Now let C ∈ T . For each object X ∈ T , define

H∗C(X) := Hom∗T (C,X)

It turns out that H∗C(−) is not entirely dependent upon C itself. Rather, the following lemma shows
that H∗C(−) depends almost entirely on the thick subcategory generated by C, i.e., the (thick)
intersection of all thick subcategories of T containing C.
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Lemma 12. Let {C} be a set of objects in T and C0 an object contained in the thick subcategory
generated by {C}. Then for each X ∈ T one has

suppRH
∗
C0

(X) ⊂
⋃

C∈{C}

cl(suppRH
∗
C(X)),

where suppR denotes the cohomological support defined in definition 6. For our purposes we will
take T to be a compactly generated category, generated by C ∈ T .

Recall that a subcategory is localizing (colocalizing) if it is thick and closed under small coproducts
(products). We will be interested in localizing subcategories of the form

TU = {X ∈ T | suppRH
∗
C(X) ⊂ U for each C ∈ T c},

where U ⊂ Spec R and T c denotes the full subcategory of compact objects in T . It turns out that
if we set U(p) = {q ∈ Spec R | q ⊂ p}, then the subcategory TU(p) is localizing and colocalizing.

Proposition 13. Let V ⊂ Spec R be specialization closed. There exists a localization functor
LV : T → T with the property that LVX = 0 if and only if X ∈ TV .

Proof. (see Proposition 4.5, [4])

Definition 14. Let V be a specialization closed subset of Spec R and LV the associated localization
functor given by the previous proposition. Then we get an exact functor ΓV on T and for each object
X ∈ T a natural exact triangle

ΓVX → X → LVX → .

We can now define a notion of triangulated support:

Definition 15. The triangulated support of X ∈ T is defined to be the set

tsuppRX = {p ∈ Spec R | ΓpX 6= 0} ⊂ Spec R

Now we have all the necessary ingredients to state the main theorems of [4]:

Theorem 16 (Theorem 5.15(1), [4]). There exists a unique assignment sending each object X ∈ T
to a subset tsuppRX ⊂ Spec R such that cl(tsuppRX) = cl(suppRH

∗(X)).

This theorem tells us that if we want to understand the triangulated support of an object in our
category, we can equivalently study the cohomological support of the group cohomology H∗C(X).
We also have the following remarkable result (Corollary 8.3, [4]):

Theorem 17. Let p ∈ Spec R. For each object X ∈ T one has a natural isomorphism

ΓpX ∼= X ⊗ Γp1,

where 1 is the unit of the tensor-triangulated category T .

In chromatic homotopy theory, there are localization functors Ln, corresponding to certain spectra
E(n), with the property that for any spectrum X,

LnX ∼= X ∧ LnS,
where S is the sphere spectrum. This is referred to as the smash product theorem. Notice that S
serves as the unit in the category of CW spectra, the smash product serves as the tensor, and Ln

plays the role of a Γp. The functors Ln are useful in chromatic homotopy theory specifically because
they have this property, which is not true of all such localization functors. The isomorphism in
theorem 17 explains why the Ln are so special. Each Ln is a localization functor of the form Γp,
where p is a point in the prime spectrum of Endcwp

(S).
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3 Applications to stmod(A(1))
In this section we apply Balmer’s theory of prime spectra to study the tt-ideals in the stable module
category stmod(A(1)).

3.1 Stable Module Categories

Definition 18. Let k be a field and G be an affine group scheme. The group algebra kG is defined
to be the dual of the coordinate ring k[G] of G. This group algebra has a natural ring structure
using the structures of k and G.

Furthermore, every group algebra kG naturally has the structure of a Hopf algebra (Γ, k, µ, η,∆, ε, S).
A Hopf algebra is a bialgebra Γ over a field k with algebra structure given by (µ, η) and coalgebra
structure given by (∆, ε), along with an antipode S : Γ→ Γ such that

µ ◦ (S ⊗ id) ◦∆ = η ◦ ε = µ ◦ (id⊗ S) ◦∆

Definition 19. Let Mod(kG) denote the module category over kG. The objects in this category are
left kG-modules, and the morphisms are kG-module morphisms. We also define StMod(kG), the
stable module category over kG. This category also has as objects left kG-modules, but the morphisms
are now defined to be stable morphisms: we say that f : M → N and g : M → N are equivalent
morphisms of kG-modules if f−g : M → N factors through a projective kG-module. An equivalence
class defined by this relation will be one such “stable morphism.” Within the category StMod(kG)
we define stmod(kG) to be the full subcategory of finitely generated modules in StMod(kG).

Notice that “modding out projectives” as we did in defining StMod(kG) plays a similar role to
considering contractible spaces to be equivalent to one-point spaces in algebraic topology. More
explicitly, suppose we have a kG-module M and a projective module P admitting a surjective map
p : P → M . Using Ω(M) = ker p, which can be shown to be well-defined and solely dependent on
M itself, we get a short exact sequence

0→ Ω(M)→ P →M → 0 (1)

In the setting of algebraic topology, given a space X we can similarly construct a Serre fibration
ΩX → PX → X, where ΩX is the loopspace of X and PX is the pathspace of X. By construction,
the pathspace PX will be contractible. Then we can make an analogy between Equation 1 above
and our fibration ΩX → PX → X by identifying Ω(M) with ΩX and P with PX.

By definition, the thick subcategories of stmod(kG) are in bijective correspondence with the
subcategories c of mod(kG) satisfying:

(i) c contains all projective modules

(ii) c is closed under finite direct sums and summands

(iii) If M ∈ c, then so are Ω(M) and Ω−1(M), where Ω−1(M) is the shift functor providing the
triangulated structure on mod(kG)

(iv) If 0 → A → B → C → 0 is a short exact sequence of modules with two of A, B, and C in c,
then so is the third

Definition 20. The cohomology ring of G over k H∗(G, k) is defined to be the ring Ext∗kG(k, k). This
is a finitely generated graded commutative ring, so we define VG to be the spectrum of homogeneous
prime ideals p ∈ H∗(G, k). A subset V ⊂ VG is said to be specialization closed if p ∈ V, q ∈ VG, and
q ⊃ p together imply that q ∈ V.
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With these definitions established, we can state the main classification theorem, which is theorem
2.7 in [6]:

Theorem 21 (correspondence). There is a bijective correspondence between tt-ideals of stmod(kG)
and non-empty specialization closed subsets of VG.

3.2 The Balmer Spectrum of stmod(A(1))
Recall that A(1) is defined to be the subalgebra of the Steenrod algebra A generated by the Steenrod
squares Sq1 and Sq2. Note also that A(1) inherits a Hopf algebra structure from A with unit
η : F2 → A(1), multiplication µ : A(1) ⊗A(1) → A(1), counit ε : A(1) → F2, and comultiplication
∆ : A(1) → A(1) ⊗ A(1). The first two maps come from the usual algebra structure on A(1), and
the last two are given by

ε : (a0 + a1Sq1 + a2Sq2 + . . . ) 7→ a0

and
∆ : Sqk 7→

∑
i+j=k

Sqi ⊗ Sqj

This comultiplication map ∆ is induced by the Cartan formula for Steenrod squares, and we will say
that an element a ∈ A(1) is primitive if ∆(a) = 1⊗ a+ a⊗ 1. The idea behind the term “primitive”
is that, since the Cartan formula is a sum over all the decompositions of a square, if the only such
decompositions involve the square and the identity, this element is indecomposable in some sense.

Now, it is clear from the correspondence in theorem 21 that if we wish to understand the tt-ideals
of stmod(A(1)), we must understand the homogeneous primes in ExtA(1)(F2,F2). There are two
(equivalent) ways of approaching this computation – we can either compute this Ext over A(1)-
modules, or we can compute ExtA(1)∗

(F2,F2) over A(1)∗-comodules, where A(1)∗ is the linear dual
HomF2

(A(1),F2) of A(1). The second method yields the well-known result:

ExtA(1)(F2,F2) ∼= F2[h10, h11, v, w]/(h10h11, h
3
11, v

2 + h210w, vh11)

This Ext is bigraded with

|h10| = (1, 1), |h11| = (1, 2), |v| = (3, 7), |w| = (4, 12)

Since homogeneous primes in this ring must respect both components of the bidegree on each element,
a quick exercise in linear algebra shows that the only such primes are given by

(h10, h11, v), (h11, v, w)

Technically we should also be considering the irrelevant ideal consisting of positive-degree elements,
but this ideal does not support any non-projective modules. Then since we are working in the
stable category, we will disregard this ideal. We now claim that these two primes correspond to the
vanishing of Qi-Margolis homology, which will be proven in subsection 3.4.

3.3 Margolis Homology

Before making computations, we first introduce the notion of Margolis homology since it provides
a useful criterion for projectivity of A(1)-modules. Define Q0 := Sq1 and Q1 := Sq1Sq2 + Sq2Sq1.
These two elements are primitive in the sense defined in subsection 3.2, namely ∆(Qi) = 1⊗Qi+Qi⊗1
for i = 0, 1. Furthermore, these elements can also be viewed as differentials in a chain complex. Given
an A(1)-module M , we can arrange copies of M into a sequence

. . .
Qi−−→M

Qi−−→M
Qi−−→M

Qi−−→ . . . (2)
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for fixed i. That this is in fact a chain complex follows from

Q2
0 = Sq1Sq1 = 0,

Q2
1 = (Sq1Sq2 + Sq2Sq1)2 = Sq1Sq2Sq1Sq2 + Sq1Sq2Sq2Sq1

+ Sq2Sq1Sq1Sq2 + Sq2Sq1Sq2Sq1

= 2Sq1Sq2Sq1Sq2

= 0,

where the first cancellation follows from the Steenrod relations Sq1Sq2Sq2 = 0 and Sq1Sq1 = 0,
and the second comes from the Steenrod relation Sq1Sq2Sq1Sq2 = Sq2Sq1Sq2Sq1 and the fact that
everything is 2-torsion. As a result, we know that Equation 2 is indeed a chain complex, so we can
use it to compute the following:

Definition 22 (Margolis). Given an A(1)-module M , the Qi-homology of the corresponding chain
complex in Equation 2 is called the Qi-Margolis homology and will be denoted H(M ;Qi).

It should be noted that while the grading on homology groups typically comes from the homological
degree, in this case the grading comes from the internal grading of M as an A(1)-module. This
notion of homology is extremely useful in determining whether a given A(1)-module is projective,
and we will make use of the following result without proof (see [9]).

Proposition 23. An A(1)-module M is projective if and only if H(M ;Qi) = 0 for both i = 0, 1.

As we are working with stable modules, this is equivalent to saying that M lies in the equivalence
class of the trivial module 0 in stmod(A(1)) if and only if H(M ;Qi) = 0 for i = 0, 1. This notion of
homology is especially useful since it admits Künneth isomorphisms:

Proposition 24. We have Künneth isomorphisms for both i = 0, 1:

H(M ⊗N ;Qi) ∼= H(M ;Qi)⊗H(N ;Qi)

3.4 Classification of Thick Subcategories of stmod(A(1))
In this section we classify the tt-ideals in stmod(A(1)) using theorem 21. Our strategy is as follows.
We first establish that {modules with vanishing Qi-homology} is a tt-ideal for both i = 0, 1, at
which point it will be clear that the primes listed in subsection 3.2 correspond to the vanishing of
Margolis homology. In order to pin down which prime corresponds to which tt-ideal, we will use a
vanishing result of Adams to make one match. Since there are only two primes, this will complete
the classification. First, we have the following:

Proposition 25. The subcategories Ci := {modules with vanishing Qi-homology} ⊂ stmod(A(1))
for i = 0, 1 are tt-ideals.

Proof. We first verify that each Ci is a thick subcategory. To that end, note that given M,N ∈
stmod(A(1)), we can construct a chain complex

. . .
d−→M ⊕N d−→M ⊕N d−→ . . . ,

where d = (Qi, Qi). The A(1)-module M ⊕ N is certainly in stmod(A(1)) as both M,N ∈
stmod(A(1)), so this is a well-defined construction in our category. Taking the homology of this
chain complex can be seen to give

H(M ⊕N ;Qi) ∼= H(M ;Qi)⊕H(N ;Qi)
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Then H(M ;Qi) = H(N ;Qi) = 0 if and only if H(M ⊕ N ;Qi) = 0. Now note that a finite direct
sum of modules in stmod(A(1)) will again lie in stmod(A(1)). By induction, this argument extends
to any finite direct sum. Then what we have shown is that each Ci is closed under finite direct sums
and summands, so each Ci is thick. To see that each Ci is also tensor ideal, we make use of the
Künneth isomorphism for Margolis homology described in proposition 24:

H(M ⊗N ;Qi) ∼= H(M ;Qi)⊗H(N ;Qi)

Then if M ∈ Ci, so is M ⊗N , so we see that each Ci is a tt-ideal.

As a result, the vanishing ofQ0-homology must correspond to one of the primes (h10, h11, v), (h11, v, w)
while the vanishing of Q1-homology must correspond to the other. By the correspondence in the-
orem 21, we could determine the precise pairing by taking localizations of Ext groups, but we can
instead circumvent these calculations by making use of the following results:

Theorem 26 (Adams, [1]). If an A(1)-module M has vanishing Q0-homology, then

h−110 ExtA(1)(M,F2) = 0

It should be noted that the M and F2 are in the “wrong” positions in the equation above, as we
are concerned with ExtA(1)(F2,M), but we can get around this small technicality. Namely, if A,B
are A(1)-modules, there is a canonical isomorphism

ExtA(1)(A,B) ∼= ExtA(1)(A⊗F2 B∗,F2),

where B∗ := HomF2(B,F2) is the linear dual of B. In our case, we set A = F2 and B = M to get
the isomorphism

ExtA(1)(F2,M) ∼= ExtA(1)(M∗,F2)

Furthermore, the following lemma relates the Q0-homology of M and its linear dual M∗:

Lemma 27. Given M ∈ stmod(A(1)), if we define M∗ := HomF2
(M,F2), then H(M ;Q0) = 0 if

and only if H(M∗;Q0) = 0.

Proof. First note that M∗ naturally has the structure of a right A(1)-module on which A(1) acts
“in reverse.” For example, given m ∈ M such that m = Sq1m′, if we denote by αm, αm′ ∈ M∗ the
linear duals of m,m′, then the action of A(1) on M∗ is by precomposing:

αm · Sq1 : m′ 7→ Sq1m′ 7→ αm(Sq1m′) = αm(m) = 1

In other words, if m = Sq1m′, then Sq1 acts on αm by turning it into αm′ , essentially “inverting”
Sq1. Now, let H(M ;Q0) = 0 so that Sq1m = 0 implies m = Sq1m′ for every such m ∈ M . Given
` ∈ M∗ with ` · Sq1 = 0, we know that the element in M to which ` corresponds, say m`, does not
lie in Sq1M by definition of the Sq1-action on M∗.

We claim that Sq1m` 6= 0. Otherwise, if Sq1m` = 0, we’d have Sq1m` = 0 and m` /∈ Sq1M ,
meaning m` survives to the homology H(M ;Q0), a contradiction. Therefore, ` · Sq1 = 0 implies
that ` ∈ M∗ · Sq1 for every such ` ∈ M∗, meaning H(M∗;Q0) = 0. The same reasoning gives the
converse, so we have the desired equivalence.

Therefore, if M ∈ stmod(A(1)) has vanishing Q0-homology, then so does M∗, while theorem 26 says
that

h−110 ExtA(1)(F2,M) ∼= h−110 ExtA(1)(M∗,F2) = 0
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This means that for every element in ExtA(1)(F2,M) there is some power of h10 which annihilates
it. Then we know that, upon localizing ExtA(1)(F2,M) at p = (h11, v, w), every element is killed
by some element in the complement of p. In other words, (ExtA(1)(F2,M))p = 0, so the kernel of
the localization map Ext → Extp is nonzero. Therefore, (h11, v, w) corresponds to the vanishing of
Q0-homology. As we only had two options to begin with, we can then conclude that (h10, h11, v)
corresponds to the vanishing of Q1-local homology.

4 Further Directions

In this section we make use of the Cartan-Eilenberg spectral sequence to compute ExtA(1)(F2,M).
Some of the details still need to be worked out.

Theorem 28. Given Hopf algebras B and C over F2, there is a spectral sequence, called the Cartan-
Eilenberg spectral sequence, with

Es,t,u
2 = ExtsC//B(F2,Ext

t,u
B (F2,M))⇒ Exts+t,u

C (F2,M)

Here, C//B := C ⊗B F2 denotes the “quotient Hopf algebra.” It can be seen from the form of
the E2 page above that simplifying the computation of the Ext term on the right hand side can be
achieved if we pick a convenient splitting of C. In our case, we are considering C = A(1), so we
wanted to find a convenient sub-Hopf algebra B ⊂ A(1). We chose B = E[Q1], where E[x] denotes
the exterior algebra F2[x]/(x2). The resulting quotient Hopf algebra is given by HQ1 := C//B.
This algebra consists of five generators {1,Sq1,Sq2,Sq1Sq2,Sq2Sq1} subject to the usual Steenrod
relations as well as the relation Sq1Sq2 = Sq2Sq1. We will work from the inside out to compute

ExtsHQ1
(F2,Extt,uE[Q1]

(F2,M))

Then we first build a free resolution of F2 over E[Q1]:

0← F2 ← E[Q1]← Σ3E[Q1]← Σ6E[Q1]← . . . ,

where the maps Σu+3E[Q1]→ ΣuE[Q1] are all given by sending 1 7→ Q1. Applying HomE[Q1](−,M)
to this resolution we get a complex

0→ HomE[Q1](E[Q1],M)
1 7→Q1−−−−→ HomE[Q1](Σ

3E[Q1],M)
1 7→Q1−−−−→ HomE[Q1](Σ

6E[Q1],M)
1 7→Q1−−−−→ . . .

(3)
Now we claim that the Ext groups obtained from this complex are

Extt,uE[Q1]
(F2,M) ∼=


ker(M

Q1−−→M) u = t = 0

H(M ;Q1) u = 3t ≥ 3

0 otherwise

Proof. Let f ∈ ker(HomE[Q1](E[Q1],M)
1 7→Q1−−−−→ HomE[Q1](E[Q1],M)), where the notation 1 7→ Q1

means that the map on Hom groups is induced by the map in the resolution sending 1 7→ Q1. Here we
leave out suspensions to simplify notation. Since f ∈ ker, it must be that f ∈ HomE[Q1](E[Q1],M)
sends E[Q1] 3 1 7→ m ∈ M with Q1m = 0. In other words, f sends 1 ∈ E[Q1] to an element in

ker(M
Q1−−→ M). The same reasoning implies that if f is in the image of the map of Hom groups

above, then f sends 1 ∈ E[Q1] to some element in im(M
Q1−−→ M) = Q1M . Therefore, if f is in the

homology of the complex
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. . .
17→Q1−−−−→ HomE[Q1](E[Q1],M)

17→Q1−−−−→ HomE[Q1](E[Q1],M)
17→Q1−−−−→ HomE[Q1](E[Q1],M)

17→Q1−−−−→ . . . ,
(4)

then f sends 1 ∈ E[Q1] to some element in H(M ;Q1). The converse is clear, so we have an isomor-
phism between the homology of the complex in Equation 4 and the Margolis homology H(M ;Q1).
In particular, the complex in Equation 4 is the same as the one in Equation 3 almost everywhere
(except t = 0), up to suspensions. Once the internal degree is considered we get the Ext groups
above.

Now that we have the inner Ext term, we compute ExtHQ1
(F2,M). We only write M here to simplify

notation, but once this Ext is computed, we will replace the second entry with the ExtE[Q1](F2,M)
computed above. We begin by building a free resolution of F2 over HQ1:

0← F2 ← HQ1 ← ΣHQ1 ⊕ Σ2HQ1 ← Σ2HQ1 ⊕ Σ4HQ1 ← Σ3HQ1 ⊕ Σ6HQ1 ← . . . ,

where the odd-degree maps Σu+1HQ1 → ΣuHQ1 are given by 1 7→ Sq1 and the even-degree maps
Σu+2HQ1 → ΣuHQ1 are given by 1 7→ Sq2. By the universal property of the direct sum we can
consider the odd- and even-degree maps separately. First consider the complex

0→ HomHQ1(HQ1,M)
1 7→Sq1

−−−−→ HomHQ1(ΣHQ1,M)
1 7→Sq1

−−−−→ HomHQ1(Σ2HQ1,M)
17→Sq1

−−−−→ . . .

The reasoning above implies that the homology of this complex is given by

Hs,u ∼=


ker(M

Sq1

−−→M) u = s = 0

H(M ;Q0) u = s ≥ 1

0 otherwise

Now consider the complex

0→ 0→ HomHQ1
(Σ2HQ1,M)

17→Sq2

−−−−→ HomHQ1
(Σ4HQ1,M)

17→Sq2

−−−−→ HomHQ1
(Σ6HQ1,M)

17→Sq2

−−−−→ . . .

In this case, notice that the reasoning above would have us considering something like H(M ; Sq2).
In general, this is not a well-defined object since Sq2Sq2 = 0 does not hold in general. However,
since M is an HQ1-module, in which Sq2Sq2 = 0 holds, we have that Sq2Sq2M = 0 as well. Then we
will write H(M ; Sq2) for the Sq2-homology of M in analogy with Margolis homology. The reasoning
above then gives us the following homology groups for our complex:

Hs,u ∼=


ker(M

Sq2

−−→M) u = 2, s = 1

H(M ; Sq2) u = 2s ≥ 4

0 otherwise

With both the odd- and even-degree components accounted for, we get the following Ext groups:

Exts,uHQ1
(F2,M) ∼=



ker(M
Sq1

−−→M) u = s = 0

ker(M
Sq2

−−→M) u = 2, s = 1

H(M ;Q0) u = s ≥ 1

H(M ; Sq2) u = 2s ≥ 4

0 otherwise
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Now we can write down the E2 page of our spectral sequence:

Es,t,u
2 := ExtsHQ1

(F2,Extt,uE[Q1]
(F2,M)) ∼=


ker(ker(Q1)

Sq1

−−→ ker(Q1)) u = t = s = 0

H(H(M ;Q1);Q0) u = s = 3t ≥ 3

H(H(M ;Q1); Sq2) u = 2s = 3t ≥ 6

0 otherwise

where ker(x) denotes ker(M
x−→M).

Remark 29. This approach was motivated by Katharine Adamyk’s unpublished dissertation, some
of which is summarized in [1]. She considered ExtA(1)(M,F2) for Q0-local M and showed that after
localizing at a certain prime in ExtA(1)(F2,F2), the problem reduced mostly to computing the cor-
responding localization of ExtA(0)(M,F2). This localization then served as the E1 page of a spectral
sequence obtained by filtering the Q0-localization L0M ∼= γ∞ ⊗M by certain submodules of γ∞
([7]). The key to Adamayk’s simplification of the E1 page was in formulating the associated graded
of her filtration in terms of the exterior algebra E[Q0]. From there, she built an injective resolution
of F2 that allowed the identification of the resulting Ext groups with the homology H(M ;Q0). In
our computation, this is the argument used to simplify Ext over E[Q1].
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