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Abstract. For every irreducible, self-dual representation V of gl(n,C) with highest weight λ, there
exists a unique (up to a real scalar multiple), nondegenerate, gl(n,C)-invariant Hermitian pairing
V → V h, with respect to the real structure σ such that σ(X+ iY ) = X− iY for all X,Y ∈ gl(n,R).
Therefore, it makes sense to talk about the signature of a representation by looking at the signature
of this pairing. In this paper, we use the Gelfand-Zetlin branching law to obtain a recursive bound
for this signature in terms of the signatures of irreducible representations of gl(n− 1,C).
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1. Introduction

1.1. Summary. Let ρ : gl(n,C)→ gl(V ) be a finite-dimensional irreducible complex representation
of gl(n,C). We’d like to examine the properties of nondegenerate, gl(n,C)-invariant Hermitian
forms on V . An important problem is to determine whether or not the form is positive definite,
which would then make (ρ, V ) a unitary representation. To do this, we can first figure out the
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signatures of the forms, which will tell us precisely when positive definiteness occurs. Our main
result is this:

Theorem 1.1. Let Vλ be an irreducible, self-dual gl(n,C)-representation with highest weight λ, and
let 〈·, ·〉 be an invariant nondegenerate Hermitian form on Vλ. The self-duality condition implies
that λ = (λ1+it, λ2+it, . . . ,−λ2+it,−λ1+it) for real-valued {λi} and t. Without loss of generality,
let t = 0; doing so only modifies Vλ by a tensor product with a 1-dimensional character Cit, and so
won’t change the Hermitian form in a non-negligible way. Then, the following holds:

(1) The signature does not change under restriction to the zero weight space:

Sig〈·, ·〉 = Sig(〈·, ·〉|Vλ[0]×Vλ[0])

(2) We have the following upper bound for its signature:

Sig(〈·, ·〉) ≤
∑

ηoλ, η=w0(−η)

Sig(〈·, ·〉|Vη×Vη),

where w0 reverses the entries of η, and η o λ if and only if, letting η := (η1, . . . , ηn−1) and
λ := (λ1, . . . , λn), we have that λi − ηj are integers for all i, j, and that the interleaving
relation

λ1 ≥ η1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ ηn−1 ≥ λn
holds.

The paper is divided into several parts. In section 2, we first discuss the well-known classification
of irreducible gl(n,C)-representations via highest-weight theory. Then, we introduce the Hermitian
dual to help us formulate the notion of an invariant Hermitian pairing with respect to a real
structure σ. Finally, we state and prove the necessary and sufficient conditions for gl(n,C) to
possess a nondegenerate, invariant Hermitian pairing.

In Section 3, we prove the first part of Theorem 1.1: indefiniteness of the signature outside of
the zero weight space. We then introduce the Gelfand-Zetlin branching law, which gives an explicit
decomposition of an irreducible gl(n,C) representation when the action is restricted to gl(n−1,C).
After that, we will use the branching law along with invariance of the Hermitian form to obtain
the second part of Theorem 1.1, completing the proof.

1.2. Acknowledgements. The author thanks the MIT Mathematics Department for the spon-
sorship of his research, and Slava Gerovitch in particular for organizing the UROP+ program. In
addition, the author thanks Daniil Kalinov and David Vogan for their extensive mentorship and
invaluable insights throughout the summer.

2. Preliminaries

2.1. Signatures. The “signature” of a Hermitian form has several different meanings. In this
paper, we will use the following definition:

Definition 2.1. If 〈·, ·〉 is a nondegenerate Hermitian form on a finite-dimensional complex vec-
tor space V , Sylvester’s Law states that there are unique a, b ∈ N such that V has a basis
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{e1, . . . , ea, f1, . . . , fb} satisfying, for all 1 ≤ i, j, k ≤ dim(V ):

〈ei, ej〉 = δij

〈fk, fl〉 = −δkl
〈ei, fk〉 = 0.

The signature of 〈·, ·〉 is then defined as

Sig 〈·, ·〉 := |a− b|.

2.2. Highest-weight theory. Define the following partial order on C:

Definition 2.2. Let the partial order “≤” on C signify the following: for w, z ∈ C. we have w ≤ z
if and only if z − w ∈ R≥0. Note that this extends the usual order on R.

We will refer to this order when comparing complex numbers in this and later sections.
In its most general form, the theorem of the highest weight classifies all finite-dimensional irre-

ducible representations of semisimple Lie algebras, and although gl(n,C) isn’t semisimple, we can
extend it to gl(n,C), as

gl(n,C) ∼= sl(n,C)⊕ C.
Denote t ⊂ gl(n,C) to be the subalgebra of diagonal matrices; this is a Cartan subalgebra of gl(n,C),
and is isomorphic to Cn. With this notation, we can decompose gl(n,C) into a Lie algebra direct
sum gl(n,C) ∼= n− ⊕ t⊕ n+, where

n− = span{Eij}i>j ,
n+ = span{Eij}i<j .

Further denote {ei}ni=1 to be the basis of t∗ dual to the basis {Ejj} of t, such that

ei(Ejj) = δij .

In the gl(n,C) case, the theorem of the highest weight asserts the following:

Theorem 2.3. Finite-dimensional irreducible representations of gl(n,C) are in bijection with n-
tuples λ := [λ1, . . . , λn] ∈ Cn such that λi − λj ∈ Z≥0 for all i < j. The associated vector space is
denoted as Vλ.

The integral weights of Vλ, denoted as ∆, is defined to be the set of all η ∈ t∗ such that, letting
[η1, . . . , ηn] be the entries of η but sorted in decreasing order, we have λi−ηj ∈ Z for all 1 ≤ i, j ≤ n,
and that

η1 ≤ λ1

η1 + η2 ≤ λ1 + λ2

...

η1 + · · ·+ ηn = λ1 + · · ·+ λn.

With ∆ defined, Vλ then admits a weight space decomposition

Vλ =
⊕
η∈∆

Vλ[η]
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where

Vλ[η] = {v ∈ Vλ | Xv = η(X)v for all X ∈ t}.

The algebra gl(n,C) then acts on v ∈ Vλ[η] in the following manner:

Eijv ∈ V [η + ei − ej ] if η + ei − ej ∈ ∆

Eijv = 0 if η + ei − ej /∈ ∆

Eiiv = η(Eii)v.

Accordingly, the elements of n+ are called raising operators, and the elements of n− lowering oper-
ators.

The weight λ is known as the highest weight, as any vector in the highest-weight space Vλ[λ] is
annihilated by all elements of n+. Here are some properties about Vλ[λ]:

• Vλ[λ] is 1-dimensional.
• If v ∈ Vλ[λ] is a highest-weight vector, then Vλ = U(n−)v, i.e. the orbit of the n−-action on
v generates a spanning set for all of Vλ.
• The set of integral weights ∆ is invariant under the action of W = Sn, which acts by

permuting the entries. That is, W (∆) = ∆.

We’ll also use the following fact about weight spaces:

Proposition 2.4. If V and W are irreducible gl(n,C)-representations, then in the induced repre-
sentation on V ⊗W via

X(v ⊗ w) = Xv ⊗ w + v ⊗Xw,

a functional λ ∈ t∗ is an integral weight of V ⊗W if and only if it is a sum of an integral weight
of V and an integral weight of W .

2.3. Hermitian duals. Denote V h to be the Hermitian dual, i.e., the space of functions ξ : V → C
satisfying

ξ(v) + ξ(w) = ξ(v + w)

ξ(cv) = cξ(v),

for all v, w ∈ V and c ∈ C.
A sesquilinear pairing 〈·, ·〉 : V × V → C is naturally identified with the linear operator

T ∈ Hom(V, V h), T (v) = 〈v, ·〉 ,

and its Hermitian transpose is defined as

T h ∈ Hom(V, V h), T h(v) = 〈·, v〉.

A Hermitian pairing, with the additional constraint 〈v, w〉 = 〈w, v〉, is thus naturally identifed with
T ∈ Hom(V, V h) such that T = T h.
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2.4. Dual representations. Recall that the representation V of complex Lie algebra g induces
a representation on V ∗, the space of complex-linear functionals on V , in the following way: for
v ∈ V , elements X ∈ g act on functionals f ∈ V ∗ via

(Xf)(v) = −f(Xv).

However, representations on V h are more complicated: functionals f ∈ V h now need to be conjugate
linear, and the above won’t cut it: for z ∈ C, we must have

(zXf)(v) = −f(zXv) 6= −f(zXv).

In order to make this work, we need to have a sense of “conjugacy” for elements X ∈ g.

Definition 2.5. A real structure σ on a complex Lie algebra g is an map σ : g → g with the
following properties:

• σ is a Lie algebra homomorphism, i.e. σ([X,Y ]) = [σ(X), σ(Y )] for all X,Y ∈ g.
• σ is conjugate linear, i.e. zσ(X) = σ(zX) for z ∈ C and X ∈ g.
• σ is an involution, i.e. σ2 = 1.

What the term real structure refers to is the subalgebra fixed by σ, denoted as gσ.
In the case of gl(n,C), we will be working with matrices with the property that all their entries

are real. Therefore, the natural real structure to use is defined by

σ(X + iY ) = X − iY
for all X,Y ∈ gl(n,R). Note that gl(n,C)σ = gl(n,R), as expected.

With a sense of “conjugacy” in hand, we can now define the dual representation V h with respect
to σ, the σ-Hermitian dual V h,σ: for v ∈ V , elements X ∈ g act on functionals f ∈ V h,σ by

(Xf)(v) = −f(σ(X)v).

We check that Xf is conjugate linear:

(zXf)(v) = −f(σ(zX)v) = −f(zσ(X)v) = (Xf)(zv).

We check that the representation V h,σ respects the Lie bracket:

([X,Y ]f)(v) = −f(σ([X,Y ])v) = f(σ(Y )σ(X)v − σ(X)σ(Y )v) = [(XY − Y X)f ](v).

2.5. Invariant pairings. An σ-invariant pairing has several equivalent meanings:

Proposition 2.6. If (ρ, V ) is a representation of a Lie algebra g with a nondegenerate sesquilinear
pairing 〈·, ·〉, then the following are equivalent:

• For all X ∈ g and all v, w,∈ V , we have 〈Xv,w〉+ 〈v, σ(X)w〉 = 0.
• The associated map T : V → V h,σ commutes with the action of g. (An operator with this

property is called an intertwining operator.)

The form is called σ-invariant in this case.

For gl(n,C), using σ as described in the previous subsection, we will call a σ-invariant Hermitian
form simply invariant, and refer to V h,σ as simply V h.

The following states necessary and sufficient conditions for an irreducible representation V to
have a σ-invariant, nondegenerate Hermitian form.
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Proposition 2.7. If an irreducible representation V has a nonzero σ-invariant Hermitian form,
then V ∼= V h,σ, and the form is nondegenerate. Conversely, if V ∼= V h,σ, then a nondegenerate
invariant Hermitian form exists and is unique up to a real scalar multiple.

Proof. Since the form is nonzero, it induces a nonzero intertwining operator V → V h,σ. By Schur’s
Lemma, we must have V ∼= V h,σ, and the form is automatically nondegenerate. Conversely, if
V ∼= V h,σ, then an intertwining operator V → V h,σ exists and is unique up to a scalar multiple.
Choose one nonzero intertwining operator T : V → V h,σ, and denote the form induced by this
operator as 〈·, ·〉. The Hermitian transpose T h : V → V h,σ is also an intertwining operator, and by
Schur’s Lemma we therefore must have, for some z ∈ C,

T = zT h.

Using the formulae for T , T h above, then, for all v, w ∈ V ,

〈v, w〉 = z〈w, v〉.

Note that applying the equation twice gives

〈v, w〉 = z〈w, v〉 = |z|2 〈v, w〉

implying that |z| = 1, i.e. z = eiθ for some θ ∈ R. Define a new sesquilinear form (·, ·) as

(·, ·) := e−iθ/2 〈·, ·〉 .

This form is Hermitian:

(v, w) = e−iθ/2 〈v, w〉 = eiθ/2〈w, v〉 = (w, v).

We see that with (·, ·), only real scalar multiples of (·, ·) are Hermitian, while complex scalar
multiples fail to be Hermitian:

z(v, w) = z(w, v) 6= z(w, v)

if z isn’t real. We finish. �

Proposition 2.8. If Vλ is an irreducible representation of gl(n,C) with highest weight λ, then we
must have an isomorphism of representations

(Vλ)h ∼= Vw0(−λ),

where w0 ∈ Sn acts on λ ∈ Cn by reversing its entries, and λ is λ but with every entry conjugated.
For example, w0([3,−1,−2,−4]) = [−4,−2,−1, 3] and

[3 + i,−1 + i,−2 + i,−4 + i] = [3− i,−1− i,−2− i,−4− i].

Proof. The representation (Vλ)h is also an irreducible representation of gl(n,C), implying that it
must have a highest weight. Choose bases for each weight space Vλ[η] and combine them to form a
basis {vi} for Vλ. Further denote the set {v∗i } as the basis of (Vλ)h dual to Vλ, i.e. v∗i (vj) = δij for
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all i, j. Let vi be a basis element that lies in Vλ[η], and let v =
∑

j cjvj be any vector of Vλ; then,
for all X ∈ t,

(Xv∗i )(v) = v∗i (−σ(X)v)

= v∗i (−σ(X)
∑
j

cjvj)

= v∗i (−σ(X)civi)

as −σ(X) acts on each vj by a scalar multiple, and all summands except the civi term are thus
killed by v∗i . Let X := X0 + iY0 be the decomposition of X into real and complex parts, and let
η := η0 + iζ0 be the corresponding decomposition of η ∈ t∗. Continuing with the calculation:

v∗i (−σ(X)civi) = v∗i (−η(σ(X))civi)

= −η(σ(X))v∗i (civi)

= −η(X0 − iY0)v∗i (v)

= −η0(X0)− iζ0(X0) + iη0(Y0)− ζ0(Y0)

= −η0(X0) + iζ0(X0)− iη0(Y0)− ζ0(Y0)

= (−η0 + iζ0)(X0 + iY0)

= −η(X).

With the equation Xv∗i = −η(X)v∗i (v), we see that v∗i lies in the −η weight space of (Vλ)h. As a

result, if λ = (λ1, . . . , λn) is the highest weight of Vλ, then w0(−λ) = (−λn, . . . ,−λ1) is the highest
weight of (Vλ)h. �

Combining the previous two propositions, we now have what we want:

Corollary 2.9. An irreducible representation Vλ of gl(n,C) has a nondegenerate invariant Her-
mitian form (unique up to a real scalar) if and only if λ = w0(−λ), where w0 is defined in the
previous proposition.

If λ satisfies the above, then note that λ must be of the form (λ1+it, λ2+it, . . . ,−λ2+it,−λ1+it)
for some real-valued {λj} and t. In fact, by Proposition 2.4, we have

Vλ ∼= V(λ1,λ2,...,−λ2,−λ1) ⊗ V(it,...,it)
∼= V(λ1,λ2,...,−λ2,−λ1) ⊗C Cit.

The representation Cit is a 1-dimensional character with every vector a highest-weight vector. In
particular, for z ∈ Cit, Ejjz = itz and Ejkz = 0 (for j 6= k). Therefore:

Eij(v ⊗ z) = Eijv ⊗ z + v ⊗ Eijz = Eijv ⊗ z
Eii(v ⊗ z) = Eiiv ⊗ z + v ⊗ itz,

and thus if 〈·, ·〉 is an invariant nondegenerate Hermitian form on V(λ1,λ2,...,−λ2,−λ1), then the non-
degenerate Hermitian form (·, ·) on Vλ defined by

(v ⊗ 1, w ⊗ 1) := 〈v, w〉
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must also be invariant:

(Eij(v ⊗ 1), (w ⊗ 1)) + ((v ⊗ 1), Eij(w ⊗ 1)) = 〈Eijv, w〉+ 〈v,Eijw〉 = 0

(Eii(v ⊗ 1), (w ⊗ 1)) + ((v ⊗ 1), Eii(w ⊗ 1)) = (Eii(v ⊗ 1), (w ⊗ 1)) + ((v ⊗ 1), Eii(w ⊗ 1)))

= 〈Eiiv, w〉+ 〈itv, w〉+ 〈v,Eiiw〉+ 〈v, itw〉
= 〈Eiiv, w〉+ 〈v,Eiiw〉 = 0.

Remark 2.10. Hence, we can assume that t = 0 (all entries of λ are real) without loss of generality.
The Hermitian form is essentially the same, and in particular the signature will remain the same
no matter what t is.

Here are some facts about the highest weight λ, if λ = w0(−λ) and all entries are real:

• If n is even, then the λi’s are all integers or half-integers, while if n is odd, then the λi’s
are all integers, and in particular the middle entry λ(n+1)/2 is simply 0.
• All the weights η ∈ ∆ of Vλ are real.
• The zero weight space Vλ[0] has positive dimension if all the λi’s are integers, and if not,

then Vλ[0] = 0.
• If η is a weight, then so is −η.

3. Obtaining the inequality

3.1. Restriction to the zero weight space. We will now use invariance to show the first part of
Theorem 1.1: indefiniteness of the form’s signature outside of Vλ’s zero weight space. It is restated
here for convenience:

Proposition 3.1. If Vλ is an irreducible, self-dual gl(n,C)-representation with highest weight λ,
and 〈·, ·〉 is a nondegenerate invariant Hermitian form on Vλ, then

Sig〈·, ·〉 = Sig(〈·, ·〉|Vλ[0]×Vλ[0]).

Proof. The proof constructs the Hermitian matrix for 〈·, ·〉 under a suitable basis. Let α, β ∈ t∗ be
weights of Vλ. We’ll consider what happens in 〈·, ·〉|Vλ[α]×Vλ[β] as α, β range over all the weights.

By invariance, for all v ∈ Vλ[α], w ∈ Vλ[β] and all X ∈ t, we have

0 = 〈Xv,w〉+ 〈v, σ(X)w〉
= 〈α(X)v, w〉+ 〈v, β(σ(X))w〉

= (α(X) + β(σ(X)) 〈v, w〉 .

Let X =: X0 + iY0 be the decomposition with respect to gl(n,R); then

β(σ(X)) = β(X0)− iβ(Y0),

and since β has all real entries (due to Vλ being self-dual), we have β(X0)− iβ(Y0) = β(X0) +
iβ(Y0) = β(X) and therefore the equation

0 = (α(X) + β(X)) 〈v, w〉 .

There are three cases:
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• If α 6= −β, then 〈v, w〉must be 0, and therefore Vλ[α] ⊥ Vλ[β]. In particular, 〈·, ·〉|Vλ[α]×Vλ[α] =
0 for nonzero α.
• If α = −β but α 6= 0, then for a basis {vi}i of Vλ[α], we claim that we can find a dual basis
{wj}j of Vλ[−α] such that

〈vi, wj〉 = δij .

Base case: Starting with any v1 ∈ Vλ[α], we are able to find a w1 ∈ Vλ[−α] such that
〈v1, w1〉 6= 0, or else 〈v1, ·〉 = 0, contradicting nondegeneracy. Normalize w1 such that
〈v1, w1〉 = 1.

Inductive step: Suppose now we have linearly independent v1, . . . , vk ∈ Vλ[α] and dual
vectors w1, . . . , wk ∈ Vλ[−α]. From Vλ[α], choose any nonzero v /∈ sp{v1, . . . , vk} and define

vk+1 := v −
k∑
j=1

〈v, wj〉 vj .

We note that vk+1 is orthogonal to all {wj}kj=1, as

〈vk+1, wj〉 =

〈
v −

k∑
i=1

〈v, wi〉 vi, wj

〉

= 〈v, wj〉 −
k∑
i=1

〈v, wi〉 δij = 0.

This implies that in Vλ[−α], there must exist wk+1 /∈ sp{w1, . . . , wk} such that 〈vk+1, wk+1〉 6=
0, or else we’ll have degeneracy. Normalize wk+1 so that 〈vk+1, wk+1〉 = 1, and repeat the
inductive step until {vi} and {wj} span Vλ[α] and Vλ[−α], respectively.
• If α = β = 0, choose any basis of Vλ[0] and denote the Hermitian matrix of 〈·, ·〉|Vλ[0]×Vλ[0]

as M0.

Now, for each pair of nonzero weights −α, α ∈ h∗ (recall that this occurs because λ = w0(−λ)), the
Hermitian matrix of 〈·, ·〉 restricted to (Vλ[α]⊕ Vλ[−α])× (Vλ[α]⊕ Vλ[−α]) is therefore

(α −α
α 0 I
−α I 0

)
,

and it is well-known that this has signature equal to zero (this can be shown by observing that
the number of its positive eigenvalues equals the number of its negative eigenvalues). Denote this
matrix as M±α.

Putting this all together, the entire Hermitian matrix for 〈·, ·〉 looks like
M±α1

M±α2

. . .

M0

 .
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For each ±α, we saw that M±α1 had a zero signature, and therefore we can throw it away. What’s
left is M0, and therefore, we have what we wanted: Sig 〈·, ·〉 = Sig 〈·, ·〉|Vλ[0]×Vλ[0]. �

3.2. The Gelfand-Zetlin branching law. For convenience, we will use the following nonstandard
notation:

Definition 3.2. Let η := [η1, . . . , ηn−1] ∈ Cn−1 and λ := [λ1, . . . , λn] ∈ Cn. Define a new relation
“o”, with η o λ if and only if the following items hold:

• The values λi − λj , ηi − ηj and λi − ηj are integers for all i and j.
• The interleaving relation holds:

λ1 ≥ η1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ ηn−1 ≥ ηn,
where as before we have the partial order ≥ on C such that w ≥ z if and only if w−z ∈ R≥0.

We’ll now state the Gelfand-Zetlin branching law. It gives an explicit decomposition of an
irreducible representation of gl(n,C) when the action is restricted to gl(n− 1,C).

Theorem 3.3. Let Vλ be a representation of gl(n,C) with highest weight λ. If we restrict the action
on Vλ to the subalgebra 


∗ ∗ · · · ∗ 0
∗ ∗ · · · ∗ 0
...

...
. . .

...
...

∗ ∗ · · · ∗ 0
0 0 · · · 0 0




∼= gl(n− 1,C),

then Vλ decomposes into irreducible representations of gl(n− 1,C) in the following manner:

Vλ|gl(n−1,C)
∼=
⊕
ηoλ

Vη.

3.3. The main result. We now prove part 2 of Theorem 1.1. It is restated here for convenience:

Theorem 3.4. Let Vλ be an irreducible, self-dual gl(n,C)-representation with highest weight λ, and
let 〈·, ·〉 be an invariant nondegenerate Hermitian form on Vλ. Then, we have the following upper
bound for its signature:

Sig(〈·, ·〉) ≤
∑

ηoλ, η=w0(−η)

Sig(〈·, ·〉|Vη×Vη).

Proof. Like before, we’ll now construct the Hermitian matrix of

〈·, ·〉|Vλ×Vλ
for each block 〈·, ·〉|Vη×Vµ , as η and µ range over all highest gl(n−1,C)-weights that interleave with
λ. Again, there are several cases:

• If µ 6= w0(−µ), then, by Schur’s lemma, for all η 6= w0(−µ), there exists no nonzero
intertwining operator Vµ → (Vη)

h. As a result, 〈·, ·〉|Vη×Vµ = 0 for all η 6= w0(−µ).

For Vµ and Vw0(−µ), since Vw0(−µ)
∼= (Vµ)h, we can find a basis {vi} of Vµ and a dual

basis {wj} of Vw0(−µ) such that 〈vi, wj〉 = δij . The proof of this is essentially the same as
Proposition 3.1.
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As a result of these conclusions, the Hermitian matrix of 〈·, ·〉 when restricted to Vµ ⊕
Vw0(−µ) will be of the form

(µ w0(−µ)

µ 0 I
w0(−µ) I 0

)
,

which, just as in Proposition 3.1, has signature 0.
• On the other hand, if µ = −w0(µ), then there exists a unique, gl(n − 1,C)-intertwining

isomorphism T : Vµ → V−w0(µ) = (Vµ)h, and therefore the signature of 〈·, ·〉 when restricted
to Vµ is the same as the signature of T ’s induced Hermitian form.

Putting this all together, the Hermitian matrix will be indefinite outside of its restriction to the
self-dual highest-weight representations. Inside the self-dual highest-weight representations (all η
such that η = −w0(η) and η o λ), the form

〈·, ·〉|Vη×Vη
is only unique up to a real scalar multiple, and thus, we only know the absolute value of the
difference between the dimensions of its maximal positive and negative definite subspaces – the
signed difference will flip sign if the scalar multiple is negative. Hence, the best we can say from
this argument is the bound

Sig(〈·, ·〉) ≤
∑

ηoλ, η=w0(−η)

Sig(〈·, ·〉|Vη×Vη),

and we have the desired result. �
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