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Abstract

For a projective variety endowed with a torus action, the equivariant cohomology
is determined by the fixed points of codimension 1 subtori. Especially, when the fixed
points of the torus are finite and fixed varieties under the action of codimension 1
subtori have dimension less than or equal to 2, equivariant cohomology can be described
by discrete conditions on the pair of fixed points via GKM description of localizaton
theorem. We provide explicit formula for the equivariant cohomology of affine flag
varieties and prove the isomorphism between the i-th cohomology of affine flag variety
and that of affine Springer fibers for i less than the rank of affine flag variety.

1 Introduction

Given a topological space X and a commutative ring R, the cohomology ring H∗(X,R)
encapsulates the topological properties of X up to homotopy equivalence. However for
a topological space X with the action of topological group G, the cohomology ring fails to
capture the information about the group action. On the other hand, equivariant cohomology,
our main target of interest, aptly reflects the topological properties along with the group
action. Throughout the paper, we assume the coefficients equal to R = Q.

In Section 2, we provide the preliminaries of equivariant cohomology and statement of
the prodigious localization theorem by Goresky, Kottwitz and MacPherson [3]. In short, the
information of the equivariant cohomology of projective variety with torus action is contained
inside the one dimensional orbits and fixed points of the torus action. The GKM description
is our main methodology for computing the equivariant cohomology of varieties.

In Section 3, we identify the fixed points and one dimensional orbits of affine flag variety
F̃ l under the extended torus T̃ action. Through GKM description, we provide complete
description of the equivariant cohomolgy as a module over polynomial ring S generated by
the characters of T̃ . Theorem 3.1 explicitly states the generators of a module.
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In Section 4, we give GKM description of the equivariant cohomology of F̃ l1, an affine
Springer fiber generated by ts with a regular semisimple element s. Subsequently, we prove
that the i-th cohomology of F̃ l1 is isomorphic to the i-th cohomology of F̃ l whenever i is
less than the rank of affine flag variety:

hi(F̃ l) = hi(F̃ l1).

Additionally, we suggest a counterexample of non isomorphism when i is the rank of the
affine flag variety.

In Section 5, we reformulate the classical results in equivariant cohomology of flag vari-
eties under GKM description. Furthermore, we derive the ring structure of the equivariant
cohomology of affine Grassmannians Gr and affine flag varieties F̃ l endowed with extended
torus T̃ action:

H∗
T̃

(Gr) ∼= S⊗Q Q[g1, · · · , gN ]

H∗
T̃

(F̃ l) ∼= S[t]⊗S[t]W H∗
T̃

(Gr)

where the degrees of gi are the degrees of the generators of SW , polynomial ring fixed by
Weyl group.

In Section 6, we briefly discuss the equivariant cohomology ring of affine Springer fibers
of sl(2). Additionally we suggest a conjecture which states that the equivariant cohomology
of affine flag variety surjects to the equivariant cohomology of affine Springer fibers fixed
under the lattice action.

2 Equivariant cohohmology and localization theorem

We follow the terminology and notations used in [1]. We assume X to be the topological
space with the action of a topological group G. While it is most natural to consider the
cohomology of X/G to encapsulate the information about the group action, the orbit space
X/G is often not a well behaved topological space whenever the action is not free. Thus we
first construct topological space which is homotopy equivalent to X with free G-action.

Given a topological group, there exists a contractible space EG with a free G-action
inducing a universal G-bundle EG → BG = EG/G. Therefore X×EG is homotopy equivalent
to X with G acting freely. The equivariant cohomology H∗G(X) is then defined as the
cohomology of the orbit space of X × EG with diagonal G-action:

H∗G(X) = H∗((X × EG)/G).

By the universality of principal G-bundle, equivariant cohomology is invariant under the
construction of G-bundle EG → BG. From the fibration (X×EG)/G→ EG/G with fiber X,
we obtain the ring homomorphism H∗G(pt) → H∗G(X) which induces H∗G(X) as an algebra
over H∗G(pt)

For a compact torus T = (S1)n, we define Ξ(T ) = Hom(T, S1), a character lattice of T .
From a universal T -bundle

(S∞)n → (CP∞)n,
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we have
H∗T (pt) = H∗((CP∞)n) = S

where S = Sym∗(Ξ(T )) is a polynomial ring over the field Q with each indeterminates of
degree 2. In particular we have the following localization theorem in [1] Proposition 2 and
Theorem 6.

Proposition 2.1. Let X be a complex projective manifold with compact torus T -action. For
all subtori T ′ ⊂ T , let XT ′ be the set of fixed points of T ′-action. Then H∗T (X) is free S-
module with isomorphism H∗(X) ∼= H∗T (X)/S+. Furthermore, we have the injective map of
equivariant cohomology

i∗T : H∗T (X)→ H∗T (XT )

with the image equal to the intersection of the images of maps

i∗T,T ′ : H∗T (XT ′)→ H∗T (XT )

where T ′ runs over all subtori of codimension 1.

Under the condition that XT is finite and dim(XT ′) ≤ 2 for all subtori of codimension 1,
XT ′ is the union of points and CP1 with CP1 connecting two fixed points. On each CP1, the
action of T is induced by character χ : T → T/T ′. Therefore when we denote every fixed
complex projective curves Ej, connecting points j0, j∞ ∈ XT , the image HT ′ of the inclusion
i∗T,T ′ : H∗T (XT ′)→ H∗T (XT ) = Map(XT ,S) is given by

HT ′ =
{
f ∈Map(XT ,S) | f(j0) ≡ f(j∞) mod χ, ∀Ej = CP1

}
.

On the same line, Goresky, Kottwitz and MacPherson [3] established the following localiza-
tion theorem under the aforementioned conditions.

Proposition 2.2. (Goresky, Kottwitz, and MacPherson [3]) Let X a complex projective
manifold with compact torus T -action. Suppose X has finite fixed points and dim(XT ′) ≤ 2
for all subtori T ′ ⊂ T of codimension 1. Let Ej index all complex projective line CP1 fixed
by subtori of codimension 1 inducing a character χ. Then under the inclusion i∗T : H∗T (X)→
H∗T (XT ), we have

H∗T (X) =
{
f ∈Map(XT ,S) | f(w) ≡ f(w′) mod χ, ∀j,∀w,w′ ∈ Ej ∩XT

}
.

Furthermore, p∗ : H∗T (pt)→ H∗T (X) is an injection defined by p∗(f) = (f, f, · · · , f).

Our goal for the rest of the paper is to find the equivariant cohomology of affine flag
varieties and affine Springer fibers under the torus action.

Let F = C((ε)) be the field of Laurant series over C and let o = C[[ε]]. For a connected
reductive algebraic group G over C and its lie algebra g, affine flag variety is the quotient
F̃ l = G̃/B̃ where G̃ = G(F ) and B̃ is the set of Iwamori subalgebras of g⊗C F .

Affine Grassmannian is defined by Gr = G(F )/G(o). For an element γ ∈ g(F ), the fixed
point set of a vector field induced by γ is defined to be the affine Springer fiber:

F̃ lγ =
{
gG(o) ∈ Gr | Ad(g−1)(γ) ∈ g⊗C o

}
.
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For a regular semisimple element s and γ = tns for a natural number n, we define the affine
Springer fibers F̃ ln = F̃ lγ. For a maximal torus T of G, we define extended torus T̃ (C) =
T (C)×C∗, then the aformentioned varieties - affine flag varieties, affine Grassmannians, and
affine Springer fibers - have natural actions of T and T̃ .

From the classical results on affine flag varieties and affine Grassmannians, the varieties
are direct limits of finite dimensional complex projective varieties with induced torus action.
Additionally, affine Springer fiber F̃ l1 admits a Hessenberg paving which gives a direct
limit of complex projective varieties [5]. Since direct limit commutes with cohomology, the
localization theorem, which is valid in complex projective varieties, holds in these infinite
dimensional complex varieties.

To apply the localization theorem, we need to determine the fixed points and one di-
mensional orbits CP1 of each varieties. Section 13 of [4] gives an explicit description of
those in terms of affine Weyl groups and root system which will be described along with the
equivariant cohomologies in the remaining sections.

3 Equivariant cohomology of affine flag varieties

Our goal of this section is to compute equivariant cohomology of affine flag varieties F̃ l as
a free module over polynomial ring of characters. Denote T a maximal torus of the flag variety
and T̃ (C) = T (C)× C∗ an extended torus. We denote S = Sym∗Ξ(T ) as a polynomial ring
of characters over Q and S̃ = S[t] as a polynomial ring of extended characters. Additionally
we denote Φ as a root system of the affine Weyl group W̃ corresponding to the affine flag
variety.

To compute the equivariant cohomology H∗
T̃

(F̃ l), we first identify the fixed points and

one dimensional orbits of T̃ . The fixed points are the elements of affine Weyl group W̃ . For

a character χ ∈ Ξ(T̃ ), F̃ l
kerχ 6= F̃ l

T̃
if and only if χ ∈ Φ. If χ = α ∈ Φ, complex projective

lines fixed by kerχ connect the fixed points w and sαw. Therefore, the localization theorem
yields the following GKM description of equivariant cohomology:

H∗
T̃

(F̃ l) =
{
f ∈Map(W̃ , S̃) | f(w) ≡ f(sαw) mod α, ∀α ∈ Φ,∀w ∈ W̃

}
.

Degree of f should be finite since we are taking the colimit with respect to the projecting
pavings.

We extend this notion to arbitrary Coxeter system (W,S) with root system Φ. We follow
the notations and terminologies in [7]. Given the lattice V generated by the simple roots
{αs | s ∈ S}, define S(V ) be the symmetric algebra of V with coefficient in Q. Define the
analogous ring

H∗(W,S) = {f ∈Map(W,S(V )) | f(w) ≡ f(sαw) mod α, ∀α ∈ Φ,∀w ∈ W}

which yields H∗(W̃ , S) = H∗
T̃

(F̃ l). Let Π be the set of positive roots of Φ. In this section
we establish the following theorem.

Theorem 3.1. For an element w ∈ W , there exists a unique class fw ∈ H∗(W,S) of degree
l(w) satisfying the following condition.
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• fw(w′) = 0, for all l(w′) ≤ l(w), w′ 6= w

• fw(w) =
∏

α∈Π,sαw<w
α

Additionally, fw is a free module generator of H∗(W,S) over S(V ).

Before proving the theorem, we state some properties on Coxeter groups in [7]. Recall
that a Coxeter group is a poset with respect to the Bruhat order <.

Lemma 3.2. [7] Let w ∈ W,α ∈ Π. Then the following holds.

wsα > w if and only if wα > 0.

sαw > w if and only if w−1α > 0.

It is implied in the above lemma that the number of reflections sα such that sαw < w in
the Bruhat ordering is equal to l(w) since the number of positive roots sent to the negative
roots via w is equal to the length of w.

Lemma 3.3. [7] For an element w ∈ W with reduced expression s1 · · · sn i.e. l(w) = n, then
the set of elements in the Bruhat interval [1, w] is

{si1 · · · sik |1 ≤ i1 < · · · < ik ≤ n},

all the subexpressions of the reduced expression s1 · · · sn.

Especially, whenever sαw < w, then sα = s1 · · · ŝi · · · sn for some 1 ≤ i ≤ n. This criterion
is called Strong Exchange Condition.

fw in Theorem 3.1 will be constructed inductively by assigning a polynomial for each
w′ ∈ W in the increasing length. We call

f(w) ≡ f(sαw) mod α

the GKM condition throughout the paper. Under the poset representation of the Coxeter
group W , the following theorem implies the inductive construction of f ∈ H∗(W,S).

Theorem 3.4. If f : [1, w] \ {w} → S(V ) satisfies the GKM condition, then f can be
extended to the function F : [1, w] → S(V ) so that F satisfies the GKM condition in the
interval [1, w].

Proof. We proceed by induction on l(w) ≥ 0. l(w) = 0 is a trivial case. Suppose the theorem
holds for l(w) = n − 1. When l(w) = n, let w = s1 · · · sn be the reduced expression where
s1 = sα and define w1 = s1w < w.

Notice that p ≡ q mod β if and only if wp ≡ wq mod wβ. Hence,

s1f(s1x) ≡ s1f(s1sβx) mod β ⇔ f(s1x) ≡ f(s1sβx) mod s1β (1)

for all x ∈ [1, w1]. Since ss1β = s1sβs1, s1f(s1 ·) restricted to [1, w1] \ {w1} satisfy the GKM
condition. By the induction hypothesis, s1f(s1 ·) : [1, w1] \ {w1} → S(V ) can be extended
to G : [1, w1]→ S(V ):

G(w1) ≡ s1f(s1sγw1) mod γ, ∀γ ∈ Π such that sγw1 < w1.
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Therefore we have

f(w1)−G(w1) ≡ f(sγw1)− s1f(s1sγw1) mod γ, ∀γ ∈ Π such that sγw1 < w1.

Since f(·) − s1f(s1 ·) : [1, w1] \ {w1} → S(V ) satisfies GKM condition on [1, w1] \ {w1} by
the same logic in equation 1 and is divisible by α, we can apply induction hypothesis on
f(·)−sαf(sα ·)

α
to obtain a polynomial H ∈ S(V ) such that

αH ≡ f(sγw1)− s1f(s1sγw1) mod γ, ∀γ ∈ Π such that sγw1 < w1.

Therefore, f(w1)−G(w1) ≡ αH mod
∏

γ∈Π,sγw1<w1
γ which is equivalent to

s1f(w1)− s1G(w1) ≡ −αs1H mod
∏

β∈Π\α,sβw<w

β

by Lemma 3.3 or Strong Exchange Condition. Therefore s1G(w1) can be modified by some
multiple of

∏
β∈Π\α,sβw<w β so that the resulting F (w) satisfies F (w) ≡ f(w1) mod α. Since

s1G(w1) ≡ f(sβw) mod β, ∀β ∈ Π \ {α} such that sβw < w

by the same logic in equation 1, this implies

F (w) ≡ f(sβw) mod β, ∀β ∈ Π such that sβw < w.

Therefore, f can be extended to w via F (w) under GKM condition.

Now we prove of our main Theorem 3.1 of this section.

Proof of Theorem 3.1. Let Wn be the subposet of W with elements of length less than or
equal to n. If f ∈ Map(Wn, S(V )) is defined over Wn with GKM condition, f can be
extended to Map(Wn+1,S(V )) with GKM condition by Theorem 3.4.

The initial condition given by the statement of the theorem defines f ∈Map(Wl(w), S(V ))
satisfying GKM condition. Hence f is aptly extended to fw ∈Map(W,S(V )) inductively so
that the GKM condition is satisfied. Especially for each element w′ with l(w′) > l(w), f(w′)
should satisfy l(w′) modular equations. Hence f(w′) is uniquely determined when we restrict
the degree of f(w′) to be l(w). Therefore, fw ∈ H∗(W,S) of degree l(w) exists uniquely with
the conditions in the theorem.

To prove fw’s are the generators of H∗(W,S) over S(V ) as a free module, suppose f ∈
H∗(W,S). If f(w′) = 0 for all l(w′) < n, then f(w) is multiple of fw(w) by the GKM
condition on w when l(w) = n. We can subtract the multiple of fw by a polynomial in S(V )
from f to induce f(w) = 0. Therefore for N > deg f , there exists a linear combination F
of fw over S(V ) such that F (w) = f(w) for all l(w) ≤ N . Therefore F = f by the GKM
condition on the rest of the domain.

The linear independence of fw follows directly from the initial conditions of fw, hence fw
form a free module generators of H∗(W,S) over S(V ).

We end our discussion by reinterpreting the classical result on the Betti number of affine
flag variety in the GKM description.
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Corollary 3.5. For an affine flag variety F̃ l with affine Weyl group W̃ ,

hi(F̃ l) = #(w ∈ W̃ | l(w) = i).

Proof. By Theorem 3.1, we have identified the generators of H∗
T̃

(F̃ l) as a free module over

S̃, namely fw, ∀w ∈ W̃ . From the isomorphism H∗(F̃ l) = H∗
T̃

(F̃ l)/S̃+, hi(F̃ l) is equal to
the number of fw with degree equal to i.

Recall that the affine flag varieties F̃ l = G̃/B̃ admits a stratification through Bruhat
decomposition:

F̃ l = qw∈W̃ B̃wB̃/B̃
with each cells being complex affine space. Therefore, Bruhat decomposition alternatively
yields the Corollary 3.5.

4 Equivariant cohomology of affine Springer fibers

Our goal of this section is to analyze the equivariant cohomology H∗T (F̃ l1) as a module
over S. We follow the same notations in the previous section. Let Φ0 be a root system
with respect to the maximal torus T and t be the additional root induced by extended torus
T̃ (C) = T (C)⊗C∗. Then Φ = Φ0 +Zt. Following the results in [3], we can identify the fixed
points and one dimensional orbits of the torus action.

The fixed points of F̃ l1 over T are the elements of the affine Weyl group W̃ . For a

character χ ∈ Ξ(T ), F̃ l
kerχ

1 6= F̃ l1 if and only if χ = α0 ∈ Φ0. If χ = α0 ∈ Φ0, F̃ l
kerχ

1 is the
disjoint union of the affine Springer fibers X1 of sl2 induced by regular semisimple element.
Recall from the theory of affine springer fibers that X1 is an infinite chain of CP1. Therefore
w,w′ ∈ X1 if and only if w′ = sα0+ntw for some n ∈ Z.

From the above description, the localization theorem states:

H∗T (F̃ l1) =
{
f ∈Map(W̃ ,S) | f(w) ≡ f(sα0+ntw) mod α0, ∀α0 ∈ Φ0,∀n ∈ Z,∀w ∈ W̃

}
.

By the isomorphism S = S[t]/(t), the relation f(w) ≡ f(sα0+ntw) mod α0 is equivalent to
f(w) ≡ f(sαw) mod α over S[t]/(t) where α = α0 + nt ∈ Φ. Therefore the description of
H∗T (F̃ l1) can be translated to the root system of affine Weyl group:

H∗T (F̃ l1) =
{
f ∈Map(W̃ ,S[t]/(t)) | f(w) ≡ f(sαw) mod α, ∀α ∈ Φ,∀w ∈ W̃

}
.

From the inclusion i : F̃ l1 → F̃ l, we obtain the following commutative diagram:

H∗
T̃

(F̃ l) H∗
T̃

(F̃ l1) HT̃ (W̃ )

H∗T (F̃ l) H∗T (F̃ l1) HT (W̃ )

H∗(F̃ l) H∗(F̃ l1)

7



where the second row is the quotient of the first row by t through localization theorem. In
the remaining section, we may observe the image of generators fw described in Theorem 3.1
and prove the following theorem.

Theorem 4.1. Given rank N of affine Weyl group W̃ ,

hi(F̃ l) = hi(F̃ l1)

for all i < N .

We first suggest the following lemma essential for the proof.

Lemma 4.2. The images of {fw | l(w) < N} in H∗T (F̃ l1) generate a free module over S
which contains every elements of degree less than N .

Proof. By the description of fw given in Theorem 3.1, i∗(fw) is indeed free over S. For
w ∈ W̃ with reduced expression w = s1s2 · · · sn, consider the first m = min(n,N) reflections,
namely s1s2 · · · sm. Let αi be the simple root of the reflection si. Since the proper subset of
the simple roots of affine Weyl group span a lattice with positive definite bilinear form, the
lattice spanned by αi for i = 1, 2, · · · ,m remains the same rank even after quotienting out
by t. (Notably, span of t is the kernel of the bilinear form given by the affine Weyl group.)
Therefore, α is distinct in S[t]/(t) for all reflections sα such that sαs1s2 · · · sm < s1s2 · · · sm.

Suppose f ∈ Map(W̃ , S[t]/(t)) is an element of H∗T (F̃ l1) with degree less than N . As in
the proof of Theorem 3.1, we proceed by subtracting f by the linear combination of i∗(fw)
inductively. Starting from the identity element, we subtract multiple of i∗(f1) to induce
f(1) = 0. Suppose we have obtained f(w) = 0 for all w ∈ W̃ with l(w) < n. Then for all
element with reduced expression w′ = s1 · · · sn, f(w′) is the multiple of

∏
sαw̄′<w̄′

α where
w̄′ = s1 · · · sm. This is because α ∈ Φ with sαw̄

′ < w̄′ are all distinct in S[t]/(t). Since
deg f < N , f(w′) is either multiple of i∗(fw′)(w

′) or 0. Therefore, f(w′) can be eliminated
by the multiple of i∗(fw′). Consequently, we can express f as a linear combination of the
images of fw.

Proof of Theorem 4.1. Localization theorem induces H∗T (F̃ l1) as a free module over S[t]/(t)
with each generators homogeneous of degree i. The number of generators of degree i is equal
to hi(F̃ l1). By Lemma 4.2, {i∗(fw) | l(w) < N} and generators of H∗T (F̃ l1) of degree less than
N span the same space over S[t]/(t). Therefore, the number of generators of degree i < N is
the number of elements of degree i in {i∗(fw) | l(w) < N} which proves the theorem.

Indeed there is a counterexample where Theorem 4.1 does not hold for i = N . If we
consider the affine Springer fibers F̃ l1 of sl(3), h2(F̃ l1) turns out to be infinite while h2(F̃ l)
is finite.

5 Ring structure of equivariant cohomology

In the previous sections, we have investigated the module structure of the equivariant
cohomology over polynomial ring of characters. In this section, we provide the ring structure
of the equivariant cohomology of affine flag variety. We would like to mention the classical
result below which explicitly describes the ring structure of equivariant cohomology of the
flag varieties.
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Proposition 5.1. (Borel Description [6]) For a compact semisimple Lie group G and a
maximal torus T , we have

H∗T (G/T ) = S⊗SW S

where W is a Weyl group and S is a polynomial ring of characters.

Recall Section 3 where we had an isomorphism H∗T (G/T ) ∼= H∗(W,S) for a Coxeter
system (W,S) of a flag variety. The explicit mapping K : S ⊗SW S → H∗(W,S) is given [6]
by

K(p⊗ q)(w) = p(wq)

for p, q ∈ S and w ∈ W . Before diving directly into the affine flag variety, we first digest
the ideas behind the proof of Proposition 5.1. These involve the following operations on
H∗(W,S).

Define an action of w ∈ W on H∗(W,S) by w · f(v) = f(vw−1). Since w · f also satisfy
GKM condition, this induces well defined group action on H∗(W,S). Consequently, we can
define the following operations analogous to the differentiation in Schubert polynomials.

Definition 5.2. For a positive root α ∈ Π, we define the following differentiation on f ∈
H∗(Γ).

∂αf(w) =
f(w)− f(wsα)

−wα
.

It is an easy check that this operation is well defined with the property that ∂2
α = 0.

Lemma 5.3. Ring homomorphism L : S⊗Q S→ H∗(W,S) defined by

L(p⊗ q)(w) = p(wq)

is surjective.

Proof. Let f ∈ H∗(W,S) where f is a homogeneous. Since H∗(W,S) is a graded ring, we
can proceed by induction on the degree of f , namely n.

When n = 0, then f is in the image of L. Suppose every element of H∗(W,S) with degree
less than n is contained in the image. We use the strategy of summing over the W action
on f .

For α ∈ Π, deg ∂αf = n − 1. By induction hypothesis, ∂αf is contained in the image of
L which implies that f − sα · f is contained in the image. Consequently, for any w ∈ W , we
have w · f − wsα · f contained in the image. Since reflections generate the Weyl group, we
have that f − w · f is contained in the image for all w ∈ W .

Since
∑

w∈W w · f is constant over the action of W ,
∑

w∈W w · f is a constant function
and hence an element in S. From the fact that f is a linear combination of

∑
w∈W w · f and

f − w · f , f is also in the image of L.

The following definition is useful for the proof of Proposition 5.1.

Definition 5.4. For a root α ∈ Φ, we define the following differentiation Dα on p ∈ S.

Dαp =
p− sαp
−α

.
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Proof of Proposition 5.1. Since we have a surjection L, it is sufficient for us to identify the
kernel of L as an ideal I generated by {h⊗ 1− 1⊗ h | ∀h ∈ SW}.

Suppose
∑
pi ⊗ qi is contained in the kernel of L. We again proceed by the induction

on n, namely the degree of
∑
pi ⊗ qi. Since initial condition is trivial, suppose the kernel

contained in I for degree less than n. L(
∑
pi ⊗ qi) = 0 is equivalent to

∑
pi(wqi) = 0 for

all w ∈ W . Therefore, for positive root α, L(
∑
pi ⊗ Dαqi) = 0 and induction hypothesis

implies that
∑
pi ⊗ (qi − sαqi) is contained in I. As in the proof of Lemma 5.3,

∑
pi ⊗ qi is

a linear combination of
∑
pi⊗ (

∑
w∈W wqi) = 0 and

∑
pi⊗ (qi−wqi). Therefore, the kernel

of L is I which proves the proposition.

In the remaining section, we follow the same notations about Coxeter groups used in the
previous sections. Let T̃ be an extended torus with the root system Φ = Φ0 +Zt of W̃ . Since
t is in the kernel of the Coxeter bilinear form <,>, t is invariant under W̃ action. Recall
that W̃ is a subgroup of affine transformations Aff(V ) for a Euclidean space V spanned by
roots Φ0. The reflection sα,n := sα+nt is equivalent to the reflection with respect to the affine
hyperplane Hα,n = {λ ∈ V |< λ, α >= n}. Consult Chapter 4 of [7] for the complete details.

Under this representation of affine Weyl group, let Λ be the lattice spanned by Φ∨0 =
{α∨ = 2α/ < α, α >| α ∈ Φ0}. Then W̃ = Λ oW where Λ is the translation by the lattice
element and W is the Weyl group generated by the reflections through the origin. Hence W̃
induces an action on the lattice Λ. By averaging the function f ∈Map(W̃ , S̃) over the Weyl
group W we can reduce the equivariant cohomology of affine flag variety to the equivariant
cohomology of affine Grassmannians. Therefore, we first investigate the ring structure of
affine Grassmannians.

5.1 Equivariant cohomology ring of affine Grassmannian Gr

Given the extended torus action T̃ on Gr, the set of fixed points of Gr is the lattice
Λ. Likewise for a character χ ∈ Ξ(T̃ ), Grkerχ 6= GrT̃ if and only if χ ∈ Φ. In particular,
Grkerχ is union of CP1 connecting λ and sα,nλ if χ = α+nt ∈ Φ. Therefore, the localization
theorem yields

H∗
T̃

(Gr) =
{
g ∈Map(Λ, S̃) | g(λ) ≡ g(sα,nλ) mod α + nt, ∀α ∈ Φ0,∀n ∈ Z

}
.

Recall from the theory of Weyl group that the subalgebra of S fixed by Weyl group W is
a polynomial ring SW [7]. Let {d1, · · · , dn} be the degrees of the generators of polynomial
ring SW . Ginzberg [2] proved that the cohomology ring of affine grassmannian H∗(Gr), is
the polynomial ring generated by the elements of degree di − 1. From the isomorphism of S
modules

H∗
T̃

(Gr) ∼= H∗(Gr)⊗Q S[t]

induced from fibration (Gr × ET̃ )/T̃ → ET̃/T̃ with fiber Gr, we can anticipate H∗
T̃

(Gr) to
be a polynomial ring. The following theorem indeed proves this speculation and specifies
the generators of H∗

T̃
(Gr) as a polynomial ring under GKM description.

Theorem 5.5. For Gi ∈ SW , gi ∈Map(Λ, S̃) defined by

gi(λ) =
λGi −Gi

t

10



is an element in H∗
T̃

(Gr). For a choice of algebraically independent generators G1, · · ·GN of

SW , g1, · · · , gN are algebraically independent and we have the following ring isomorphism

H∗
T̃

(Gr) ∼= S⊗Q Q[g1, · · · , gN ].

Proof. Recall α∨ = sα,1sα ∈ W̃ . For any coroot α∨ = 2α
<α,α>

of a root α ∈ Φ0, observe

α∨β = β + 2<β,α>
<α,α>

t as an action of W̃ on Φ by direct computation. Hence λGi ≡ Gi mod t

for all λ ∈ Λ which well defines gi. To prove gi ∈ H∗
T̃

(Gr), we only need to check GKM

condition. Let Ḡi ∈Map(Λ,S) such that Ḡi(λ) = λGi. Then we have

Ḡi(sα,nλ) = sα,nλsαGi = sα,nḠi(λ)

from the fact that sαGi = Gi. From Ḡi(sa,nλ) ≡ Gi(λ) mod α + nt, Ḡi satisfies the GKM
condition. Therefore, gi is an element of H∗

T̃
(Gr).

Now to prove the rest of the theorem, we suggest the following lemma.

Lemma 5.6. Suppose q ∈ S ⊂ S[t] is invariant under the action of W̃ . Then q ∈ C.

Proof. Since the alcove of the affine Weyl group in V is a compact simplex, q attains maxi-
mum and minimum. If q is invariant under the action of W̃ , then the functions q restricted to
every alcoves are the same since W̃ acts transitively on the alcoves. Therefore, q is bounded
in V which is only possible when q is a constant function in C.

Using the lemma above we can proceed to the following lemma.

Lemma 5.7. Let x1, · · · , xN be the simple roots of Φ0 so that S[t] = Q[x1, · · · , xN , t]. Then
x1, · · ·xN , t, Ḡ1, · · · , ḠN are algebraically independent in H∗

T̃
(Gr).

Proof. Notice that x1, · · ·xN , t is contained in H∗
T̃

(Gr) through the inclusion of S[t] in

H∗
T̃

(Gr) given by localization theorem. Suppose
∑

i0,i1,··· ,iN≥0 qi0,i1,··· ,iN t
i0Ḡi1

1 · · · Ḡ
iN
N = 0

where qi0,i1,··· ,iN ∈ S. It is sufficient to show that qi0,i1,··· ,iN = 0 for all i0, i1, · · · , iN ≥ 0.
We proceed by induction on deg q = maxi0,i1,··· ,iN≥0 deg qi0,i1,··· ,iN . Initial condition when
deg q = 0, is trivial from definition: t, Ḡ1, · · · , ḠN are algebraically independent over C.

Notice that
∑
qi0,i1,··· ,iN t

i0Ḡi1
1 · · · Ḡ

iN
N = 0 if and only if

∑
qti0λ(Gi1

1 · · ·G
iN
N ) = 0 for all

λ ∈ Λ.(we omit the subscripts of q for brevity.) Since Gi is invariant under W and W̃ =
Λ oW , we have

∑
qti0w(Gi1

1 · · ·GiN
n ) = 0 for all w ∈ W̃ . Therefore,

∑
qti0Ḡi1

1 · · · Ḡ
iN
N = 0

if and only if
∑

(wq)ti0Gi1
1 · · ·G

iN
N = 0 for all w ∈ W̃ . Then

∑
(Dα+ntq)t

i0Gi1
1 · · ·G

iN
N = 0

exploits the fact that Dα+ntq = 0 for all roots α+nt ∈ Φ by induction hypothesis. Therefore,
q is invariant under the the action of W̃ , yielding qi0,··· ,iN ∈ C from Lemma 5.6. This is the
initial case of induction.

Lemma 5.7 implies the algebraic independence of x1, · · · , xN , t, g1, · · · , gN . Therefore,
there exists an injection

S[t]⊗Q Q[g1, · · · , gN ] ↪→ H∗
T̃

(Gr).

However, the module structure

H∗
T̃

(Gr) ∼= H∗(Gr)⊗Q S[t],

implies that the injection above is indeed isomorphism.(For every degree, the dimension of
a vector space over Q is identical.) Therefore, the injection is an isomorphism.
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Having the equivariant cohomology ring of affine Grassmannian Gr, we obtain the equiv-
ariant cohomology ring of affine flag variety F̃ l in the following subsection.

5.2 Equivariant cohomology ring of affine flag variety F̃ l

The following theorem describes the ring structure of the equivariant cohomology of affine
flag variety.

Theorem 5.8. The ring homomorphism

K : S⊗SW H∗
T̃

(Gr)→ H∗
T̃

(F̃ l)

defined by K(p⊗ g)(λw) = ((λw)p)g(λ) for λ ∈ Λ, w ∈ W is an isomorphism.

From W̃ = Λ oW , any element of W̃ is uniquely written as the product λw.

Proof. As in the proof of Proposition 5.1, we proceed in two steps.
We first prove the surjectivity of the map

L : S⊗Q H
∗
T̃

(Gr)→ H∗
T̃

(F̃ l)

which factors through K. We proceed by the induction on the degree of f ∈ H∗
T̃

(F̃ l). The
initial condition is trivial. For a root of Weyl group α ∈ Φ0, we consider the derivative ∂αf .
Then by induction hypothesis, ∂αf is contained in the image. Additionally,

∑
w∈W w · f =∑

w∈W f(λw) is the image of F =
∑

w∈W f(λw) ∈ H∗
T̃

(Gr). Therefore f is in the image of L
by the same logic in the proof of Lemma 5.3.

It is now sufficient to prove that the kernel of L is generated by {h⊗1−1⊗h | h ∈ SW}.
Indeed if L(

∑
pi ⊗ gi) = 0, then L(

∑
Dαpi ⊗ gi) = 0 for all α ∈ Φ. Therefore we only need

to prove that
∑

(
∑

w∈W wpi)⊗ gi is generated by h⊗1−1⊗h by the same logic the proof of
Proposition 5.1. From

∑
w∈W wpi ∈ S(V )W , we obtain what is desired. Hence the theorem

is proven.

Theorem 5.8 yields the following corollaries.

Corollary 5.9. For an extended torus T̃ action on affine flag variety F̃ l and affine Grass-
mannian Gr, we have the following isomorphism of rings.

H∗
T̃

(F̃ l) ∼= S[t]⊗S[t]W H∗
T̃

(Gr)

∼= H∗T (Fl)⊗H∗T (pt) H
∗
T̃

(Gr).

Proof. The first isomorphism is immediate from Theorem 5.8. The second isomorphism is
also immediate from Proposition 5.1.

In fact, the fibration
F̃ l→ Gr

with fiber Fl = G/T directly induces the isomorphism of Q-vector space.

H∗(F̃ l) ∼= H∗(Fl)⊗Q H
∗(Gr)

from associated Leray spectral sequence. This classical result is compatible with our corol-
lary.
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6 Furthermore: Equivariant Cohomology of Affine Springer

Fibers F̃ l1 of sl(2)

For an affine Springer fibers F̃ l1 of sl(2), we have a complete description of the equivariant
cohomology over the maximal torus T action as a ring. Since F̃ l1 of sl(2) is the chain of
projective lines, fixed points of T are the elements of the Weyl group of type A1: Zo{+,−},
and one dimensional orbits are union of projective lines connecting (n,+), (n + 1,−) or
(n,+), (n,−) for all n ∈ Z. Therefore using the localization theorem we can obtain the
following theorem by direct computation.

Theorem 6.1. Suppose F̃ l1 is an affine Springer fiber of sl(2) with maximal torus T . Then,
we have

H∗T (F̃ l1) ∼= C[[xw]]w∈Zo{+,−}/(xwxw′)w 6=w′ .

The proof involves computing the equivariant cohomology under GKM condition which
we will not describe in detail.

Computing the equivariant cohomology of general affine Springer fiber is not quite simple
as in the case of affine Springer fibers of sl(2). However there seems to exist a property which
connects the cohomology of affine flag variety and of affine Springer fiber. We leave this as
conjecture originally proposed by Professor Bezrukavnikov.

Conjecture 6.2.
H∗(F̃ l)→ H∗(F̃ l1)Λ

is surjective.

Using Theorem 6.1 and the GKM description of the equivariant cohomology of affine flag
variety, the conjecture is indeed true in the case of the affine Springer fibers of sl(2). We
would like to suggest this conjecture as a potential research project to readers.
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