
Classification of Formal Duality with an Example in
Sphere Packing

UROP+ Final Paper
Jianqiao Xia

Mentor: Soohyun Park
Project suggested by Henry Cohn

August 29, 2016

Abstract

We study the notion of formal duality, which was introduced and developed by
Cohn, Kumar, Reiher, and Schürmann through their study of ground state configura-
tions of particles in Euclidean space. Here, we prove some results in the classification
of formally dual pairs in cyclic groups and products of cyclic groups. For example, we
prove the non-existence of primitive formally dual pairs in a cyclic group of the form
Z/2kZ for k ≥ 2. Together with Schüler’s result on cyclic groups with odd prime order,
this completes the classification of formally dual pairs in a cyclic group of prime power
order. Finally, we use orthogonality relations to consider the existence of formally dual
pairs in Conway’s conjectural 5 dimensional packings.

1 Introduction

The notion of formal duality is inspired by Cohn, Kumar and Schürmann’s numerical result
on ground state configurations of particles in Euclidean space (see [2]). They considered
the Gaussian function Gc := exp(−πcr2) as a potential function and analyzed the ground
state configurations under fixed point density. The interesting fact they found is that the
ground state configurations for Gc and G1/c seem to be “formally” dual, a generalized no-
tion of the duality of a lattice. The key idea about formal dual configurations P , Q is that
for any function f , the potential energy of P with potential function f is the same as the
energy of Q with potential function f̂ , the Fourier transform of f . The Poisson summation
formula indicates any lattice and its dual lattice are formally dual. In fact, many non-lattice
configurations also have formal duals, though very rare. It is thus interesting to find such
configurations.

Later, Cohn, Kumar, Reiher and Schürmann [1] provided a solid algebraic foundations for
the theory of formal duality. They reformulated the definition of formal duality for periodic
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packings in the setting of finite abelian groups. In addition, they proved the non-existence
of formal dual pairs in group Z/p2Z, and gave two examples in (Z/pZ)2, the Gauss sum
construction, and Z/4Z, the TITO construction. However, they could not find any other
essentially different formal dual pairs. Therefore they conjectured that all formal dual pairs
can be constructed from the two examples, by inflating the group and taking products.
Therefore they introduced the notion of primitive formal dual pairs, which are those that
cannot be obtained from other pairs using the two methods mentioned. However, in this
paper, we found a formal dual pair in (Z/pkZ)2. Although it is an analogy to the Gauss sum
construction, it is indeed primitive.

By generalizing the proof for Z/p2Z, Schüler proved the non-existence of primitive formal
dual pairs in Z/pkZ for all odd prime p. He gave a restriction on the cyclic group with order
2, that is only Z/22lZ may have primitive formal dual pairs. In this paper, we solve this case
and show that only Z/4Z have primitive formal duals.

We first provide relevant tools and background on formal duality such as basic defini-
tions and weight enumerators [4] in Section 2. We also introduce some structural results
on formally dual pairs through “parametrized” formal dual pairs to obtain “orthogonality”
relations relating formally dual pairs in a subgroup in Section 3.

Then, we discuss some classification of special cases of formally dual pairs in certain spe-
cial cyclic groups and products of cyclic groups in Section 4. We first use the same method
as in the Gauss sum construction from [1] to prove the existence of a primitive formally
dual pair in (Z/pkZ)2. Next, we prove the non-existence of primitive formally dual pairs in
Z/22kZ for k ≥ 2 by analyzing the identities involving weight enumerators and restrictions in
[4] and using the orthogonality relations found earlier. The final main result in this section
is the proof of the nonexistence of primitive formal dual pairs in an arbitrary abelian group
of squarefree order using basic results on formal duality.

The remaining sections have to do with alternative representations of formally dual pairs
and what they may represent in geometric setting (e.g. in sphere packings). Next, we
consider relations between formally dual pairs via representations of formally dual sets as
graphs in Sections 5 and 6. Finally, we analyze the existence of formally dual pairs in
Conways conjectural tight packings in dimension 5 using earlier results on structures of
parametrizable formal dual pairs in Section 7.

2 Definitions and Useful Lemmas

In this section, we provide a clear definition of formal duality, and some useful results in
[1] and [4]. First, we introduce the weight enumerator, which is used to simplify all the
statements in this paper.

Definition 2.1. For a subset T of an (additive) abelian group G, we define the weight
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enumerator: the function νT : G→ N, for each y,

νT (y) = #{(x1, x2)|x1 − x2 = y, x1, x2 ∈ G}. (1)

The weight enumerator describes the difference set T − T with multiplicity. Using this
notation, recall that the dual group of G is the group of homomorphisms G→ C∗, we could
define formal duality in abelian group G as

Definition 2.2. Let S be a subset of G and T be a subset of its dual group Ĝ. Then we say
S, T are formally dual to each other if for each y ∈ Ĝ∣∣ 1

|S|
∑
x∈S

〈x, y〉
∣∣2 =

1

|T |
νT (y). (2)

In [1], the authors proved the symmetry of this definition, so one can interchange S, T in
this definition. Also notice that for an abelian group G, Ĝ is sometimes identified as G. For
example, let G = Z/nZ× Z/mZ, x = (u, v),and y = (w, z). Then the relation

〈x, y〉 = ζuwn ζvzm , (3)

identifies G with Ĝ, where ζn, and ζm are primitive n-th, and m-th roots of unity respectively.
Furthermore, a restriction relating the cardinality of set S, T is given in [1]

Lemma 2.1. Let S be a subset of G and T be a subset of Ĝ. If S, and T are formally dual,
then

|S| · |T | = |G| = |Ĝ|. (4)

By expanding the left side of Definition 2.2, and using |z|2 = zz̄, Schüler (see [4]) proves
the following lemma:

Lemma 2.2. Let S be a subset of G, and T a subset of Ĝ, then S, T are formally dual to
each other if and only if for each y ∈ Ĝ,

|S|2

|T |
νT (y) =

∑
v∈G

νS(v)〈v, y〉. (5)

Now let us consider the case where G = Z/nZ. Then we could identify G with Ĝ, by set-
ting 〈x, y〉 = ζxyn . Based on the above equation, together with results in field automorphism,
it is proved in [4] that

Lemma 2.3. In Z/nZ, if T is formally dual to some subset of Z/nZ, then for any y ∈ Z/nZ,
let d = gcd(y, n),

νT (y) = νT (d). (6)

This lemma allow us to focus on νT (d) where d is a divisor of n.
In addition to above conditions on formal dual pairs, there are two main methods de-

scribed in [1] to construct formal dual pairs from given ones:
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1. Let S1, S2, T1 and T2 be subsets of G1, G2, Ĝ1 and Ĝ2, respectively. Suppose (Si, Ti) are
formally dual pairs, for i = 1, 2, then S1 × S2 and T1 × T2 are formally dual as subsets
of G1 ×G2, Ĝ1 × Ĝ2.

2. Let H be a subgroup of G. Then there is a natural restriction map φ : Ĝ→ Ĥ whose
kernel the annihilator of H. If S ⊂ H and T ⊂ Ĥ are formally dual, then S ⊂ G and
φ−1(T ) ⊂ Ĝ are formally dual.

The two methods above motivate the notion of primitive formal duals, which are defined as

Definition 2.3. Let S be a subset of G and T be a subset of Ĝ, then we say S, T are
primitive formal dual sets if they are formally dual and S is not contained in a coset of a
proper subgroup of G, T is not contained in a coset of a proper subgroup of Ĝ.

3 Structures of Parametrizable Formal Dual Pairs

From Definition 2.3, we can see that the notion of formal duality is only determined by
the weight enumerator function. Two sets with the same weight enumerator can not be
distinguished. In this section, we study the relations of weight enumerators of formally dual
pair S, T . We find a nice symmetric result for group (Z/pZ)n, where p is a prime.

The group G = (Z/pZ)n can also be equipped with the structure of an Fnp space. We
find an identity for the sum of the weight enumerator function over a subspace of Fnp .

3.1 Orthogonal equation

For a formal dual pair (S, T ) in (Z/pZ)n, where p is a prime, there are some linear equations
in Lemma 2.2 relating the weight enumerators νS and νT to each other. However, these
relations usually involve complex numbers and are hard to compute. We use an averaging
method to give a relation with only integer coefficients. Here is our main result:

Theorem 3.1. If S, T are formally dual in G = (Z/pZ)n, then for any y ∈ G, we have

|S|2

p
(1 +

(p− 1)νT (y)

|T |
) =

∑
a∈G,a·y=0

νS(a). (7)

Proof. Let ζ = e2πi/p. Given a formally dual pair S, T , we have by Lemma 2.2 that∑
a∈G

νS(a)ζa·y =
|S|2

|T |
νT (y), (8)

for all y ∈ G. Since ζp = 1, we can write the left side as a0 + a1ζ + · · · + ap−1ζ
p−1. The

coefficients are
ak =

∑
a∈G,a·y=k

νS(a). (9)
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Recall that we have νT (ky) = νT (y) for all y ∈ G, and k 6= 0. If k 6= 0, we have∑
a·y=k

νS(a) =
∑
a·y=1

νS(ka) =
∑
a·y=1

νS(a). (10)

This means that a1 = a2 = · · · = ap−1. So (8) implies that

a0 + a1 + · · ·+ ap−1 = |S|2 (11)

a0 − a1 =
|S|2

|T |
νT (y). (12)

Thus, we have

a0 =
|S|2

p
(1 +

(p− 1)νT (y)

|T |
). (13)

This is exactly what we want to prove. �

One important corollary is the following:

Corollary 3.2. Let S, T be given as above. Suppose U is a u dimensional subspace in (Fp)n,
and V = U⊥. Then, we have that

pu
∑
x∈V

νS(x) =
|S|2

|T |
∑
y∈U

νT (y). (14)

Notice that the equation is clearly true for U = {0}, and the u = 1 case is Theorem 4.1.
For general U , this follows from summing some equations like (7).

Proof. We consider (7) as a equation for y. Adding such equations over U , the left hand side
is

|S|2

p
· pu +

(p− 1)|S|2

p|T |
∑
y∈U

νT (y). (15)

The right hand side is ∑
y∈U

∑
a·y=0

νS(a) =
∑
a∈G

νS(a)
∑

y∈U,y·a=0

1 (16)

If a ∈ V , all the y ∈ U are orthogonal to a. So
∑

y∈U,y·a=0 1 = |U | = pu. If a /∈ V , we can
write a = α + β with α ∈ U, β ∈ V . Then the y ∈ U that are orthogonal to a, are the y
orthogonal to α 6= 0. These y forms a u− 1 dimensional subspace in U . There are pu−1 such
y. From these observations, we have

|S|2

p
· pu +

(p− 1)|S|2

p|T |
∑
y∈U

νT (y) = pu
∑
x∈V

νS(x) + pu−1
∑
x/∈V

νS(x)

= (pu − pu−1)
∑
x∈V

νS(x) + pu−1
∑
x∈G

νS(x)

=
p− 1

p
· pu

∑
x∈V

νS(x) + pu−1|S|2.

(17)

Comparing both sides of the equation, we get the intended result. �
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Using this corollary, we can analyze some specific kind of subsets, Specifically, we can
analyze those which can be parametrized by a subgroup. More formally, in G = (Z/pZ)n =
U × V , where U, V are subgroups of G, we call S parametrized by U if S = {(u, au), u ∈ U}.
For such an S, notice that U is a subspace of G, and U, V are orthogonal complements to
each other. Note that νS vanishes on {0} × V except at 0. Thus, it follows from the above
corollary that

∑
y∈U×{0} νT (y) = |T | = νT (0). So, νT vanishes on U × {0} except at 0.

Combining this with the cardinality of T , T must be parametrized by V . In the following
section, we give a more general result.

3.2 Orthogonal relation

Given a general abelian group G, we can always decompose it as a product of cyclic groups,
say G = Z/n1Z×Z/n2Z×· · ·Z/nkZ. In this section, we will prove an “orthogonal” structure
for a specific kind of formally dual pair. The main result is that if one of S, T can be
parametrized, then the other must also be parametrized on an “orthogonal” subspace. In
[3], Conway hypothesized that tight packings fibers over lower dimensional tight packings.
Thus almost all tight packings in Conway’s list are parametrizable. So results in this section
can reduce the difficulty of finding formal dual sets for tight packings.

Theorem 3.3. Let (S, T ) be a formally dual pair in G, U = Z/n1Z × Z/n2Z × · · ·Z/nsZ,
and V = Z/ns+1Z× · · ·Z/nkZ be abelian groups. If S = {(u, au)}u∈U , then T = {bv, v}v∈V .

In the following lemma, we suppose ni(1 ≤ i ≤ s) are s positive numbers. And consider
group P = Z/n1Z × Z/n2Z × · · ·Z/nsZ. We consider primitive roots ζi = e2πi/ni for each
1 ≤ i ≤ s. We use xα to represent monomial xβ11 x

β2
2 · · ·xβss for β ∈ P . Similarly, we use ζβ

to represent ζβ11 ζ
β2
2 · · · ζβss .

Lemma 3.1. Let f =
∑n

i=1 x
αi, where n = Πs

i=1ni, and αi ∈ P . If f vanishes on all
x = ζα, α ∈ P , and α 6= 0, then f = Πs

k=1(1 + xi + · · ·+ xni−1i ).

Proof. We prove this by induction on s, which is the number of variables. For s = 1, by
assumption, f is a sum of n1 monomials, and f has root ζk for 1 ≤ k ≤ n1. So this means
f is divisible by Πn1

k=1(x− ζk) = 1 + x+ x2 + · · ·+ xn1−1. Since f is a sum of n1 monomials
with degree smaller than n1, f must equal to this polynomial.

Now suppose we have proven the case of s− 1 variable polynomials. Then we have,

f(x) =

n1−1∑
k=0

xk1fk, (18)

for all f satisfying the conditions given in the lemma. Here each fk is a polynomial with
variable x2, x3, · · · , xs. For each α = (α2, α3, · · · , αs) ∈ Z/n2Z× · · ·Z/nsZ, α 6= 0, we know
that f vanishes on ζ(a,α). Fixing (x2, · · · , xs) = ζα, and considering (18) as a polynomial of
x1, it has n1 roots, namely x1 = ζk1 , 0 ≤ k ≤ n1 − 1. Since the degree of f as a polynomial
of x1 is at most n1 − 1, we must have f = 0.
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This means that fk vanishes on ζα for each k. Using the result for s− 1 variable polyno-
mial, we have that each fk = Πs

l=2(1 + xl + · · · + xnl−1l ). Combining this with (18), we get
our intended result. �

Using this lemma, we are able to prove Theorem 3.3.

Proof. The assumption for S given in the theorem implies that νS(0, 0, · · · , 0, y) = 0 for all
nonzero y ∈ V . Also the assumption in Theorem 3.3 implies that |S| = n1n2 · · ·ns, with
|T | = ns+1 · · ·nk. By Definition 2.2, we have

∣∣∑
a∈T

ζay
∣∣2 =

|T |2

|S|
νS(y). (19)

Let g be the k variable polynomial of the form

g(x) =
∑
α∈T

xα. (20)

Let f be the k − s variable polynomial

f(xs+1, · · · , xk) = g(1, 1, · · · , 1, xs+1, · · · , xk). (21)

For each nonzero y ∈ V , f(ζy) = 0 if νS(0, 0, · · · , 0, y) = 0. By Lemma 4.1, we have that
f = Πk

i=s+1(1 +xi + · · ·xni−1i ). Since |T | = ns+1ns+2 · · ·nk, from the definition of f , we must
have T = {bv, v}v∈V . �

4 Classification of Formal Duals

In this section, we will first give an example of primitive formal dual pair in (Z/pkZ)2. Then
we prove the non-existence of primitive formal dual pairs in Z/2kZ. Next, we give restrictions
on formal duals in the group (Z/pZ)2. Finally, we use divisibility to show that abelian group
with square free order has no primitive formal dual pairs.

4.1 A Primitive Formal Dual Pair in (Z/pkZ)2

We use the same method as the Gauss sum construction in [1] to give a formal dual pair in
G = (Z/pkZ)2, where p is an odd prime. First, we prove a lemma:

Lemma 4.1. Let p be an odd prime, ζ = e
2πi

pk be a pk-th root of unity. For a, b ∈ G, let α, β
be natural numbers such that pα||a, pβ||b. Then

∣∣∑
n∈G

ζan
2+bn

∣∣2 =

{
0 β < α
pk+α β ≥ α

(22)
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Proof. We expand the left side using |z|2 = zẑ, and change the order of summation. In the
equations below, we use t = n−m.∣∣∑

n∈G

ζan
2+bn

∣∣2 = (
∑
n∈G

ζan
2+bn)(

∑
n∈G

ζ−an
2−bn)

=
∑
n,m

ζa(n
2−m2)+b(n−m)

=
∑
t∈G

∑
m∈G

ζa(t
2+2mt)+bt

=
∑
t∈G

ζat
2+bt

∑
m∈G

ζ2atm

= pk
∑
pk−α|t

ζat
2+bt

= pk
∑

0≤t′<pα
ζbp

k−αt′

(23)

Here we used t = pk−αt′ in the last step and notice that at2 is divisible by pk for t divisible
by pα. In the last expression, notice when β < α, bpk−α is not a multiple of pk, therefore we
get 0, otherwise we get pk+α. �

The following pair
((a, b), (c, d)) = ζac+bd (24)

makes the group G × G self-dual. So from definition 2.2, the definition of formal dual pair
in (Z/pkZ)2 becomes:

Definition 4.1. Let S, T be subsets of (Z/pkZ)2, then we say S, T are formally dual if and
only if for any (x, y) ∈ (Z/pkZ)2,

∣∣ ∑
(a,b)∈S

ζax+by
∣∣2 =

|S|2

|T |
νT (x, y) (25)

One example is in the case k = 1, (see [1]) where S = {(n, n2)} and T = {(n2, n)} are
formally dual. We will prove that the construction as the one used in [1] is still valid for
k ≥ 2.

Theorem 4.1. Let S = {(n, n2)|n ∈ G} and T = {(n2, n)|n ∈ G}. Then (S, T ) is a
primitive formal dual pair in (Z/pkZ)2.

Proof. The theorem contains two parts: one is that S, T are formally dual, the other is that
the pair is primitive. From the construction, we see that |S| = |T | = pk, so we need for any
(a, b) ∈ G×G, ∣∣∑

n∈G

ζan
2+bn

∣∣2 = pkνT (a, b). (26)
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νT (a, b) is the number of solutions for following equations,

n−m ≡ a(modpk) (27)

n2 −m2 ≡ b(modpk) (28)

We use the same notion of α, β in Lemma 3.1. Clearly if β < α, then there is no solution. If
β > α, then the above second equation becomes

n+m ≡ b(modpk−α). (29)

Combining equation (27), (29), it is easy to check that the number of solutions is pα. This
coincides with the definition of formal duality.

Now we show that the pair is primitive. First, neither of S, T is contained in a proper
subgroup. Otherwise, by symmetry, we assume T is contained in a subgroup H. Since

(x, x2), (y, y2), (x+y, (x+y)2) ∈ T , we have (0, 2xy) ∈ H, therefore by taking x = 1, y = pk+1
2

,
(0, 1) ∈ H. Since (1, 1) ∈ T ⊂ H, (1, 0) = (1, 1)− (0, 1) ∈ H and therefore H = G×G.

Earlier in the paper, we found a Gaussian construction for (Z/pkZ)2, and showed that
it is primitive. This only means that the construction cannot be obtained through inflation
of smaller pairs. Now we show that it also cannot be obtained by taking products. Recall
that the “Product Construction” says: If S1, T1 are formally dual in group G1, and S2, T2
are formally dual in G2, then S1 × S2 and T1 × T2 are formally dual in G1 ×G2.

From now on let G = (Z/pkZ)2, S = {(n, n2)}, T = {(n2, n)}. We shall prove that there
is no Gi, Si, Ti (i = 1, 2) as above such that G = G1 × G2, T = T1 × T2, and S = S1 × S2.
Also G1, G2 non-trivial.

The following theorem assures that Gi
∼= Z/pkZ. Let An = Z/pnZ.

Theorem 4.2. If G ∼= Aai×Aa2×· · ·Aas = P and each ai > 0, then s = 2 and a1 = a2 = k.

Proof. Our main observation is that isomorphism preserves the order of each element. First,
we say that ai ≤ k. Since for each i, there is an element with order pai , and orders in G is
not greater than pk, we must have ai ≤ k. Then we say that there exists an i, ai = k. Let
a = max{ai}, then for any element in P , say α = (α1, · · · , αs), we have paα = 0. So the
orders in P is not greater than pa. This means a = k, and there is an i, ai = k.

Without loss of generality, we assume that ai is arranged in ascending order. If there is
another j, aj = k, then we are done. Otherwise, ai < k for i < s. With the same notation
α above, we have pk−1α = (0, 0, · · · , pk−1αs). So α has order pk if and only if αs is coprime
to p. Therefore thereare p2k−1(p− 1) elements with order pk. On the other hand, we notice
that there are pk−1(pk − pk−1) more such elements in G, which gives a contradiction. �
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Now we show that the analogous Gaussian construction is not a product. Otherwise
G = G1 × G2, where Gi is isomorphic to Z/pkZ. (Since we can further decompose Gi to
product of cyclic groups.) We realize Gi as subgroups of G and suppose G1 is generated by
u = (u1, u2), G2 is generated by v = (v1, v2). So by assumption there exists a1, b1, a2, b2 such
that

a1u+ b1v = (1, 0) (30)

a2u+ b2v = (0, 1) (31)

This means (
a1 b1
a2 b2

)(
u1 u2
v1 v2

)
=

(
1 0
0 1

)
. (32)

This is true modulo pk, and so is modulo p. Consider these elements in Fp, we have

(a1b2 − a2b1)(u1v2 − u2v1) = 1(mod p). (33)

Since (n, n2) = (a1n + a2n
2)u + (b1n + b2n

2)v, we have (a1n + a2n
2)u ∈ S1. Similarly,

(a1n
2 + a2n)u ∈ T1 for any n. However, a1, a2 are not both multiples of p, by (33). So both

S1, T1 contain elements with order pk. (for example one of a1 +a2, 2a1 +4a2 is not a multiple
of p). And notice that both of them contains 0 = a1 · 0 + a2 · 02. This means S1, T1 is a
primitive formal dual pair. However, Schüler has proven that there is no primitive pair in
Z/pkZ and we have a contradiction.

�

4.2 Non-existence of Primitive Formal Duals in Z/2nZ
Since any abelian group is a product of some cyclic groups, it is natural to analyze the
existence of primitive formal duals in cyclic groups. Among them, the simplest cases are
Z/nZ, with n been a prime power. If n is an odd prime power, then primitive formal dual
pairs do not exist (see [4]). In the same paper, Schüler gives some restrictions on the case of
Z/2kZ. So we are only left to consider the case k = 2l and |S| = |T | = 2l. In the following
discussion, we always assume l > 1.

By analyzing the identities given in [4], we find that the weight enumerator νT of T can
be solved (see Theorem 3.3). Eventually νT (2α) = 1 for small α, and 0 for large α. And we
will then show that there is no T with that weight enumerator.

We first prove the following lemma.

Lemma 4.2. Suppose T is a subset of Z/2kZ, k = 2l, and |T | = 2l. If νt(2
β) = 1 for all

0 ≤ β < α ≤ l, let Ti = {x ∈ T |x ≡ i(mod 2α)}. Then we have |Ti| = 2l−α for each i.

Proof. We prove it by induction. For α = 1, we have νt(1) = 1. The number of pairs (x, y)
where x−y is odd is equal to the sum

∑
x odd νT (x). By Lemma 2.3, each νT (x) = νT (1) = 1.
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So the sum is 22l−1. On the other hand, the pair is obtained by taking one element in each
of T0 and T1. Since |T0|+ |T1| = |T | = 2l, the quantity equals

2|T0||T1| ≤
1

2
(|T0|+ |T1|)2 = 22l−1. (34)

So the equality holds and |T0| = |T1| = 2l−1 = 2l−α.
Now suppose the lemma holds for α < l. By the induction hypothesis, we have |Ti| = 2l−α.

Here Ti denote the set of numbers in T with residue i modulo 2α = u. For α + 1, let T ′i
denote the set of numbers with residue i modulo 2α+1. Then we have T ′i ∪ T ′i+u = Ti, and
T ′i ∩ T ′i+u = ∅. Note that number φ(2k/2α)νT (2α) = 22l−α−1, it is the number of pairs with
(x, y) in T such that (x− y, n) = 2α. So, we have

22l−α−1 =
∑

0≤i≤2α−1

2|T ′i ||T ′i+u| ≤
∑

0≤i≤2α−1

1

2
(|T ′i |+ |T ′i+u|)2

≤ 1

2
· 2α · (2l−α)2 = 22l−α−1.

(35)

Thus, equality holds and |T ′i | = |T ′i+u|, for each i. This means the statement is true for
α + 1. �

Let us turn to the original problem, the existence of primitive formal dual pairs in Z/2kZ.
In the following discussion, we assume k = 2l, |S| = |T | = 2l, νT (1) = νS(1) and νT (2k−1) =
νS(2k−1) = 0 (see [4], Theorem 4.1 and Example 4.4).

Before trying to solve νT , we state the following result:

Theorem 4.3. ([4], Corollary 3.4) If S, T are formally dual sets in Z/nZ, then for each y,

|S|2

|T |
νT (y) =

∑
e|n

Cn(gcd(y, n), e) · νS(e). (36)

Here
Cn(d, e) =

∑
g|gcd(d,n/e)

µ(n/eg)g, (37)

where µ is the möbius function.

Using this result, together with the assumptions above, we could solve the νT for T that
has a formal dual.

Theorem 4.4. If S, T are formally dual subsets in Z/2kZ, where k = 2l, then νT (2α) =
νS(2α) = 1 for 0 ≤ α ≤ l − 1; 0 for l ≤ α ≤ 2l − 1. Also, νT (0) = |T | = 2l.

Proof. We prove by induction that νT (22l−t) = νS(22l−t) = 0 for each 1 ≤ t ≤ l. First of all,
our assumption implies that the statement is true if t = 1. Assuming that the statement is
true for all 0 < t ≤ n < l, we shall prove the case for n+ 1. Using Theorem 3.2, we have,

2lνT (2x) = 2l − 2xνS(22l−x−1) + 2x−1νS(22l−x) + · · ·+ 20νS(22l−1), (38)

11



for all 0 < x < 2l. Then by our assumption, for all 0 < x < n, all terms of RHS vanishes
except the term 2l. So νT (2x) = 1 for 0 < x < n. This is also true for S, since S and T
satisfy the same assumption. For x = n, we have

2lνT (2n) = 2l − 2nνS(22l−n−1). (39)

The left side is a non-negative multiple of 2l. So νS(22l−n−1) is 0 or 2l−n. If it is 2l−n, we
show there is a contradiction. If there exist at least 3 numbers in S with the same residue
modulo 22l−n−1, then we could assume without loss of generality that they have the form
22l−n−1a, 22l−n−1b and 22l−n−1c. Then at least two of a, b, c have the same residue modulo
2. For example a, b, then 22l−n−1a− 22l−n−1b is a non-zero number that is divisible by 22l−n.
This contradicts our assumption that νS(22l−t) = 0 for all 0 < t ≤ n.

This fact implies that S contains 2l−n pairs ai, ai + 22l−n−1, with 0 ≤ i < 2l−n. And the
2l−n+1 numbers are different elements in S. Now notice that

ai + 22l−n−1 − (aj + 22l−n−1) = ai − aj. (40)

Suppose that (ai − aj, n) = 2d, this means νS(2d) ≥ 2. Since νS(2x) = 1 for x ≤ n − 1, we
have that d ≥ n. Also n < l implies 2l − n − 1 ≥ n, so the 2l−n+1 numbers have the same
residue modulo 2n. Applying our Lemma 3.2 for α = n, we get a contradiction, since each
residue class can only have 2l−n elements. Therefore, νS(22l−n−1) = 0 and the same result is
true for T .

Now the induction process is complete and we have for νS(22l−t) = 0 for 0 < t ≤ l. From
our discussion under equation (38), we also have νS(2t) = 1 for 0 ≤ t ≤ l−1. Here νS(1) = 1
is the assumption. �

Now we show that there is no S ⊂ Z/2kZ that corresponds to νS above. Then we could
conclude that there is no primitive formal dual pairs in Z/2kZ. Since νS(2l) = 0 and |S| = 2l,
we know that S form a complete set of residues modulo 2l. Suppose S = {i + 2lai}. Then
because for each 0 ≤ k ≤ 2l − 1, 1 + k · 2l is odd, then νS(1 + k · 2l) = 1. Notice that,

νS(1) + νS(1 + 2l) + · · ·+ νS(1 + 2l(2l − 1)) = 2l. (41)

From the structure of S, there are exactly 2l pairs with difference the form 1 + k · 2l. And
they are 1 + 2l(ai+1 − ai). This implies that

{1 + k · 2l|0 ≤ k ≤ 2l − 1} = {1 + 2l(ai+1 − ai)}2
l−2
i=0 ∪ {1 + 2l(a0 − a2l−1 − 1)}. (42)

(these elements are understood as elements in Z/2kZ) and

{k|0 ≤ k ≤ 2l − 1} = {ai+1 − ai|0 ≤ i ≤ 2l − 2} ∪ {a0 − a2l−1 − 1}(mod 2l) (43)

By taking the sum of all the elements in both sets, we get

(2l − 1)2l−1 = −1(mod 2l). (44)

This is a contradiction for l > 1.

12



4.3 Conditions on Formally Dual Pairs in (Z/pZ)2

Although it is difficult to generalize the work above to Z/nZ for arbitrary n, we can make
some progress on product of groups. And among them the simplest case is (Z/pZ)2. In
[1], the authors give an primitive formal dual pair using Gaussian construction. Although
we could not solve the case completely, we find some restrictions. In [2], they prove that
invertible linear transformations preserve formal duality, in the setting of Rn. This fact can
be proven directly in abelian groups G = (Z/pZ)2, for p prime. In fact, we have the following
result:

Theorem 4.5. Let φ : G → G be a transformation such that φ(x, y) = (ax + by, cx + dy),
with ad− bc 6= 0 (mod p). Then φ is invertible. Let S, T be formal dual subsets of G. Then
there exists a invertible transformation ψ such that φ(S) and ψ(T ) are formally dual.

Proof. In fact, from the assumption in the theorem, we could let u = (ad − bc)−1. Define
ψ : G → G such that ψ(x, y) = (udx − ucy,−ubx + uay). Then it is easy to check that ψ
is invertible. In fact, if we see elements in G as a column vector, then the matrix associated
with ψ is the inverse transpose of the matrix associated with φ.

Suppose S, T are formally dual. Let S ′ = φ(S), T ′ = ψ(T ). It is easy to verify that
|S ′| = |S|, |T ′| = |T |. In addition, for α ∈ G,

νT ′(α) = #{(t1, t2) ∈ T ′2, t1 − t2 = α} = #{(t1, t2) ∈ T 2, t1 − t2 = ψ−1(α)}. (45)

So

νT ′(α) = νT (ψ−1(α)) (46)

νS′(α) = νS(φ−1(α)) (47)

In order to prove that T ′ and S ′ are formally dual, we can use Lemma 2.2 for T, S, which
shows

|S|2

|T |
νT (α) =

∑
β∈G

νS(β)〈β, α〉. (48)

Then, we have

|S ′|2

|T ′|
νT ′(α) =

|S|2

|T |
νT (ψ−1(α))

=
∑
β∈G

νS(β)〈β, ψ−1(α)〉

=
∑
β∈G

νS(φ−1(β))〈φ−1(β), ψ−1(α)〉

=
∑
β∈G

νS′(β)〈β, α〉.

(49)

So S ′, T ′ are formally dual. Note that we used the fact 〈φ−1(β), ψ−1(α)〉 = 〈β, α〉, which can
be verified directly from the definition of ψ, φ. �
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Eventually we give the following restriction.

Theorem 4.6. If S and T are formally dual in the group (Z/pZ)2, where p is an odd prime,
then under two invertible transformations, we could write S = {(i, ai)} and T = {(bi, i)}, or
one of S, T = (Z/pZ)2, the other contains any single element.

The theorem is trivial for if one of |S|, |T | = 1. In the following discussion, we consider
the case |S| = |T | = p. First, we have a lemma analagous to Lemma 2.3, which gives some
equalities between weight enumerators.

Lemma 4.3. If x is not zero, then

νT (x, y) = νT (1, yx−1) (50)

This lemma can be proved using the same method in section 3 ([4]) by considering the
field automorphism Q(ζp)→ Q(ζx

−1

p ). We takeζ = ζp be the primitive p-th root of unity, in
this section.

Lemma 4.4. Let S = {ai}pi=1 be a sequence of elements in Z/pZ. If∑
i

ζai = 0, (51)

then the image of S is Z/pZ.

Proof. In fact, (51) implies the polynomial
∑
xai is a multiple of

∑
0≤i≤p−1 x

i. �

Notice that ∑
(x,y)

νT (x, y) = |T |2 = p2. (52)

Combined with lemma 3.3 and that νT (0, 0) = |T | = p, we have

νT (0, 1) +
∑
k

νT (1, k) = p. (53)

Since the left side is a sum of p + 1 non-negative integers, there is at least one zero term.
Suppose that S = {(ai, bi), 0 ≤ i ≤ p− 1}. If νT (0, 1) = 0, then it follows from the definition
of formal duality (Definition 3.1) that

∑
i ζ

bi = 0. By Lemma 3.4, {bi} = {i}. By the same
reason, we must have {ai + kbi} = {i} if νT (1, k) = 0. Without loss of generality, we can
assume that ai + bik = i. By taking the invertible transformation, x → x + ky, y → y, we
can assume S = {(i, xi)}. Now note that νS(0, 1) = 0. If T = {(ci, di)}, use Lemma 3.3
again and we have {di} = {i}. The order does not matter in the definition of formal duality,
so we get the form in Theorem 3.5.
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4.4 Abelian Group of Square-free Order

In this section, we prove the following theorem:

Theorem 4.7. There are no primitive formal dual pairs in an abelian group with square-free
order.

Proof. Suppose G is an abelian group with order n square free. We have by Lemma 2.1 that
|S| and |T | are coprime to each other. Recall that any abelian group G can be written as
product:

G = Z/n1Z× Z/n2Z · · · × Z/nkZ. (54)

Then we can identify G with Ĝ using the correspondence (a1, a2, · · · , ak), (b1, b2, · · · , bk) →
ζa1b11 ζa2b22 · · · ζakbkk . Notice that in this setting 〈x, y〉 is an algebraic integer for each pair (x, y).

So from Lemma 2.2, |S|
2

|T | νT (y) is an algebraic integer. Since it is rational, it is actually an

integer. This means |T | must divide νT (y) for each y. From Lemma 2.2, we have

0 ≤ |S|2νT (y)

|T |
=
∣∣∑
x∈S

〈x, y〉
∣∣2νS(x) ≤ (

∑
x∈S

1)2 = |S|2. (55)

Hence νTy = 0 or |T |. If S, T form a primitive formal dual pair, then both |S|, |T | 6= 1. So
there exists a non-zero y ∈ G, such that νT (y) = |T |. (55) implies that the equality holds,
and thus 〈x, y〉 = 1 for all x ∈ S. So S is contained in the kernel of y, which is a subgroup
of G. The subgroup is proper since y is non-zero, and |S| 6= 1.

From Definition 2.3, we can conclude that there is no such formal dual in abelian group
with square-free order. �

Notice that the only thing needed was |S|, |T | are coprime to each other. So we have the
following more general result:

Theorem 4.8. If S, T is a primitive formal dual pair, then gcd(|S|, |T |) > 1.

5 A Graph Representing Formal Dual Relations

Now we have many properties for each pair of formal dual sets. However, the relations
between formal dual pairs are still not analyzed. In this section, we use a graph to represent
the relations of formal duality. Given a finite abelian group A, formal duality is a relationship
between two of its subsets. We represent the subsets of A be vertices, and connect two vertices
if the subset they represent are formally dual. We call this graph G. This may not be a
simple graph, since there may exists formally self-dual sets, which will result in a self-loop.
In the following discussion, we do not distinguish the vertex with the subset it represents.

Our first observation is about the neighborhoods of the vertices. Let N(P ) be the neigh-
borhood of a vertex P . Since it is the set of all the vertices that are directly connected to
P , it represents the set of all subsets of A that are formally dual to P . Then
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Theorem 5.1. Let G be the graph defined above. If N(A)∩N(B) 6= ∅, then N(A) = N(B).

Proof. Let T, S be formally dual sets. By Definition 2.2, the weight function νT is uniquely
determined by S. In fact, this is the only condition required. If another T ′ has νT = νT ′ ,
then S, T ′ are also formally dual.

Now suppose that N(A) ∩ N(B) 6= ∅. Let C be a set formally dual to both A, and B.
For any other element D ∈ N(A), νD = νC , since both C,D are formally dual to A. From
our discussion above, we have D and B are formally dual, since C is formally dual to B,
Thus N(A) ⊂ N(B). Since N(B) ⊂ N(A) by symmetry, N(A) = N(B). �

From this theorem, we have more observations on the graph. In particular, the structure
of the graph would be extremely simple, if there is no formally self-dual sets. Such sets do
not occur very often, e.g. when the order of the group is not a square.

Corollary 5.2. Suppose there is a triangle in the graph G. In other words: there exists
A,B, and C which are pair-wise formally dual. Then A,B,C are all formally self-dual sets.
Note that A,B,C may not be distinct from each other.

Proof. Since C ∈ N(A) ∩ N(B), we have that N(A) ∩ N(B) 6= ∅. Then N(A) = N(B),
which contains A. So, A is formally self-dual. We also have that B,C are formally self-dual
by symmetry. �

In fact, we have a more general result, which follows from the above corollary by induction.
The triangle there can be replaced by any n-cycle, with n odd.

Corollary 5.3. Suppose n is odd. If there exists a n-cycle in G, say Ai ∈ G, i = 1, 2, · · · , n,
with Ai formally dual to Ai+1, (An+1 = A1), then these n points forms a complete subgraph,
and each Ai is formally self-dual.

Proof. We use induction on n. The n = 3 case was proven in Corollary 5.2. Now suppose
the statement is true for n − 2. Then consider a n-cycle A1A2 · · ·An. Consider the four
consecutive vertices A1, A2, A3, A4. Note that N(A1) ∩ N(A3) is not empty because they
both contain A2. So A4 ⊂ N(A3) = N(A1). Then we get the (n − 2)-cycle A1A4A5 · · ·An.
By our induction assumption, we know this (n− 2) points forms a complete subgraph. And
each Ai, i 6= 2, 3 is formally self-dual. Since the four points chosen can be any consecutive
four points, the n points Ai form a complete subgraph and each Ai is formally self-dual.
Now the induction process is complete. �

From the above Corollary, one can easily see that when G has no formally self-dual set,
G is simple and has no odd cycle. This means that G is a bipartite graph. In fact, we can
say more in this case.

Theorem 5.4. If G has no formally self-dual set, then each connected component is a
complete bipartite graph.
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Proof. Since G is clearly a finite graph, it suffices to consider one of its connected component.
Pick any point P in this graph and let B = N(P ) and A be the set of points that are not in
B. We prove that this is a complete graph (A,B). First, points in B are not connected to
each other. Otherwise there will be a triangle with vertices P and these two points. Since
this component is connected, the set A − {P} is connected to {P} ∪ B. So, there exists a
point Q ∈ A − {P}, which is connected to at least one element in {P} ∪ B. The element
cannot be P , since B = N(P ) are all its neighborhoods. So Q is connected to one of B.
From Theorem 5.1, we know N(Q) = N(P ) = B. We can continue this process until there
is no point left. The process must end because there are only finitely many points. �

Notice that this theorem as well as above ones are also true if we only consider those
points with specific orders. For example, consider the group G = Z/10Z. In this case we
can simply consider the subsets with order 2, or 5, then it is naturally a bipartite graph.

6 Formally Self-dual Sets

As seen in the previous section, formally self-dual sets make the graph complicated. However,
these kinds of sets are very rare. We could not even find any primitive ones. In this section,
we analyze formally self-dual sets in some specific groups.

6.1 Examples in Z/n2Z.

Theorem 6.1. In G = Z/n2Z, the set S = {kn}n−1k=0 is formally self-dual.

Proof. Let ζ = e2πi/n
2
. For any r ∈ G, Definition 2.2 gives

|
n−1∑
k=0

ζknr|2 = nνS(r). (56)

It is easy to check that the left side is 0 when r is not a multiple of n, and n2 when r is a
multiple of n. In the former case, elements in S − S are multiples of n, since each element
in S is a multiple of n. So νS(r) = 0 if r is not a multiple of n. In the latter case, it is easy
to verify that νS(r) = n, since for any a ∈ S, a+ r is also in S. �

6.2 Formal Self-duality in (Z/pZ)2

In this section, we consider the group G = (Z/pZ)2. First, we note that the only formally
self-dual set in (Z/2Z)2is S = {(0, 0), (1, 1)} (up to a translation). Since there are only 2
essentially different cases, it is easy to check. In the following discussion, we consider p be a
odd prime.

Theorem 6.2. For p ≡ 3 (mod 4), there is no formally self-dual set in (Z/pZ)2.

First, we need a lemma
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Lemma 6.1. Let S and T be a formally dual pair in (Z/pZ)2. By Theorem 3.4, we can
assume T = {(i, bi)}, S = {(ai, i)}. Then νS(a, 1) = νT (1,−a), for any a ∈ Z/pZ.

Proof. By Definition 2.2, we have for all a ∈ Z/pZ,∣∣∣∣∣
p−1∑
i=0

ζai+bi

∣∣∣∣∣
2

= pνS(a, 1). (57)

Expanding the left side, we have∣∣∣∣∣
p−1∑
i=0

ζai+bi

∣∣∣∣∣
2

=
∑
i,j

ζa(i−j)+bi−bj =
∑
x,y

νT (x, y)ζax+y. (58)

So this is a polynomial of ζ. Writing it as A = a0+a1ζ+ · · ·+ap−1ζp−1, we have the following

a1 = a2 = · · · = ap−1 (59)

a0 + a1 + · · · ap−1 = |S|2 = p2 (60)

a0 =
∑
x

νT (x,−ax) = p+ (p− 1)νT (1,−a). (61)

This implies a1 = p − νT (1,−a) and that A = a0 − a1 = pνT (1,−a). Comparing this with
the right side of (57), we get

νT (1,−a) = νS(a, 1). (62)

�

Now we are able to prove Theorem 6.2.

Proof of Theorem 6.2. We are considering the case S = T . Under some proper transfor-
mation (see Theorem 3.5), we can assume that S = T = {(i, bi)} = {(ai, i)}. This means
νS(0, 1) = νS(1, 0) = 0. We also have

p2 = |S|2 =
∑
x,y

νS(x, y)

= p+ (p− 1)νS(0, 1) + (p− 1)

p−1∑
a=0

νS(1, a)

= p+ (p− 1)

p−1∑
a=1

νS(1, a).

(63)

Thus, we have that

p =

p−1∑
a=1

νS(1, a). (64)

By Lemma 6.4, we have νS(1, a) = νS(−a, 1) = νS(1,−a−1), for a 6= 0. If p ≡ 3 (mod 4),
there is no a, such that a = −a−1. Hence by summing the right side by pairs, it is an even
number, which contradicts our assumption that p is odd. �
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When p ≡ 3 (mod 4), (Z/pZ)2 indeed contains a formally self-dual set.

Theorem 6.3. If p ≡ 1 (mod 4), S = {(i, ai)}p−1i=0 , with a2 ≡ −1 (mod 4), is a formally
self-dual set.

7 Formal Duals in Tight Packings with dimension 5

The existence of formal duals for periodic sphere packings is an interesting problem posed
in [1]. The authors prove that the only Barlow packing that has a formal dual is the
face-centered cubic lattice. The Barlow packings correspond to Conway’s conjectural tight
packings for dimension 3 (see [3]). For dimension 4, his conjectural tight packing is D4,
which is a lattice, and naturally has a formal dual: its dual lattice. Hence we analyze the
existence of formal duals for tight packings in dimension 5 in this section.

7.1 Conway’s Conjectural Tight Packings

We describe the conjectural tight packings in Conway’s list, and then transform the con-
struction to the language of formal duality. In [3], all tight packings with dimension 5 can be
constructed by superposing layers of D4. With his notation, the four cosets in dual lattice
D∗4 are

[0] = D4, [1] = D4 + (
1

2
,
1

2
,
1

2
,
1

2
)

[2] = D4 + (0, 0, 0, 1), [3] = D4 + (
1

2
,
1

2
,
1

2
,−1

2
).

(65)

The covering radius of D4 is 1, so each two adjacent layers are separated by a distance
of
√

2− 1 = 1. In the space with dimension 5, consider α0 = 0, α1 = (1
2
, 1
2
, 1
2
, 1
2
, 0),

α2 = (0, 0, 0, 1, 0), α3 = (1
2
, 1
2
, 1
2
,−1

2
, 0).

We only consider periodic tight packings, and assume there are n layers in each period.
Then the underlying lattice Λ is spanned by D4×{0} and v = (0, 0, 0, 0, n). The j-th layer is
a translation aj + jv

n
of Λ. Here aj is one of αi, i = 0, 1, 2, 3. From the discussion in Conway’s

paper ([3], section 5), the two adjacent layers must have different cosets of D4, so aj 6= aj+1.

From the above discussion, we could let G = (Z/2Z)2 × Z/nZ, which is generated by
α2, α1,

v
n

modulo Λ. Each element (i, j, k) in G corresponds to a translation iα2 + jα1 + kv
n

of D4.

Under this setting, the tight packings correspond to a subset T = {(ai, bi, i)}n−1i=0 of G,
with (ai, bi) 6= (ai+1, bi+1), where subscript is understood modulo n. We would like to know
which tight packings corresponds to subsets that have formal duals.
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7.2 Existence of Formal Duals

If the set T has a formal dual S, then |S| = 4, by Lemma 2.1. By Theorem 4.3, since T is
parametrized by Z/nZ, S is parametrized by (Z/2Z)2. So, S has the form {(0, 0, 0), (1, 0, a),
(0, 1, b), (1, 1, c)} if 0 ∈ S. (A translation will not affect formal duality.) In order to deter-
mine existence of formal duals for tight packings, we will begin by analyzing possible (a, b, c).

Let ζ = e
2πi
n . The definition of formal duality becomes,∣∣1 + (−1)xζaz + (−1)yζbz + (−1)x+yζcz

∣∣2 =
16

n
νT (x, y, z), (66)

for any x, y, z. Since (ai, bi) 6= (ai+1, bi+1), we have νT (0, 0, 1) = 0. Substitute this in the
above equation, we get

1 + ζa + ζb + ζc = 0. (67)

Take (x, y, z) = (1, 0, 1), with the above relation, we have

16

n
νT (x, y, z) = 4

∣∣1 + ζb
∣∣2. (68)

So |1+ζb|2 is a rational number, and thus an integer. This implies that b ∈ {0, n
2
,±n

3
,±n

4
,±n

6
}

= A. If we take (x, y, z) = (0, 1, 1), (1, 1, 1), we get a, c,∈ A. Combining this with (67), there
are 4 possible {a, b, c} as a set (elements can repeat): {0, n

2
, n
2
}, {n

2
, n
4
,−n

4
}, {n

2
, n
3
,−n

6
},

{n
2
,−n

3
, n
6
}. Note that −S and S have the same formal duals. So, formal duals for each

possible (a, b, c) from {n
2
,−n

3
, n
6
} can be found in {n

2
, n
3
,−n

6
}. Thus there are three cases.

Note that numbers like n
2

may not be integers. All the statements below and above should
be understood as : If n

2
(n
6

or n
3
) exists, then...

One quick observation is that for all the cases, we have νT (0, 0, 12) = n from equation
66. So the sequence (an, bn) has period 12. This means the uniform packing Λ4

5, which has
period 8, has no formal dual.

Case 1 (a, b, c) is a permutation of (0, n
2
, n
2
). In this case, from (66), we always have

νT (0, 0, 2) = n. This means the sequence (an, bn) has period 2. By consider-
ing νT (x, y, 1), we can determine T . Eventually, those T with formal duals have
{(a0, b0), (a1, b1)} = {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, or {(0, 0), (1, 1)}. These three T
corresponds to the three uniform packings Λ1

5: 0101..., 0202..., 0303...

Case 2 (a, b, c) is a permutation of (n
2
, n
4
,−n

4
). In this case, we have νT (0, 0, 4) = n, similar

to the case above. So the sequence of layers have period 4. For simplicity, we will
list those T with formal duals, by showing the first four letters. In the list, we use
0 for (0, 0), 1 for (0, 1), 2 for (1, 0), 3 for (1, 1), which corresponds to Conway’s
notation of the four cosets of D4. Those T are : 0213, 0312, 0123, 0321, 0132, 0231.
These are uniform packings Λ2

5.

Case 3 (a, b, c) is a permutation of (n
2
, n
3
,−n

6
). In this case, νT (0, 0, 6) = n. Hence the

sequence of layers has a period 6. Since we are assuming n is divisible by 6, each
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νT (x, y, 1) must be a multiple of n
6
. However, it is easy to check that for each (a, b, c),

there are some (x, y) for which νT (x, y, 1) = n
4
. This is not a multiple of n

6
, which is

a contradiction.

In sum, the tight packings with formal duals are Λ1
5 and Λ2

5.

8 Open Problems

There are still many problems left to analyze from the above sections. It would be interesting
to analyze the existence of formal duals in Z/nZ. In addition, our examples of self-dual
sets, our examples are not primitive. One could try to find any primitive formal self-duals.
Furthermore, although the construction of formal dual pair in (Z/pkZ)2 is primitive, they
can still be generated by taking products of Gaussian construction. Can anyone find a real
“primitive” example of formal dual pair?

Further, when analyzing the formal duals in product group Z/mZ× Z/nZ, we find that
the formal dual pairs can usually be obtained by inflating those in (Z/dZ)2, where d is the
greatest common divisor of m,n. Is this always possible if we add a restriction that S is
parametrized by Z/mZ? For example, this works for the group Z/4Z × Z/nZ, which was
analyzed in section 7. If m,n are coprime to each other, the order of S, T are coprime to
each other under our restriction. By section 3.4, they are induced by trivial ones.
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[2] H.Cohn, A.Kumar, C.Reiher, and A.Schürmann, Ground states and formal duality re-
lations in the Gaussian core model, Phys. Rev. E (3) 80 (2009), no.6, 061116, 7 pp.

[3] J. H. Conway and N. J. A. Sloane What are all the best sphere packings in low dimen-
sions?, Discrete Comput. Geom. 13 (1995), no. 34, 383403.

[4] Robert Schüler. Formal-dual subsets of cyclic groups of prime power order. https:

//arxiv.org/abs/1605.05939 Preprint, 2016.

21

https://arxiv.org/abs/1605.05939
https://arxiv.org/abs/1605.05939

	Introduction
	Definitions and Useful Lemmas
	Structures of Parametrizable Formal Dual Pairs
	Orthogonal equation
	Orthogonal relation

	Classification of Formal Duals
	A Primitive Formal Dual Pair in (Z/pkZ)2
	Non-existence of Primitive Formal Duals in Z/2nZ
	Conditions on Formally Dual Pairs in (Z/pZ)2
	Abelian Group of Square-free Order

	A Graph Representing Formal Dual Relations
	Formally Self-dual Sets
	Examples in Z/n2Z.
	Formal Self-duality in (Z/pZ)2

	Formal Duals in Tight Packings with dimension 5
	Conway's Conjectural Tight Packings
	Existence of Formal Duals

	Open Problems

