
AN UPPER BOUND OF THE RECONSTRUCTION RADIUS OF RANDOM
REGULAR GRAPHS

ALEXIS ZHOU AND CLAIRE ZHANG

Abstract. In the shotgun assembly problem, we are given rooted, local neighborhoods of a graph G,
sampled from some distribution. We want to determine the minimum radius R? of local neighborhoods
allowing unique recovery of G, with high probability. In this paper, we study shotgun assembly of d-regular
random graphs. We show that with high probability, R? ≤ logn+log logn+∆

2 log(d−1)
for an absolute constant ∆.

Combined with [5], we establish an asymptotically tight bound: R? ∈
[
logn+log logn−∆

2 log(d−1)
, logn+log logn+∆

2 log(d−1)

]
for an absolute constant ∆.

1. Introduction

We consider the shotgun assembly problem, proposed by Mossel and Ross [4]: there is an undirected
graph G = (V,E). For each v ∈ V , we are given the R-neighborhoods of v with only v labelled. Can G be
assembled solely from these local neighborhoods?

This problem appears in various fields. In biology, DNA shotgun assembly is the reconstruction of a DNA
sequence from smaller reads. This corresponds to seeing sections of a path graph, with vertices belonging
to one of four colors. Researchers are interested in how large the reconstruction radius R must be, under
various models of vertex labelling. Mossel and Ross [4] consider shotgun assembly of jigsaw puzzles given
the neighborhoods of each piece. In machine learning, reconstructing a large neural networks from observed
sub-networks is another instance of shotgun assembly.

Shotgun assembly is also a variant of the famous reconstruction conjecture in combinatorics, which states
that a deterministic graph can be recovered uniquely from its list of vertex-deleted subgraphs [3, 2, 5]. In the
present problem, the graph is random rather than worst-case, allowing us to take advantage of the structure
of random regular graphs; however, compared to the setting of the reconstruction conjecture, we get access
to smaller neighborhoods.

Bounds for this problem are known for various models of random graph. When G is an Erdős-Rényi
random graph of constant average degree d, Mossel and Ross [4] showed that there are constants 0 <
c−(d) ≤ c+(d) such that, with high probability, assembly is possible if R > c+(d) log n, and not possible
if R < c−(d) log n. When G is a random d-regular graph for d ≥ 3, Bollobás [1] showed that assembly is
possible for R > (12 + ε) logn

log d−1 , for every ε > 0. We also refer the reader to [4] for reconstruction bounds in
other graph models, including the random jigsaw puzzle.

In the random regular setting, Mossel and Sun set out to establish a tighter bound:

Theorem 1.1. [5, Thm. 1] Define

R− ≡ R−(∆) ≡
⌊
log n+ log log n−∆

2 log(d− 1)

⌋
,

R+ ≡ R+(∆) ≡
⌈
log n+ log log n+∆

2 log(d− 1)

⌉
.(1)

Let G = (V,E) be a random d-regular graph on n vertices. Let R?(G) be the minimal radius R required to
assemble G from its list of rooted R-neighborhoods. Then there exists a positive absolute constant ∆ such
that

lim
n→∞

P (R−(∆) ≤ R?(G) ≤ R+(∆)) = 1

for any fixed d ≥ 3.

Date: July 31 2024.
2020 Mathematics Subject Classification. 05C80.

1

2 ALEXIS ZHOU AND CLAIRE ZHANG

However, the proof of the upper bound contains errors. In this paper, we fix these errors, showing that
Theorem 1.1 is indeed true.

Organization. The rest of this paper is structured as follows. In Section 2, we formally define the
problem and establish key graph theoretic notions. In Section 3, we give a high-level overview of our proof of
the upper bound on R?, outlining our solutions to two key issues in the proof of [5]. In Section 4 we present
the lemma that fixes the first issue in [5], and introduce two w.h.p. properties that entail reconstructibility.
The rest of the paper is devoted to proving the second property. In Section 5, we construct the coupling
central to our proof. In Sections 6,7,8 we analyze the coupling, showing that w.h.p. we can mirror the growth
of BFS’s very successfully, while fixing [5]’s second issue. Section 9 concludes the coupling and proves the
desired property.

2. Preliminaries

First, we formally define the problem.

Definition 2.1 (Shotgun assembly problem). Let G = (V,E). For a vertex v ∈ V , let NR(v) denote the
subgraph of vertices in V that lie at graph distance ≤ R from v. Let BR(v) be NR(v) after removing edges
(u − w) such that u,w ∈ NR(v)\NR−1(v); in BR(v), vertices keep their original labels, and the position of
v is specially marked. Let the R-neighborhood type of a vertex v be the isomorphism class TR(v) of BR(v);
in TR(v), the vertices are no longer labelled, but the position of the root is still marked. We consider the
question [4] of whether the graph G can be uniquely reconstructed, modulo global isomorphism, from its list
(TR(v))v∈V of R-neighborhood types. The problem is to find R?(G), the minimal radius R such that G can
be uniquely reconstructed.

Per convention, we say an event E holds with high probability (w.h.p.) if P(E) = 1− on(1). We will show
that R?(G) lies in a certain range w.h.p.. Towards this goal, we review several graph theoretic definitions
originating from [5].

2.1. Graph theoretic definitions.

Definition 2.2 (Configuration model). In the configuration model of n-vertex d-regular graphs, d half-edges
are attached to n vertices. We let δv denote the set of half edges attached to a vertex v.

Let Gn,d be the set of n-vertex, d-regular graphs allowing self-loops and double edges. Let G′
n,d be the set

of n-vertex, d-regular simple graphs (i.e. dis-allowing self-loops and double edges).
A perfect matching of the nd

2 half-edges creates a regular graph in Gn,d. Accordingly, we can uniformly
sample from Gn,d by choosing a perfect matching uniformly at random from (nd− 1)!! total options.

From this sampling procedure, the probability of sampling a simple graph is bounded away from 0 (de-
pending on d) [6, Eq. 3]. If a property holds w.h.p. over the uniform distribution on Gn,d, it also holds
w.h.p. over the uniform distribution on G′

n,d. Thus, we restrict our attention to graphs in Gn,d, sampled
with the configuration model.

For future use, we will additionally define NR and BR on half-edges: Let G = (V,E). For a set of half-
edges s, let t be the set of incident vertices of half-edges in s. Define NR(s) to be the subgraph of G induced
on the set of vertices w, such that there exists a path of length ≤ R starting with some g ∈ s and ending
at w that does not use any half-edge in

⋃
v∈t δv\s. Accordingly, define BR(s) by removing edges between

distance-R vertices in NR(s), and marking the roots t. From now on, we use this notation, and we refer to
our previously defined BR(v) as BR(δv). We also define TR(s), the rooted isomorphism type of BR(s).

Definition 2.3 (Breadth-first search exploration). Given a graph G = (V,E) and a list s = (g1, . . . , gk) of
distinct half-edges, the breadth-first search exploration (BFS) exploration of G started from s proceeds as
follows. We will maintain a directed graph Ht of edges and vertices we have explored. We also maintain an
ordered list Ft of frontier half-edges, which is the BFS queue. Initially, H0 is the graph with vertex set the
union of incident vertices of gi, and no edges; F0 is s. Let

depth(v) ≡ 0 for all v ∈ H0

par(v) ≡ v for all v ∈ H0

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 3

At each time t ≥ 0, as long as Ft 6= ∅, take the first half-edge gt listed in Ft and reveal the half-edge ht

to which gt is paired. Let ut be the incident vertex of gt and wt be the incident vertex of ht. Set Ht+1 to
be Ht together with a directed edge ut → wt. If wt was not already present in Ht, then set

depth (wt) ≡ depth (ut) + 1

par(wt) ≡ ut

and set Ft+1 to be Ft with gt removed and δwt\ {ht} appended at the end:

Ft+1 = (Ft\ {gt} , δwt\ {ht})
(The half-edges incident to each vertex are ordered, so δwt\ {ht} is an ordered list.) If wt was already
present in Ht, then we term the creation of edge (gt − ht) a BFS collision, and set Ft+1 to be Ft with
gt, ht removed. Accordingly, we define γ(H) to be the set of collision events. After t steps, the number
of unmatched half-edges remaining is nd − 2t. The process terminates upon reaching the first time t that
Ft = ∅.

Remark 2.4. A BFS-exploration up to depth R terminates when we have finished exploring the edges from
all depth-(R−1) vertices, and found their depth R neighbors. Any edge between two depth-R vertices is not
discovered in the exploration. Thus, BR(s) is exactly the graph explored by a depth-R BFS starting from s.

Remark 2.5. Using the configuration model, we can simulate a BFS exploration starting from source half-
edges s = s1, . . . , sk without sampling the entire graph. We start with a set [n] of isolated vertices, where
each vertex v is equipped with an ordered list its half-edges. Let At denote the set of unmatched half-edges
at time t, with A0 = [nd]. Let F0 = (s1, . . . , sk) list the initial half-edges in s. At each time t ≥ 0, as long
as Ft 6= ∅, take the first half-edge gt from Ft, and match it to a half-edge ht which is sampled uniformly at
random from At\ {gt}. Set At+1 = At\ {gt, ht}; and update Ft and Ht as in Definition 2.3. We refer to the
sequence of random graphs (Ht)t≥0 as a simulated BFS. If nd is even, then it clearly has the same law as
the BFS exploration in a graph G sampled from the configuration model Pn,d.

We use the notion of cycle structure to encode neighborhood structures in a more compact way.

Definition 2.6 (cycle structure). Let the cycle structure of a directed graph H rooted at r be an undirected
graph C(H), consisting of

• all cycles in the undirected version of H
• all (directed) edges u → v in H such that v ∈ C(H).

The full neighborhood of a vertex can be inferred from its cycle structure because we know the degree of
each vertex. Dangling trees do not contribute to cycle structure.

Lemma 2.7. When H = Ht is the result of a t-step BFS-exploration from one source r, the evolution of
Ct ≡ C(Ht) can be described as follows. At the beginning of the exploration, C0 = ∅. Let

par`(x) =

`︷ ︸︸ ︷
par(· · · par(x) · · ·)

be the `-th ancestor of vertex x. For time t ≥ 0, if gt → ht is a collision, set

Ct = Ct−1 ∪ (ut → wt) ∪
⋃
`≥0

(
par`+1(ut) → par`(ut)

)
∪

⋃
`≥0

(
par`+1(wt) → par`(wt)

)
.

That is, append the newly formed edge and the ancestor paths of ut and wt (see Figure 1). Otherwise, set
Ct = Ct−1.

Proof. We show this process generates the cycle structure. First we show that Ht\Ct is a tree in the quotient
graph Ht\Ct, rooted at the super-node Ct. In a tree, the addition of a tree edge doesn’t change its cycle
structure; the addition of a non-tree edge introduces a single cycle plus an upward path to the cycle structure.

We proceed with induction: C0 = C(H0). G′ ⊂ G implies C(G′) ⊂ C(G), so Ct−1 ⊂ Ct. The addition of
(gt → ht) to a tree (in the quotient graph) creates at most one cycle, and the only paths to ut or wt are tree
edges. Thus, Ct\Ct−1 is precisely (gt → ht) plus the ancestor path from ut to Ct−1 plus the ancestor path
from wt to Ct−1. �

4 ALEXIS ZHOU AND CLAIRE ZHANG

Figure 1. Two equivalent views of a collision (yellow) affecting cycle structure (blue).

Figure 2. add (left: case 1, right:
case 2).

Figure 3. delete the dashed edge, re-
moving all red edges.

Definition 2.8. Let H be a directed graph and root set t be a set of vertices. Define a t-cycle to be the
preimage (in H) of a cycle in the undirected version of H\t. The cycle structure of H given t is an undirected
graph C(H), consisting of

• all t-cycles
• all (directed) edges u → v in H such that v ∈ C(H).

Remark 2.9. When |t| > 1, a cycle in H must be an t-cycle, but not always vice versa. Our previous
definition of cycle structure agrees with the t = {r} case. C(H) with root set t is a union of the cycle
structures of each root in t, plus paths that connect different root vertices and their cycle structures.

Let s be the set of source half-edges, C(BR(s)) denotes the cycle structure of BR(s), with root set being
the set of incident vertices of half-edges in s.

We quantify how far two cycle structures are from each other with a custom distance metric, defined over
cycle structures with one root vertex.

Definition 2.10 (distance between cycle structures). Given a rooted cycle structure C, we define the fol-
lowing operations:

A delete operation cuts an edge e in C that preserves the cycle structure’s connectivity, then recursively
removes the leaves (see Figure 3).

An add operation is the reverse of a delete operation. There are two cases (see Figure 2):
(1) Choose distinct vertices w,w′ in C and an integer l > 0. Attach a path of length l between w and

w′ that doesn’t intersect with any other vertices in C.
(2) Choose a vertex w in C and two integers l1 ≥ 0, l2 > 0. Attach a path of length l1 to w, with a cycle

of length l2 at the end of the path, such neither the path nor cycle intersects with any other vertex
in C.

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 5

Given two rooted cycle structures C, C′, we define dist (C, C′) to be the minimum number of add and delete
operations required to transform C into C′.1

By definition dist(C, C) = 0 and the triangle inequality holds. If dist (C, C′) = m, then we can trace a
sequence of m operations to go from C to C′, where each operation is reversible by construction. Hence
dist (C′, C) = m and dist is indeed a metric.

2.2. A priori bounds on random regular graphs. We will use the following well-known form of the
Chernoff bound whenever we argue by stochastic dominance: if X is a binomial random variable with mean
µ, then for all t ≥ 1,

P (X ≥ tµ) ≤ exp{−tµ log (t/e)}.
In addition, the following bounds relating to the cycle structure of random regular graphs will be useful:

Lemma 2.11 (cycle packing bound, [5, Lem. 3.8]). Suppose for R ≥ 0 that C is the depth-R cycle structure
of a vertex v in a d-regular graph. Then, as long as C is non-empty,

|E(C)| ≤ 2γ(C)
(
R− logd−1 γ(C) + 1 + od(1)

)
.

Lemma 2.11 applies to all R, while the proceeding lemmas apply to any R at most

Rmax ≡ log n+ 2 log log n

2 log(d− 1)
.

Note that Rmax ≥ R+(∆) for sufficiently large n.

Lemma 2.12 (total number of collisions, [5, Lem. 3.9]). Let G = (V,E) be a random d-regular graph on n
vertices. Let C = C(BR(s)) where s is the list of source half-edges.

Let k be the number of distinct incident vertices of the half-edges in s. If k is constant (not depending on
n) and R ≤ Rmax, then

P
(
γ(C) ≥ (2ek log n)2

)
≤ exp

{
−(log n)2

}
for sufficiently large n.

Lemma 2.13 (few shallow collisions, [5, Lem. 3.10]). Let G = (V,E) be a random d-regular graph on n
vertices. Let C = C(BR(s)). Let k be the number of distinct incident vertices among s.

If k is constant and R ≤ 1−ε
2 logd−1 n with 1

logn � ε < 1, then

P(γ(C) ≥ ρ/ε) ≤ n−ρ+on(1)

for any positive constant ρ.

Lemma 2.14 (few short cycles, [5, Lem. 3.11]). Let G = (V,E) be a random d-regular graph on n vertices.
Let C = C(BR(s)) where |s| is a constant and R ≤ Rmax; and let C◦ ⊂ C denote the cycle structure induced
by cycles in BR(s) with length at most (1− ε) logd−1 n. If log logn

logn � ε < 1, then

P(γ(C◦) ≥ 2ρ/ε) ≤ n−ρ+on(1)

for any positive constant ρ.

3. Technical overview

The proof of the upper bound uses an insight from [4], that if a graph’s R-neighborhoods are non-
isomorphic, then the graph can be reconstructed from the (R+1)-neighborhoods. This is because, given the
(R + 1)-neighborhood of any vertex v, we can identify the neighbors of v through their R neighborhoods.
So, we may reconstruct the graph by starting at an arbitrary vertex v, identifying its neighbors, and then
iteratively the neighbors of these vertices, until we propagate through the whole graph. Thus, it suffices to
prove that all R = (R+(∆)− 1)-neighborhoods are distinct. Proving this claim is also the strategy taken in
[5].

If we imagine for a moment that all R-neighborhoods of G are independent random variables, then this
distinctness follows easily. Indeed, one can calculate that the probability of realizing any R-neighborhood

1Note that this is not the edit distance, but one that accounts for the number of cycles. It is not a homotopy, as lengths of
paths and cycles matter.

6 ALEXIS ZHOU AND CLAIRE ZHANG

isomorphism class (identified by its cycle structure) is o(n−2) (see [5, Proposition 4.1]). Thus for any u, v
the probability P(BR(u) ∼= BR(v)) = o(n−2), and taking a union bound over pairs of vertices u, v implies all
neighborhoods are pairwise distinct with high probability.

However, in reality the R-neighborhoods of G are not independent. First, if u, v ∈ G are close to each
other, their R-neighborhoods have large overlap and are clearly not independent. Second, we will see that
for our choice of R, the R-neighborhoods of even typical pairs of vertices u, v will intersect, and therefore
not be independent.

Mossel and Sun [5] introduce two main techniques to address the non-independence of neighborhoods. To
address the non-independence of BR(u) and BR(v) for nearby u, v, they argue that the BFS explorations
around u, v differ “in some direction.” To address that the BFS explorations around even far away vertices
u, v collide with high probability, they introduce a coupling argument comparing BR(u) and BR(v) to a pair
of independent BFS explorations BR(x) and BR(y).

However, the implementations of these two ideas contain two main issues, which are fixed in the present
paper and summarized below.

3.1. Issue 1: deducing non-isomorphism of neighborhoods from non-isomorphism of directed
neighborhoods. To address that the neighborhoods BR(u) and BR(v) can have large overlap if u, v are
nearby in G, [5] aims to argue that BR(u) and BR(v) differ “in some direction.” Formally, they argue via
the following two-step strategy:

• First, they show that for each u, v ∈ G, there are sets of “good directions” u ⊆ δu,v ⊆ δv of size
|u| = |v| = d − 2, such that (among other conditions) the directed BFS’s of BR(u), BR(v) do not
intersect up to depth L◦ = 1

16 logd−1 n ≈ R/8.
• Then, they show that conditional on these properties, w.h.p. BR(u) 6∼= BR(v). This is achieved by

the coupling argument described in the next subsection.
The proof of the second step requires that BR(u), BR(v) do not intersect up to depth L◦. This is because
otherwise, BR(u) and BR(v) will share too much structure, and the part where they grow more or less
“independently” is too small for the coupling method to work. This limitation applies to our proofs as well
and guides how we design the arguments below.

Unfortunately, the result of the above argument, that BR(u) 6∼= BR(v), does not imply that BR(δu) 6∼=
BR(δv), as a putative isomorphism ϕ : BR(δu) → BR(δv) does not necessarily map u to v.

Our proof finds a way to link non-isomorphism of directed neighborhoods to non-isomorphism of neigh-
borhoods. Here we present a simplified version of this argument, which holds for d ≥ 5. The general d ≥ 3
case follows from a more involved combinatorial argument, which is carried out in subsection 9.1.

We will show that if a graph G satisfies the following two properties, the (R+ 1)-neighborhoods of G are
pairwise non-isomorphic.

(1) For all u, v ∈ G, there exist directions u ⊆ δu, v ⊆ δv of size |u| = |v| = d− 2, such that BL◦+1(u)
and BL◦+1(v) are non-intersecting complete trees.

(2) For all u, v ∈ G, and all u ⊆ δu,v ⊆ δv of size |u| = |v| = d− 2, either (a) or (b) holds, where
(a) the neighborhoods BL◦(u) and BL◦(v) are not disjoint trees
(b) the neighborhoods BR(u) and BR(v) are not isomorphic.

Property (1) holds with high probability by a union bound applied to Lemma 2.13. We will outline the proof
of property (2) in the next subsection.

We next explain why these two properties imply that BR(u) 6∼= BR(v) for all u, v ∈ G. Suppose for
contradiction that there is an isomorphism ϕ : BR+1(u) 7→ BR+1(v), and let u ⊆ δu, v ⊆ δv be the
directions given by property (1), so that BL◦+1(u) and BL◦+1(v) are non-intersecting trees; see Figure 4.

Since u and v each exclude only 2 half-edges of δu and δv, for d ≥ 5 > 2 + 2 there exists e ∈ u such that
BL◦+1(e) and BL◦+1(ϕ(e)) are non-intersecting trees. By property (2) (applied to the other endpoints of e,
ϕ(e) and any d− 2 of the d− 1 descendant directions), BR+1(e) and BR+1(ϕ(e)) are not isomorphic, which
contradicts ϕ(BR+1(u)) = BR+1(v).

3.2. Issue 2: proving (2) through a coupling. It remains to prove (2). If BR(u), BR(v) are not disjoint
trees in the upper L◦-levels, the (a) is automatically satisfied. So we only look at instances in the joint

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 7

u v

L◦ + 1

Figure 4. Solid triangles in represent explorations that are trees and do not intersect the
rest of the graph, whereas dotted triangles may intersect BR(v) or not be trees. If d ≥ 5,
any putative isomorphism ϕ : BR(u) → BR(v) must map at least one solid tree in BR(u) to
one solid tree in BR(v). By property (2) this is not possible, and therefore BR(u) 6∼= BR(v).

x u v

Figure 5. When a “crossing” (yellow dashed edge) occurs in the u-exploration, we couple
it with the x-exploration finding a fresh vertex.

distribution where we have disjoint trees. In these scenarios, large portions of the two graphs are still
“independent”, and therefore unlikely to coincide.

Following [5], we construct a coupling of the u, v BFS co-evolution with two independent BFS’s: x and y
which live in two different graphs. The growth of the u-BFS will imitate x, and growth of the v-BFS will
imitate y. So in each instance of the joint (x,uv,y) distribution, BR(u) and BR(x) (as well as BR(v) and
BR(y)) will agree as much as possible.

It suffices to prove that w.h.p. BR(u) and BR(x) are O(1) in cycle structure distance, and that the same
holds for BR(y) and BR(v). [5] shows that dist(BR(x), BR(y)) >

logn
log logn w.h.p., due to their independence.

O(1) distance in the coupling implies that dist(BR(u), BR(v)) > logn
log logn − O(1) w.h.p.. Therefore, the

probability that BR(u), BR(v) are isomorphic with zero distance is very small (o(n−2)). And a union bound
over pairs u, v gives w.h.p. reconstructibility.

Now, it remains to show dist(BR(x), BR(u)) = O(1) whp. We bound the distance by deleting cycles
in BR(u) and BR(x) where they do not agree, until we are left with the part shared between them. The
distance is upper bounded by the number of deletions we make in both graphs combined. The proof of this
bound in [5] had an error, and fixing this error is the main contribution of the present paper.

The presence of v in the same graph affects how the u-exploration evolves. So the laws of BR(x) and
BR(u) are not the same, and we cannot couple x and x perfectly. A coupling error is a BFS step where
the co-evolved x- and u-explorations fail to agree (ref subsection 5.3). Errors come in many kinds, but the
most prevalent by far is where an edge traverses the part explored by u and the part explored by v. We call
such edge a “crossing”. Crossings occur log n many times, until we end the BFS at level R. Meanwhile, all
remaining coupling errors occur O(1) many times, and can be undone with O(1) operations.

A crossing edge, at depth l in the u-neighborhood, absorbs into BR(u) a neighborhood of radius R− l−1
in the v-graph. This neighborhood is determined by v, and hence controlled by the y exploration, which the
x-exploration has no hope to resemble. Thus, when a crossing occurs, we let the x- (or y-, if the edge goes
from the v-graph to the u-graph) exploration find a fresh vertex instead (see Figure 5). In order to remove

8 ALEXIS ZHOU AND CLAIRE ZHANG

the disagreeing parts of BR(x) and BR(u), we need to remove all cycles involving the crossings or crossing
neighborhoods.

The crux of our proof is that despite there being log n crossings, their effect on the cycle structure of
BR(u) can be undone by cutting out O(1) cycles.

We will first argue that O(1) operations suffice to delete all within-neighborhood cycles, thanks to our L◦
non-intersection condition. The depth of a crossing l ≥ L◦. So the neighborhood radius R − l − 1 ≤ 7.1

8 R
is relatively small, so all within-neighborhood cycles are short. And there are not many short cycles (ref
subsesction 7.2). Then, we argue that any pair of intersecting neighborhoods can also be disconnected with
O(1) operations (ref subsection 7.3), again because crossing neighborhoods are shallow in radius. This alone
does not suffice because there are logd−1 n neighborhoods. However, most of the neighborhoods, especially
those coming from crossings from greater depths, do not intersect with any other neighborhood. We show
this by defining upper and lower crossings. The upper crossings create large and probably intersecting
neighborhoods, but there are only O(1) of them. All lower crossings create very small neighborhoods that
appear in random positions in the v-graph, and hence they rarely intersect. Still, there are log n of them.
We can w.h.p. upper bound the number of intersecting neighborhood pairs by O(1). Hence, O(1) deletions
suffice to erase the v-graph from the cycle structure of BR(u).

4. Distinguishability of two neighborhoods in the same graph: overview

Throughout the rest of the paper, we require R ≤ Rmax. Our goal is to prove the upper bound of the
reconstruction radius, namely: given the R+(∆)-depth neighborhoods of every vertex, we can reconstruct
the random d-regular neighborhood w.h.p. as n → ∞.

Definition 4.1. Throughout what follows we denote L◦ ≡ 1
16 logd−1 n.

Let Tdir,L◦ denote the rooted, depth-L◦, directed d-regular tree, where the root has degree d − 2, every
other vertex above depth L◦ has degree d, and the depth-L◦ vertices have degree 1.

4.1. Proof overview. We prove probability 1− on(1) reconstructibility by the following lemma:

Lemma 4.2. For any fixed d-regular G = (V,E) that satisfies the following:
(1) |γ(C(BL◦+1(δu ∪ δv)))| ≤ 2 for any u 6= v ∈ V .
(2) For any u 6= v ∈ V and any directions u ⊂ δu,v ⊂ δv, |u| = |v| = d − 2, either (a) does not hold,

or (b) holds. Here,
(a) BL◦(u) ∩BL◦(v) = ∅ and BL◦(u)

∼= BL◦(v)
∼= Tdir,L◦

(b) BR(u) � BR(v)

We have BR+1(u) � BR+1(v) for any u 6= v ∈ G. Hence, once we are given all the depth-R + 2
neighborhoods of G, we can reconstruct G.

We defer the proof of Lemma 4.2 to subsection 9.1. If (1) holds w.h.p. over all random d−regular graphs,
and (2) holds w.h.p. with R = R+(∆)− 2, then by union bound over (1) and (2), a d-random regular graph
is reconstructible given all neighborhoods of depth R+(∆).

Hence, to establish the upper bound of the reconstruction radius, it suffices to prove the following two
lemmas:

Lemma 4.3. W.h.p. over all random d-regular graphs, item (1) in Lemma 4.2 holds.

Proof. In Lemma 2.13, let s = {δu, δv}, k = 2, ρ = 2.1, ε = 1− 2(L◦+1)
logd−1 n ≥ 7

9 , then P(γ(C(BL◦+1(δu∪ δv))) ≥
2.7) ≤ P(γ(C(BL◦+1(δu∪δv))) ≥ ρ/ε) ≤ n−2.1+on(1). By union bound over all u 6= v, γ(C(BL◦+1(δu∪δv))) ≤
2 holds for all u 6= v with probability 1− n−0.1+on(1) = 1− on(1). �

Lemma 4.4. Given vertices u 6= v ∈ V , and directions u ⊂ δu,v ⊂ δv, |u| = |v| = d− 2, let event E0(u,v)
be the event defined by (2) in Lemma 4.2, event E be the event defined in Lemma 4.5 below, then

P(E and not E0(u,v)) ≤ o(n−2)

where the probability is over all random d-regular graphs on n vertices.

If Lemma 4.4 is true, then P(not E0(u,v) for any u,v) ≤ P(not E)+P(E and not E0(u,v) for any u,v) ≤
on(1)+Θ(n2)

(
d

d−2

)2 ·o(n−2) = on(1), where the second inequality follows from Lemma 4.4 and a union bound

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 9

over all u 6= v,u,v. So we know item (2) of Lemma 4.4 holds w.h.p.. Combining with Lemma 4.3, we proved
that reconstruction is possible w.h.p..

The following sections are all devoted to proving Lemma 4.4, through a coupling on the directed neigh-
borhoods.

4.2. Probability of realizing a particular directed neighborhood structure. Define Ωdir,R to be
the set of all neighborhood isomorphism types TR = TR(v) which can arise from a d-regular graph with
|v| = d− 2, such that

|E (TR)| ≥ (d− 1)R
(
d− 2

d− 1
− 11

log n

)
.

Ωdir,R represents a set of “reasonable” neighborhood structures, which do not have too many collisions. In
order for E0(u,v) to hold with 1− o(n−2) probability, we need neighborhood structures similar to BR(u) to
be “reasonable”, hence the E in Lemma 4.4.

Lemma 4.5. W.h.p. over all random d-regular graphs G = (V,E) on n vertices, the following holds: for
any u ∈ V , u with |u| = d− 2, and directed type QR (Q is not part of G), if QL◦

∼= BL◦(u)
∼= Tdir,L◦ and

dist(C(QR), C(BR(u))) ≤ (log n)2, then QR ∈ Ωdir,R.

Proof. This follows from combining Lemma 4.5 (after taking union bound on all vertices), Lemma 5.6,
Corollary 5.7 in [5]. �

Lemma 4.6 (Corollary 5.7 of [5]). For any positive constant ρ, there exists ∆ ≡ ∆(ρ) sufficiently large so
that for R ≥ R+(∆), and any fixed v ⊂ δv with |v| = d− 2,

P (TR(v) = TR) � n−ρ for all TR ∈ Ωdir,R.

Remark 4.7. Lemma 4.5 says when a neighborhood structure will be “reasonable”. Lemma 4.6 is the analogue
of Proposition 4.1 in [5]: the chance of realizing any reasonable directed neighborhood is small. Also, Lemma
4.6 is the only place in Section 4 where we need R to be large enough (i.e. R ≥ R+(∆)).

5. Distinguishability: a coupling to approximate independence

If either BR(u) and BR(v) are not are not disjoint trees up to depth L0, E0(u,v) is automatically satisfied.
When we have disjoint trees, we will BFS simulate the (much more complicated) depth-R neighborhoods.

Given Lemma 4.6, if BR(u), BR(v) were independent, their probability of being isomorphic is small. When
BR(u), BR(v) reside in the same graph, they affect each other: probability of each step being a collision
changes, and the two neighborhoods could intersect.

5.1. An overview of the coupling and its analysis. To capture the observation that the majority of
probabilities and edges of BR(u), BR(v) are still “free”, we couple the step-by-step growth of BR(u) with
the growth of neighborhood BR(x), and BR(v) with BR(y), where x, (u,v),y exist in three separate graphs.
The neighborhoods BR(u) and BR(v) are correlated because u, v belong to the same graph. We will require
the neighborhoods BR(x) and BR(y) to be independent. The coupling will attempt to make the growth of
BR(u) imitate that of BR(x) as much as possible, and similarly for BR(v) and BR(y). Kt(x) ∼= Kt(u) is
the “good” part of the BR(x) and BR(u) that can be matched, due to the imitation, and w.h.p. a significant
part.

The end result would be a joint distribution of BR(x), (BR(u), BR(v)), BR(y). The marginal distributions
of BR(x) and BR(y) are both the distribution of a depth-R (d − 2)-directed neighborhood in a random d-
regular graph on n vertices. The marginal distribution of (BR(u), BR(v)) is that of two neighborhoods in
the same random d-regular graph on n vertices. The marginal of BR(x), BR(y) is independent.

For each instance of BR(x), (BR(u), BR(v)), BR(y) in the joint distribution, we first check if (a) is satisfied.
If not, E0(u,v) automatically holds.

If so, we will bound the distance between C(BR(x)) and C(BR(u)) by cutting edges to restore them both to
the shared “good” part. This distance is small w.h.p., so is dist(C(BR(v)), C(BR(y))). Not so many neighbor-
hoods BR(x) are within a constant distance of BR(y), so by the previous section, dist(C(BR(x)), C(BR(y)))
is large w.h.p.. As a result, dist(C(BR(u)), C(BR(v))) > 0 w.h.p., and E0(u,v) holds.

10 ALEXIS ZHOU AND CLAIRE ZHANG

5.2. Details of the coupling: definitions. To achieve the aforementioned joint distribution, we define a
coupling on three BFS explorations.

x is a vertex in Gx. u 6= v are vertices in Guv. y is a vertex in Gy. At time 0 these graphs are empty:
each vertex has d-half-edges attached, but there is no edge, as we will match half-edges to form edges step-
by-step. These are three completely separate n-vertex d-regular graphs (no two graphs share any vertex).
The directions satisfy |x| = |u| = |v| = |y| = d− 2.

In step t, one or two edge(s) form by matching half-edges. The edge(s) formed can live in any of the three
graphs. The subscript t denotes the time before the step-t edge(s) form, but after the step-(t − 1) edge(s)
form. The exploration terminates when we have found BR(x), BR(u), BR(v), BR(y). We let the last edge
to be formed in the t(R)-th step.

Throughout time (0 ≤ t ≤ t(R)), we will keep track of the following entities:

• Ft is the frontier, an ordered sequence of certain unmatched half-edges possibly from all three graphs,
waiting to be matched in order. We will add and remove half-edges from Ft as we would do in a
BFS (ref Definition 2.3).

• gt, the half-edge matched after time t to form (one of) the step-t edge(s), is the first element of Ft.
gt can be in any of the three graphs.

• At(q) is the set of unmatched (hence “available”) half-edges in Gq, the moment before gt is matched,
q ∈ {x,uv,y}. So gt ∈ At(q) for some q.

• “Good” sets Kt(z), z ∈ {x,u,v,y}. Each of these contains both edges (that is, matched pairs of
half-edges) and unmatched half-edges in Ft. Kt(x),Kt(u) denote the edges in the explored parts
of BR(x) and BR(u) that correspond to each other, combined with unmatched half-edges in the
frontier that have the potential to correspond once matched. In the same vein, Kt(v),Kt(y) denote
the part where the two neighborhoods agree, and frontier half-edges that might agree. Kt(x) are
Kt(u) are made to be isomorphic throughout time, so are Kt(y) and Kt(v).

• ιt is an involution which restricts to isomorphisms Kt(u) ↔ Kt(x) and Kt(v) ↔ Kt(y) and maps
corresponding edges and half-edges. We say ιt maps a (half-)edge to its partner in the other graph.

Ideally, Kt(x) ∼= Kt(u) is large, so the directed neighborhoods of u and x can be similar. Note that Kt(z)
are merely labels on (half-)edges. They don’t affect the BFS probabilities, or how we add/remove edges from
Ft or At(q).

As we will see, the coupling results in Kt(u)∩Kt(v) = ∅. This is needed because an (half-)edge in Kt(u)
imitates the x-exploration. We don’t want it to come under the influence of v, which imitates y, otherwise
x and y will not be independent. Moreover, once an edge has been added to Kt(z), it stay in all future
Kt′(z). A half-edge added to Kt(z), however, can be removed at a later time.

Define β =
⋃

z∈{x,u,v,y}(δz\z). At time t, an unmatched half-edge ht that lives in the same graph as z is
either

(1) in Kt(z). We call ht a z-good half-edge.
(2) in (Ft ∪ β)\Kt(z). Call ht z-bad.
(3) not in Ft ∪ β (so ht attaches to a fresh vertex not yet discovered). Call ht fresh.

Note that gt can be both u-good and v-bad. Moreover, gt cannot be both u-good and v-good.

5.3. The coupling in real time: step by step. We start the coupled exploration with F0 = {x,y,u,v}
in sequence. A0(q) is the set of all half-edges in Gq. And K0(z) = z. We will couple in such a way that for
any 0 ≤ t ≤ t(R), gt, the front of queue Ft, is never in Kt(u) ∪Kt(v). This is achieved by always placing
the Kt(x)-half-edge h in front of its corresponding Kt(u)-half-edge ι(h) in Ft. And when we pop h from Ft,
we delete ι(h) as well.

The evolution of Ft and At(q) follows the standard BFS in Gq. If the an edge is formed by matching
half-edges j, k ∈ Gq, At+1(q) = At(q)\{j, k}. The other At(q

′) remain unchanged. We delete j, k from Ft

(it’s possible that one of them is not in Ft). And if k attaches to a fresh vertex w that have not been explore
before, we append δw\{k} to the end of Ft. This is not affected by what is in Kt(z).

The evolution of Kt(z), however, requires some case-work and dictates how we couple. We have the
following two types of gt.
Case 1: gt ∈ Kt(x) ∪Kt(y).

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 11

discrepancy bad-good mismatchgood-bad mismatch u-v crossing
Gx Guv Gx Guv Gx Guv Gx Guv

GuvGx Guv Gx Guv Gx Guv

Figure 6. The result of each coupling error; black represents a good frontier half-edge, red
represents a bad frontier half-edge, grey represents a fresh half-edge. The arrow indicates
going from time t to t+ 1.

We will only detail the case gt ∈ Kt(x). The gt ∈ Kt(y) case is similar. So gt is good, ι(gt) ∈ Kt(u),
ι(gt) ∈ Ft. With step t we will match gt and ι(gt) to form two edges. We want the two new edges to
correspond under ι, but this is not always possible.

gt matches each available half-edge (except gt itself) with equal probability, namely, pt(x) ≡ 1/(|At(x)| −
1). There are three kinds of available half-edge ht ∈ At(x) that gt can match with:

1) ht ∈ Kt(x)\{gt} (“x-good”)
2) ht ∈ (Ft ∪ β)\Kt(x) (“x-bad”)
3) ht /∈ Ft ∪ β (“fresh”)
We couple the matching of gt with the matching of ι(gt) in Guv. The probability of ι(gt) matching

with every available half-edge except itself is pt(uv) ≡ 1/(|At(uv)| − 1). There are similarly three kinds of
it ∈ At(uv):

a) it ∈ Kt(u)\{ι(gt)} (“u-good”)
b) it ∈ (Ft ∪ β)\Kt(u) (“u-bad”)
c) it /∈ Ft ∪ β (“fresh”)
We want u-exploration to imitate x as closely as possible. Note that ι(Kt(x)∩At(x)) = Kt(u)∩At(uv).

So for each of the |Kt(x) ∩At(x)| − 1 = |Kt(u) ∩At(uv)| − 1 x-good half-edge ht, we can couple the gt, ht

matching with the ι(gt), it = ι(ht) matching, occurring with probability min(pt(x), pt(uv)). This is our
success case (1a).

Remark 5.1. For i ∈ {1, 2, 3} and k ∈ {a, b, c}, we label a coupling case by (ik) if ht is type i and it is type
k. For A,B,C,D ∈ {good,bad, fresh}, we use (A−B,C−D) to mean a A half-edge matching a B half-edge
in Gx, while a C half-edge matching a D half-edge in Guv.

(1a) (good-good, good-good): A collision edge is created in the x neighborhood, and a corresponding
collision edge in the u neighborhood.

Kt+1(x) = (Kt(x)\{gt, ht}) ∪ (et : gt → ht)

Kt+1(u) = (Kt(u)\{ι(gt), ι(ht)}) ∪ (ι(et) : ι(gt) → ι(ht))

So Kt+1(x) and Kt+1(u) remain isomorphic.
(1a) occurs with probability pt,1 ≡ (|Kt(x) ∩At(x)| − 1) ·min(pt(x), pt(uv)).

At the same time, for each x-good half-edge ht, there is max(pt(x), pt(uv))−min(pt(x), pt(uv)) proba-
bility that correspondence fails due to probability discrepancy. This is coupling error case (1c/3a):

12 ALEXIS ZHOU AND CLAIRE ZHANG

Remark 5.2. We construct the coupling such that whenever in one graph, the step is a collision that cannot
be mirrored, the other graph will always find a fresh half-edge.
(1c/3a) discrepancy: {(good-good, good-fresh), (good-fresh, good-good)}: If pt(x) ≥ pt(uv),2 couple the

collision edge gt → ht with ι(gt) → it, where it is uniformly chosen from all fresh half-edges. If
pt(x) < pt(uv), couple the collision edge ι(gt) → ι(ht) with gt → jt where jt is fresh. In both cases,
the two newly formed edges in Gx and Guv do not agree. Good half-edges are corrupted. Nothing
good is created.

Kt+1(x) = Kt(x)\{gt, ht}
Kt+1(u) = Kt(x)\{ι(gt), ι(ht)}

ι(ht) remains in Ft+1 but is removed from Kt+1: it becomes a “bad” half-edge since time t + 1. If
pt(x) ≥ pt(uv)�let it attach to fresh vertex wu. The unmatched half-edges of wu are added to Ft+1,
but not Kt+1(u): u-bad. If pt(x) < pt(uv), let it attach to fresh vertex wx. δwx\jt are x-bad.
(1c/3a) occurs with probability
pt,2 ≡ (|Kt(x) ∩At(x)| − 1) · (max(pt(x), pt(uv))−min(pt(x), pt(uv))).

We have taken care of cases (1) and (a). It is also possible for gt to match a x-bad half-edge ht that does
not have a partner in Guv. Since ht is a frontier edge or incident to x, the resulting edge gt → ht must be a
collision. gt → ht doesn’t even have the potential to find a partner (ht /∈ Kt(x)), and will not be added to
Kt+1(x). This is coupling error case (2c):

(2c) x-good-bad mismatch: (good-bad, good-fresh): ht is x-bad. We couple collision gt → ht with ι(gt) → it
where it is chosen uniformly from all fresh half-edges. Let it attach to vertex wu. δwu\it become
u-bad.

Kt+1(x) = Kt(x)\{gt}
Kt+1(u) = Kt(u)\{ι(gt)}

(2c) occurs with probability pt,3 = |((Ft ∪ β)\Kt(x)) ∩At(x)| · pt(x).
Similarly, ι(gt) can hit a u-bad half-edge it, and form an edge without a partner. This is coupling error

case (3b):
(3b) u-good-bad mismatch: (good-fresh, good-bad): it is u-bad. We couple collision ι(gt) → it with gt → ht

where ht is chosen uniformly from fresh half-edges and attached to vertex wx. δwx\ht become x-bad.
Kt+1(x) = Kt(x)\{gt}
Kt+1(u) = Kt(u)\{ι(gt)}

(3b) occurs with probability pt,4 ≡ |((Ft ∪ β)\Kt(u)) ∩At(uv)| · pt(uv).3

The remaining cases are (3) and (c): fresh half-edges. And the remaining probability is 1− (pt,1 + pt,2 +
pt,3 + pt,4) in both explorations. Even if pt(x) can be different from pt(uv), it does not matter which fresh
half-edge we match because the result is isomorphic. So we have success case (3c):

(3c) (good-fresh, good-fresh): ht and it are both fresh vertices, attached to vertices wx, wu respectively.
Kt+1(x) = (Kt(x)\{gt, ht}) ∪ (et : gt → ht) ∪ (δwx\ht)

Kt+1(u) = (Kt(u)\{ι(gt), ι(ht)}) ∪ (ft : ι(gt) → it) ∪ (δwu\it)
Ft+1 = (Ft\{gt, ι(gt), ht, it}) ∪ (δwx\ht) ∪ (δwu\it)

ιt+1(ht) = it, ιt+1(et) = ft, ιt+1(δwx\ht) = δwu\it. Note that δwx\ht precedes δwu\it in Ft+1, so
a Kt+1(u) ∪Kt+1(v) half-edge will not appear in the front of the queue.
(3c) appears with probability 1− (pt,1 + pt,2 + pt,3 + pt,4).

As we update x and u, nothing happens in Gy. At(y), Kt(y), Kt(v) do not change from time t to t+ 1.

2If pt(x) = pt(uv), (1a) will be mirrored perfectly, and discrepancy does not occur.
3It seems that we are wasting the fresh-half-edge probability by matching errors with a fresh half-edge. A more economical

accounting is to combine (b2), (b3) and consider coupling (good-bad, good-bad). However, our excesses avoid additional
casework. Our coupling is well-defined because there more than enough fresh half-edges at large: pt,1 + pt,2 + pt,3 + pt,4 ≤

|Ft∪β|
|At(x)|−1

+
|Ft∪β|

|At(uv)|−1
≤ 8+8

√
n logn

n−24
√
n logn

� 1 for any 0 ≤ t ≤ t(R). The middle inequality follows from R ≤ Rmax.

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 13

Figure 7. The distribution of ht and ι(ht) (if it exists) for a given gt (to the left, good gt
is green, bad gt is red). The length of a colored section is proportional to the numbers of
available half-edges of such type. When gt is good, we sample (ht, it) according to the top
two bars if pt(x) > pt(uv) and the 3rd and 4th otherwise. “in G(v)” is a prevalent subset
of u-bad.

Case 2: gt /∈ Kt(x) ∪Kt(y) ∪Kt(u) ∪Kt(v).
Here gt can live in any of the three Gq. The edge formed by matching gt to a uniformly chosen ht has no

potential for correspondence, or being included in any Kt(z). Assume for concreteness gt ∈ Gx (the other
two cases are similar). We only form one edge gt → ht at step t since gt has no partner. ht is uniformly
chosen from any available half-edge in At(x), good or bad or fresh.

If ht ∈ Kt(x) (bad-good mismatch),

Kt+1(x) = Kt(x)\{ht}
Kt+1(u) = Kt(u)\{ι(ht)}

Otherwise, Kt(x) and Kt(u) do not change from time t to t+ 1.

6. Distinguishability: analysis of the coupling, an introduction

Remind that we want to prove E0(u,v) does not hold with probability o(n−2), for directions u,v which
we couple with x,y. In the BFS coupling, we gradually build the four directed neighborhoods altogether
layer by layer: we find the depth-1 layers of all four neighborhoods, then the second layers of all four, then
the third layers... Hence, after finding the L◦ layers of all four at step t◦, we can check if case (a) in E0(u,v)
is satisfied. If not, E0(u,v) already holds, and we can stop the BFS exploration.

If (a) is satisfied by the top L◦ layers, that is, BL◦(u) ∩ BL◦(u) = ∅ and both depth-L◦ directed
neighborhoods are trees, we continue the BFS. We let E1 be the event that (a) holds.4 As we make the
following analysis, all based on BFS happenings after step t◦, we will use property (a) as a given, that is, we
will assume event E1.

We call the probability in the (x, (u,v),y) joint distribution Pjoint, the probability in the s-marginal
distribution Ps, where s is a subset of {x, (u,v),y}. If an event E ′ only concerns the graphs in s, then
Pjoint(E ′) = Ps(E ′). For example, Px,(u,v)(E1∧dist(BR(x), BR(u)) ≤ C) = Pjoint(E1∧dist(BR(x), BR(u)) ≤
C). Let Q(E ′) ≡ Pjoint(E1 ∧ E ′). For the rest of the analysis, we will be concerned with Q, as only the case
E1 requires further attention and BFS exploration.

Our goal is to prove that Q(E and BR(u) ∼= BR(u)) = Pjoint(E , E1 and BR(u) ∼= BR(u))
= Puv(E , E1 and BR(u) ∼= BR(u)) = P(E and not E0(u,v)) = o(n−2).

6.1. E1 implies that the depth-L◦ neighborhoods of x and y are both trees. We prove, by induction
on t, that in each instance in the joint distribution where E1 is satisfied, BL◦(x)

∼= BL◦(y) are both trees,
and the four depth-L◦ neighborhoods coincide with their respective Kt(z) (they are all good).

4We drop the (u,v) from E1(u,v) since we only focus on the present u,v that we couple.

14 ALEXIS ZHOU AND CLAIRE ZHANG

E1 implies that in steps 0 ≤ t ≤ t◦, the u-exploration finds a fresh vertex or does nothing, and so does
the v-exploration. Assume (as induction hypothesis) that at time t before the t-th step, only success case
(3c) has occurred before. This is true for t = 0. Then the explored parts of x and u are isomorphic trees
with e1 edges. The number of available (unmatched) half-edges in Gx is nd− 2e1, strictly greater than the
number of available half-edges in Guv, as the v-exploration also consumes half-edges. So pt(x) < pt(uv),
and (good-good, good-fresh) will not happen. Furthermore, there is no bad edge in Gx. Referring back to
top bar in Figure 7, if ι(gt) in Guv matches a fresh half-edge, gt in Gx also matches a fresh half-edge: only
success (3c) is possible. By induction, we have proved that if E1 holds, at every step 0 ≤ t ≤ t◦ two new
fresh vertices are found.

6.2. The prevalence of error case (3b): some heuristics. We want the coupled BR(x) and BR(u)
to be similar, that is, the shared part Kt(R)(x) ∼= Kt(R)(u) to be large. This happens when the number
of coupling errors is small. Indeed, we will show that w.h.p., discrepancy (1c/3a), (2c) both happen On(1)
times.

However, the frequencies of a u-good half-edge matching a u-bad half-edge is much higher. If a u-good
half-edge ι(gt) matches a half-edge it in the v-exploration (attached to vertex wv), then the neighborhood of
wv, explored by v, gets absorbed into BR(u) as well. Moreover, the edge ι(gt) → it and the wt-neighborhood
cannot be mirrored in the x-exploration – they are controlled by y. Since the number of half-edges explored
by v is similar to those by u, we would expect such “crossing” ι(gt) → it happens as often as collisions
within BR(u) take place: the frequency is a polynomial of log n in expectation. Unfortunately, there can be
BR(u) cycles in the wt-neighborhoods, making BR(x) and BR(z) further apart in cycle structure distance.

To make the notions of “crossing”, “explored by u”, “u-part” more precise, we introduce the following
definitions.

Definition 6.1. We partition the vertices of BR(u) ∪ BR(v) into 2 kinds: u-vertices V (u) and v-vertices
V (v). We define them by the following: u ∈ V (u), v ∈ V (v). Every other vertex w in BR(u)∪BR(v) is first
discovered as a fresh vertex. If w is first discovered by a u-vertex, w a u-vertex, i.e. w ∈ V (u). If w is first
discovered by a v-vertex, w a v-vertex, i.e. w ∈ V (v).

We let G(u) be the induced subgraph of BR(u)∪BR(v) on vertices V (u), G(v) be the induced subgraph
of BR(u) ∪BR(v) on vertices V (v)

A crossing is an edge in BR(u) ∪BR(v) that is between a u-vertex and a v-vertex.

Remark 6.2. G(u) and G(v) are both connected. BR(u) can be partitioned into G(u), G(v), and crossings.
A crossing can go in both directions: both a V (u) half-edge matching a V (v) half-edge, and a V (v) half-edge
matching a V (v) half-edge. Both directions have the same effect: absorbing a neighborhood of G(v) into
BR(u).

A half-edge is added to Kt(u) only in success case (3c), where the newly discovered vertex must be a
u-vertex. An edge is added to Kt(u) only if both half-edges are in Kt(u). Thus, all the half-edges in Kt(u)
must attach to a u-vertex, and all the edges in Kt(u) must be contained in G(u). Any crossing or G(v) edge
cannot be in Kt(R)(u).

Since V (u)∩V (v) = ∅, G(u)∩G(v) = ∅, we have proved that Kt(u)∩Kt(v) = ∅ for every 0 ≤ t ≤ t(R).
A discovered u-vertex can have all, some, or none of its attached half-edges in Kt(u).

6.3. Bounding dist(C(BR(x)), C(BR(u))) by the number of edge cuts: a prelude.

Lemma 6.3. G1, G2 are two rooted graphs. If we can delete k edges from G1, such that the resulting graph
(may be disconnected) is a G3 containing the root and a forest (that is, parts not containing the root are all
trees), where G3 has the same cycle structure as G2, then dist(C(G1), C(G2)) ≤ k.

Proof. Let S be the set of G1 edges deleted. Start with G1, we recursively delete edges that are both in S
and in a cycle in the remaining graph. If there is a cycle in what remains but not in G3, there must be an
edge in S that can destroy the cycle. Delete this edge, which does not disconnect the graph as the edge is in
the cycle. So by deleting k′ ≤ l edges from G1 we get a connected graph G′

3 with the same cycle structure
as G3, and hence as G2. It requires no more than k′ delete operations in C(G1) to remove these k′ edges. So
dist(C(G1), C(G2)) ≤ k′ ≤ k. �

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 15

Let z ∈ {x, u, v, y}. Assume that at the end of time, deleting k(z) edges from BR(z) will result in a graph
that is a forest combined with a subgraph containing vertex z, where the latter has the same cycle structure
as Kt(R)(z). Then dist(C(BR(z)), C(Kt(R)(z)) ≤ k(z). Therefore, in every instance of the joint distribution

dist(C(BR(x)), C(BR(u))) ≤ k(u) + k(x)

dist(C(BR(y)), C(BR(v))) ≤ k(v) + k(y)

In our proof, will only bound k(u), k(x) as k(v), k(y) are similar. The goal is to prove the rather surprising
result: k(u), k(x) ≤ On(1) with probability 1− o(n−2) in the joint distribution. In other words, in most (a
1− o(n−2) portion) of the instances in the joint distribution, our coupling is very successful.

Of course, we will choose carefully which edges in BR(u) and BR(x) to cut. We will start with reducing
the G(v) part of BR(u) into a forest, that is, effectively erasing the G(v) part from BR(u)’s cycle structure.
Armed with Lemma 6.3, we do not have to worry about disconnecting the graph as we cut edges.

7. Coupling analysis: eliminate G(v) from C(BR(u)) by cutting edges

Let E×
G(v) be the number of edges we cut to eliminate G(v) from BR(u)’s cycle structure. In this section

we prove the following proposition,

Proposition 7.1.
Q(E×

G(v) > C2 ≡ 66 + 33 · 630 · (33 + 222)2) = o(n−2)

We will first define crossing neighborhoods, “balls” in G(v) that a crossing brings into BR(v), and establish
that BR(v) ∩G(v) is actually the union of these “balls”.

Then we will first remove the cycles completely contained within one neighborhood by removing short
cycles (see lemma 2.14). Then we will disconnect, or sever, each pair of intersecting crossing neighborhoods.
This removes all cycles of BR(u) containing a v-vertex.

Disconnection requires, w.h.p., only O(1) edge cuts because crossing neighborhoods are shallow (with
depth at most 7

16 logd−1 n) and can be w.h.p. disconnected by O(1) edges. Another important reason is that
w.h.p. the number of intersecting pairs is O(1). We prove this by differentiating upper and lower crossings,
and examine the step-by-step BFS probabilities.

7.1. The part of BR(u) that is explored by v, at the end of time. Let H be the end-of-time induced
subgraph of BR(u) on V (v), the subgraph in question. H does not contain crossings. Edges in H are all
u-bad. We introduce the definitions to describe H = BR(u) ∩G(v).

Definition 7.2. Suppose we are at the end of time. Let e be a crossing, with its u-vertex se and v-
vertex te. Define the crossing neighborhood of e, N(e), to be the subgraph of G(v) induced by {w ∈
V (v), distG(v)(w, te) ≤ R− depth(se)− 1}, in which edges between distance (R− depth(se)− 1)-vertices are
deleted. We rooted N(e) at te. Here, depth(se) refers to the depth in G(u). distG(v) refers to the length of
the shortest path in G(v), not in BR(u) ∪BR(v).

Remark 7.3. Note that the definition of N(e) stay fixed: we denote the remaining graph after round k of
edge cutting by N(e) ∩Hk, where we define Hk to be a “mask” lacking the edges we cut. This ensures that
across different crossing neighborhoods, the same set of edges are cut. Without the notation, keeping track
of what remains in each neighborhood will be difficult. And this isn’t just notational convenience: if edge f
can be cut in N(e1) but not N(e2), our proof could fail.

If edge f with vertices w1, w2 is in H ⊆ BR(u), then WLOG distBR(u)(w1, u) ≤ R− 1. So there is a path
u → w1 of length ≤ R − 1, travelling through some crossing e between se and te. By definition of N(e),
f ∈ N(e). Conversely, if f ∈ N(e) for some N(e), find the shortest path from f to te then through e to u,
then f ∈ BR(u). This gives us the following proposition:

Lemma 7.4. H, the induced subgraph of BR(u) on V (v), is equal to ∪crossing eN(e)

We want to remove every cycle in BR(u) that includes a v-vertex, so the remaining cycle structure will
be contained in G(u). A cycle either includes v-vertices only (so it is in H), or both u- and v-vertices. We
further divide the former into two kinds, resulting in three types of such cycles (see Figure 8):

(1) contained in H, completely contained in one N(e)

16 ALEXIS ZHOU AND CLAIRE ZHANG

(1 − ε) logd−1 n

G(u) G(v)

Figure 8. 3 types of cycles and how to bound the number of edge cuts that eliminate them:
purple: type (1); Lemma 2.14 (short cycle bound)
green: type (2); Lemma 2.13 (shallow collision bound), Definition 7.7
red: type (3); subsection 7.4 (counting the number intersecting crossing neighborhoods),
Definition 7.10 (upper vs. lower crossing)

(2) contained in H, traversing several N(e)
(3) includes both V (v) and V (u) vertices

In the next 2 subsections, we will describe how we, at the end of time, will erase these cycles. In subsection
7.4, we count the number of edges we cut in the whole process, and show w.h.p. the number of cuts is On(1).
We start with cycle type (1).

7.2. Round 1: remove within-neighborhood cycles by popping all short cycles. Since each crossing
neighborhood N(e) has radius ≤ R − L◦ − 1 ≤ 7.1

16 logd−1 n, we might hope that all the cycles within N(e)

are short (cycle length ≤ 2R − 2L◦). Lemma 3.11 tells us that with probability 1− o(n−2), we can pop all
the short cycles in Guv by cutting no more than 66 edges.

However, N(e) can contain longer cycles: imagine the roughly n7/16 vertices with distance 7
16 logd−1 n

from te form a loop. Fortunately, if an edge in N(e) is part of any cycle, it is also be part of a short cycle.

Lemma 7.5. Let N be a graph rooted in t where each vertex is of distance ≤ r from the root. Then if edge
e is in some cycle C, there must be some cycle C ′ with length ≤ 2r + 1 such that e ∈ C ′.

The proof is in Appendix A. We consider C0(v), the cycle structure of G(v) with length ≤ 2R− 2L0, and
do the first round of edge-cutting to reduce H to H1. H1 may be disconnected.

Corollary 7.6. We cut γ(C0(v)) edges such that there is no cycle, short or long, in what remains of C0(v).
Let the remaining part of H be H1. Then, for any crossing e, there is no cycle, short or long, contained in
N(e) ∩H1 (that is, all edges in N(e)).

Proof. 2(R − depth(s) − 1) + 1 < 2R − 2L0 for any crossing e. If there is a cycle C ⊂ N(e) ∩ H1 in the
post-cutting graph, then C is in N(e). By Lemma 6.15, every edge of C is in the pre-cutting C0(v) as well.
Since C survives the cutting intact, C is a cycle in the post-cutting C0(v). However, we cut γ(C0(v)) to
reduce C0(v)) to a tree. Contradiction. �

We have popped all type (1) cycle. If there is a cycle C contained in H1, it cannot be completely contained
in any single N(e). Therefore, there exist two crossings e 6= f , such that C includes vertex we ∈ N(e)\N(f)
and vertex wf ∈ N(e)\N(f).

If there is a cycle C ′ ⊆ G(u) ∪ {crossings} ∪H1, and C ′ includes both u- and v-vertices (i.e. type (3)),
then C ′ contains two crossings e, f as edges, and a path in G(v) that connects te, tf (the path is unnecessary
if te = tf).

We will pop these two kinds of cycles in the next subsection, by severing every pair of intersecting
neighborhoods.

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 17

7.3. Round 2: sever crossing neighborhoods, and remove the rest of cycles that touches G(v).

Definition 7.7. E4 is the event, for a fixed d-regular graph G, that for every two vertices t1 6= t2 of G,
and every pair of radii r1, r2 ∈ [0, R − L◦ − 1], the following holds: we BFS explore the neighborhoods (all
d-directions) of t1, t2 up to depth r1, r2 respectively, and define Vr1(t1), Vr2(t2), and Gr1(t1), Gr2(t2) (ref
Definition 6.1);5 the number of crossings between Gr1(t1) and Gr2(t2) is no more than 33.

Definition 7.8.

Let H be a subgraph of G (H could be disconnected). For vertices t1 6= t2, consider subgraphs H1 and
H2 of G, t1 ∈ H1, t2 ∈ H2 (both could be disconnected). If the following two properties are satisfied, we say
that H1 and H2 are severed by H:

(1) There is no path in (H1 ∪H2) ∩H between any vertices w1 ∈ H1\H2 and w2 ∈ H2\H1. w1, w2 do
not have to be in H.

(2) There is no path in (H1 ∪H2) ∩H between t1, t2.

Lemma 7.9. At the end of time, assume that E4 holds on Guv. For every two crossing neighborhoods N(e)
and N(f) in G(v), with te 6= tf , we can delete no more than 33 edges from H1 to result in an H ′(e, f) that
severs N(e), N(f).

Proof. Let re = R − depth(se)− 1, rf = R − depth(sf)− 1, S be the set of crossing edges between Gre(te)
and Grf (tf) in Guv. |S| ≤ 33. Cut S∩H1 from H1. If w1 ∈ N(e)\N(f), then clearly w1 /∈ Vrf (tf). Similarly
w2 /∈ Vre(te). Also, te ∈ Vrf (tf) and tf ∈ Vrf (tf). In order for a point in Vre(te) and point Vrf (tf) to be
connected, the path must pass through a crossing. Hence (1) (2) are satisfied. �

Given H1, we will sever every pair of N(e), N(f) with te 6= tf that intersect at at least one vertex. For
N(e), N(f) with te = tf , we will simply remove crossing f . This is round 2 of our edge cuts, resulting in
H2 ⊂ H1.

After cutting these edges, there will be no cycle left in G(v) ∩H2 (because neighborhoods are severed).
There is also no cycle that includes both u- and v-vertices, as each te 6= tf are disconnected in H2, and te
can only connect to one crossing.

Note that if E4 holds, with each intersecting pair (we count te = tf pairs as intersecting) we delete no
more than 33 edges. Q(¬E4) = o(n−2) by Lemma 2.12 and a union bound over all u, v, r1, r2. We only
need to prove that, independent of E4, the number of intersecting N(e), N(f) pairs is O(1) with probability
1− o(n−2).

7.4. Upper bounding the number of intersecting neighborhoods. The goal of this section is to prove
that at the end of time in the joint distribution, Q(|(e, f) : N(e) ∩N(f) 6= ∅| > 630 · (33 + 222)2) = o(n−2).

To do so we differentiate between two types of crossing neighborhoods:

Definition 7.10. A crossing e is a upper crossing if depth(se) ≤ (1 − ε) logd−1 n. A crossing e is a lower
crossing if depth(se) > (1− ε) logd−1 n. ε = 1/64.

Remark 7.11. An upper crossing creates a large neighborhood in G(v), with radius as much as R−L◦− 1 <
7.1
16 logd−1 n, and these neighborhoods are more likely to intersect. However, there are not many (w.h.p.
O(1)) of them because they exist between two shallow neighborhoods (see Lemma 2.13).

A lower crossing creates a small neighborhood with radius ≤ 1.1ε logd−1 n, and these neighborhoods are
sparsely positioned, rarely intersecting. However, there are many of them: at least logd−1 n in expectation,
cf. Lemma 2.12.

Our previous analyses are all end-of-time. However, here we bound the number of pairs at the end of time,
by focusing on each BFS step as the BFS evolves. And we will look at all instances in the joint distribution
that satisfy E1. In each step, we have no knowledge of the future.6 Time t is the moment we are about to
work out the t-th step. At time t, we can only see what we have explored in the past t− 1 steps.

5Gr1 (t1), Gr2 (t2) are induced subgraphs of Br1 (t1) ∩Br2 (t2) on Vr1 (t1), Vr2 (t2) respectively.
6We will make sure everything we define is measurable at time t. Conditioning on an end-of-time event (or equivalently,

restricting our attention only to certain instances of the distribution) will mess up the probabilities at each prior BFS step. We
avoid doing so by introducing indicator functions of each step t.

18 ALEXIS ZHOU AND CLAIRE ZHANG

Definition 7.12. Let Gt be the explored part of Guv at time t, determined by the first t− 1 steps (it will
eventually be a subgraph of BR(u) ∪ BR(v)). Let Vt(v) be the set of v-vertices in Gt at time t, Gt(v) be
the induced subgraph of Gt on Vt(v).

Each step also updates the distance between two vertices. As t increases and more edges are connected,
the distance in Gt(v) decreases or stays the same.

Definition 7.13. We define distt(w1, w2), where w1, w2 ∈ Vt(v), to be the length of the shortest path
between w1, w2 in Gt(v).7 For a crossing e present at time t, define the crossing neighborhood at time t,
Nt(e), to be the subgraph of Gt(v) induced by {w ∈ Vt(v), distt(w, te) ≤ R−depth(se)−1}, in which edges
between distance (R− depth(se)− 1)-vertices are deleted. We root Nt(e) in te.

Remark 7.14. Our previously defined N(e) = Nt(R)+1(e). Nt(e) is also defined by the distance at time t,
not end of time distance. A vertex, present at time t but not in Nt(e), could be added to Nt′(e) at a later
time. If Nt(e) ∩Nt(f) 6= ∅, then Nt′(e) ∩Nt′(f) 6= ∅ for all t ≤ t′ ≤ t(R) + 1.

Definition 7.15. Let Yt be the number of unordered (e, f) pairs where e, f are crossings present after step
t, Nt+1(e) ∩ Nt+1(f) 6= ∅, Nt(e) ∩ Nt(f) = ∅ (the last condition is vacuously satisfied if e or f does not
exist at time t).

Essentially, Yt is the number of intersecting (N(e), N(f)) pair ”created” by step t. The quantity we want
to bound, the total number of intersecting (N(e), N(f)) pairs, is

∑
t◦≤t≤t(R) Yt.

Definition 7.16. We keep track of these random variables in the BFS evolution. They are all Ft-measurable,
where Ft is the σ-algebra generated by the coupling up to time t.

• Ut: the number of upper crossings at time t (before the t-th step takes place)
• Lt: the number of lower crossings at time t
• Xt: at time t, maxw∈Vt(v) |lower crossing e : distt(te, w) ≤ 2.2ε logd−1 n|, that is, the maximum

number of lower crossings whose te are all close to a single vertex

Let the the (t1 − 1)-th step complete the depth-(1 − ε) logd−1 n explorations on u,v. t1 is a stopping
time. The number of (upper-upper) pairs no longer change since time t1, and the quantity is

∑
t◦≤t<t1

Yt ≤
Ut1(Ut1 +1)/2. As we consider lower crossings, we only need to consider the BFS at each step t1 ≤ t ≤ t(R).

Now we will analyze the BFS at each step t, t1 ≤ t ≤ t(R).Step t creates in Guv either no edge, or one
edge et : gt → ht. In fact, the majority of steps t has Yt = 0. If Yt > 0, there are crossings e, f whose
neighborhoods are made intersect by step t. An edge et is created in Gt+1. It must be one of the three cases:

(1) et is a u-to-v crossing, that is, gt attaches to u-vertex set ; ht attaches to v-vertex tet . et does not
update distance as Gt(v) = Gt+1(v). No two existing crossing neighborhoods will be joined by et.

• In order for case (1) to happen, gt must attach to a u-vertex.
• In order for Nt(et) and Nt(f) to intersect, where f is a previous crossing, ht must satisfy
distt(tet , tf) ≤ 1.1ε logd−1 n+ (R− depth(f)− 1).

• At time t, the number of half-edges in the frontier that satisfy the ht requirement is no more
than Ut · n7.1/16+1.1ε + Lt · n2.2ε.

• Here we upper bound Yt, that is, the number of existing crossing neighborhoods Nt+1(et) can
intersect. The number of upper neighborhoods Nt+1(et) intersects is ≤ Ut. If after step t,
Nt+1(et) intersects lower neighborhoods Nt+1(f1), · · · , Nt+1(fk), k > 1, then before step t (i.e.
at time t), distt(tet , tfi) ≤ 2.2ε logd−1 R for every 1 ≤ i ≤ k. By definition k ≤ Xt. Thus, in
every instance of the joint distribution, Yt ≤ Ut +Xt.

(2) et is a v-to-u crossing, that is, gt attaches to v-vertex tet ; ht attaches to u-vertex set . Similar to (1),
• gt must attach to a v-vertex. In order for Nt(et) and Nt(f) to intersect, where f is a previous

crossing, distt(tet , tf) ≤ 1.1ε logd−1 n+ (R− depth(f)− 1).
• ht must attach to a u-vertex.
• The number of half-edges at time t satisfying the ht-requirement is no more than n1/2 logd−1 n.
• In every instance, Yt ≤ Ut +Xt.

7Not length of the shortest path in Gt, i.e. the explored part of BR(u) ∪ BR(v). This accords with our definition of
end-of-time crossing neighborhoods, which relies on the end-of-time G(v) distance, not BR(u) ∩BR(v) distance.

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 19

(3) et is not a crossing. No new crossing neighborhood appears, but two existing neighborhoods are
joined together by et. Let et have vertices w1, w2. In order for Nt+1(e), Nt+1(f) to be joined, we
must have w1 ∈ Nt(e), w2 ∈ Nt(f) (or we can flip the labels e, f).

• gt must attach to a v-vertex, which is in at least one crossing neighborhood Nt(e) at time t.
• ht has the same requirement as gt.
• The number of half-edges satisfying the ht-requirement is no more than Ut · n7.1/16 +Lt · n1.1ε.
• Let all the intersecting pairs created by et be (Nt+1(e1), Nt+1(f1)), · · · , (Nt+1(ek), Nt+1(fk)).

Let w1 ∈ Nt(ei), w2 ∈ Nt(fi), 1 ≤ i ≤ k (or we flip ei, fi). Among Nt(ei), all the lower
neighborhoods Nt(ej) satisfy distt(tej , w1) ≤ 2.2ε logd−1 n. Here the distance is that of time t.
So among all ei, there are at most Ut +Xt distinct crossings. And there are at most Ut +Xt

distinct fi. In every instance, Yt = k ≤ (Ut +Xt)
2.

Let gt be the half-edge to be matched at step t, if gt, satisfies the gt-requirement of case (i), we say it is
i-good. If ht, the half-edge gt matches to at step t, satisfies the gt requirement of case (i), we say it is i-good.

Instead of bounding
∑

t1≤t≤t(R) Yt, we define Yt’s proxy Zt, which is automatically 0 when Ut or Xt is
large. So Zt’s sum can be stochastically dominated by binomials. Let C1 ≡ 222.

1(Et) ≡ 1(Ut ≤ 33) · 1(Lt ≤ (4e logd−1 n)
2) · 1(Xt ≤ C1)

Zt ≡ Yt · 1(Et)

∑
t1≤t≤t(R)

Zt =
∑

t1≤t≤t(R)

1(Yt > 0) · Zt

=
∑

i=1,2,3

∑
t1≤t≤t(R)

1(et is case i) · Zt

≤ (33 + C1)
2 ·

∑
i=1,2,3

∑
t1≤t≤t(R)

1(gt i-good) · 1(ht i-good) · 1(Et)

The last inequality follows from the fact that Zt ≤ (33 + C1)
2 for any t in every instance of the joint

distribution, as a result of Zt’s definition and our case analysis. We will separately bound each of the
i = 1, 2, 3 sums. All the following inequalities will hold for any t1 ≤ t ≤ t(R) in every possible instance of
the distribution (that is, they hold almost surely).

Case 1: at each t, for the inequality below, we can plug in the bounds U ≤ 33, Lt ≤ (4e logd−1 n)
2 in our

upper bound for the number of 1-good ht: if the bounds fail, 1(ht 1-good) · 1(Et) is automatically 0.

Q(1(ht 1-good) · 1(Et) = 1) ≤
33 · n7.1/16+1.1ε + (4e logd−1 n)

2 · n2.2ε

nd− 2n1/2 logd−1 n
≤ n−0.51

At the same time,
∑

t1≤t≤t(R) 1(gt 1-good) ≤ n1/2 logd−1 n, since an 1-good gt must attach to a u-vertex.
Thus, the following random variable, which is distributed across all instances in the joint distribution satis-
fying E1, ∑

t1≤t≤t(R)

1(gt 1-good) · 1(ht 1-good) · 1(Et) =
∑

t1≤t≤t(R), gt1-good

1(ht 1-good) · 1(Et)

is stochastically dominated by A1 ≡ Bin
(
n1/2 logd−1 n, n

−0.51
)
. 8

8The stochastic dominance actually follows from the following coupling. Let Wt = 1(ht1 − good) · 1(Et) be a random
variable. As the BFS evolves step by step, if 1(gt 1-good) = 0, we couple Wt with W t = 0 a.s.; otherwise we couple Wt with
W t = Ber(n−0.51). The latter is possible because Q(Wt = 1) ≤ n−0.51 in every possible instance of the BFS evolution, no
matter what happened in the first t − 1 steps, so the distribution of W t can be made independent of the first t − 1 steps.
After BFS finishes, define Wt(R)+1 = 0 a.s. and W t(R)+1 to be Ber(n1/2 logd−1 n −

∑
t 1(gt 1-good), n−0.51). W t(R)+1 is

given only
∑

t 1(gt 1-good). Its distribution is independent of each Bernoulli W t in the previous steps. As a result, for every
t1 ≤ t ≤ t(R) + 1, in every instance in the joint distribution of (W1, · · · ,Wt,W 1, · · · ,W t),

∑
t1≤i≤t Wi ≤

∑
t1≤i≤t W i. The

marginal distribution of
∑

t1≤t≤t(R)+1 Wi is that of
∑

t1≤t≤t(R), gt1-good 1(ht 1-good) · 1(Et) in the joint distribution of the
(x,uv,y) coupling. The marginal distribution of

∑
t1≤t≤t(R)+1, due to independence, is Bin

(
n1/2 logd−1 n, n

−0.51
)
.

20 ALEXIS ZHOU AND CLAIRE ZHANG

Case 2: a similar analysis gives

Q(1(ht 2-good) = 1) ≤
n1/2 logd−1 n

nd− 2n1/2 logd−1 n
≤ n−0.499

∑
t1≤t≤t(R)

1(gt 2-good) · 1(Et) ≤ 33 · n7.1/16+1.1ε + (4e logd−1 n)
2 · n2.2ε ≤ n0.49

The display above results from our requirement for gt, and the definition of Et: once Ut exceeds 33 or
Lt exceeds (4e logd−1 n)

2, any 2-good gt produced by a new crossing will not be counted. Hence, only gt
produced by older crossings show up in this sum.

Thus, the random variable
∑

t1≤t≤t(R) 1(gt 2-good) · 1(ht 2-good) · 1(Et) is stochastically dominated by
A2 ≡ Bin

(
n0.49, n−0.499

)
.

Case 3:

Q(1(ht 3-good) · 1(Et) = 1) ≤
33 · n7.1/16 + (4e logd−1 n)

2 · n1.1ε

nd− 2t
≤ n−0.55∑

t1≤t≤t(R)

1(gt 3-good) · 1(Et) ≤ 33 · n7.1/16 + (4e logd−1 n)
2 · n1.1ε ≤ n0.45

The random variable∑
t1≤t≤t(R)

1(gt 3-good) · 1(Et) · 1(ht 3-good) · 1(Et) =
∑

t1≤t≤t(R), gt 3-good, Et

1(ht 3-good) · 1(Et)

is stochastically dominated by A3 ≡ Bin
(
n−0.55, n0.45

)
.

A1, A2, A3 do not need to be independent. Since Zt ≤ 33 + C1 holds for every t in all instances of the
joint distribution, We nonetheless have:

Q

 ∑
t1≤t≤t(R)

Zt > 630 · (33 + C1)
2

 ≤ Q(A1 > 300) +Q(A2 > 300) +Q(A3 > 30) = o(n−2)

Now we return to
∑

t1≤t≤t(R) Yt. Since Et is monotone, in any instance, Zt 6= Yt for any t implies that Et(R)

does not hold. So Q
(∑

t1≤t≤t(R) Zt 6=
∑

t1≤t≤t(R) Yt

)
≤ Q

(
¬Et(R)

)
≤ Q

(
Ut(R) > 33

)
+Q

(
Lt(R) > (4e logd−1 n)

2
)
+

Q
(
Xt(R) > C1

)
. So now, we only need to union bound the end of time probabilities.

In fact, each of the three probabilities are o(n−2), supplied respectively by Lemma 2.13, Lemma 2.12, and
Lemma 7.17 below.

Therefore, we have the following upper bound on the probability that at the end of time we need to cut
more than 66 + 33 · 630 · (33 + C1)

2 = C2 edges to eliminate G(v) from C(BR(v)):

Q (¬E4) +Q

 ∑
t1≤t≤t(R)

Yt 6=
∑

t1≤t≤t(R)

Zt

+Q

 ∑
t1≤t≤t(R)

Zt > 630 · (33 + C1)
2

 = o(n−2)

We have proved Proposition 7.1.

Lemma 7.17. Q(Xt(R)+1 > C1) = o(n−2).

Proof. To upper bound Xt(R), we do a step by step analysis of the BFS that is independent of the Zt analysis.
Let w ∈ Vt(v). If lower crossing e satisfies distt(w, tet) ≤ 2.2ε logd−1 n, we call e a nearby crossing of w.

Define X̂t ≡ max(1(Lt ≤ (4e logd−1 n)
2) ·Xt, 1). In step t, if a new edge is connected, denote it et : gt → ht.

If X̂t < X̂t+1, then X̂t+1 ≥ 2, and et must be one of the three cases below:
(1) et is a u-to-v crossing. et does not update distance from time t to t+ 1, as we only look at distance

in Gt(v) = Gt+1(v). Let wt+1 be the vertex with Xt+1 nearby crossings at time t + 1. At time t,
without tet , wt+1 must have X̂t+1 − 1 nearby crossings. X̂t+1 − 1 ≤ X̂t, so X̂t+1 = X̂t + 1.

• gt must be attached to a u-vertex.
• At time t, there exists a crossing e such that distt(ht, te) ≤ 4.4ε logd−1 n. This is because
distt(wt+1, ht) ≤ 2.2ε logd−1 n, distt(wt+1, te) ≤ 2.2ε logd−1 n.

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 21

• X̂t+1 = X̂t + 1 ≤ 2X̂t.
(2) et is a v-to-u crossing. By a similar analysis,

• At time t, there exists a crossing e such that distt(gt, te) ≤ 4.4ε logd−1 n.
• ht must be attached to a u-vertex.
• X̂t+1 = X̂t + 1 ≤ 2X̂t.

(3) et is not a crossing, so it must update distance. Let the two vertices of et be w1 6= w2. wt+1 (defined
in case 1) can be w1 or w2. Let e1, · · · , ek be the time-(t + 1) nearby lower crossings of wt+1, with
distt+1(wt+1, tei) < distt(wt+1, tei), 1 ≤ i ≤ k. Then X̂t+1 − k ≤ X̂t.

For each i, the time-(t + 1) shortest path from tei to wt+1 must pass through et. WLOG
distt(wt+1, w1) ≤ distt(wt+1, w2), then distt(wt+1, w1) = distt+1(wt+1, w1). The path of each tei
pass through et in the w2 → w1 direction, so distt(w1, tei) = distt+1(w1, tei) < 2.2ε logd−1 n. Thus,
k ≤ X̂t.

• At least one of gt, ht must be attached to w2, a vertex of time-t distance ≤ 2.2ε logd−1 n to some
te. Both gt, ht are connected to v-vertices. We get two sub-cases: (3.1) gt attached to w2, (3.2)
ht attached to w2.

• X̂t+1 ≤ k + X̂t ≤ 2X̂t.
Note that if Lt ≥ (4e logd−1 n)

2, X̂t = 1 ≤ X̂t−1. Thus, in the probability distribution of all instances
of the joint distribution satisfying E1, the number of steps t of case 1 is stochastically dominated by B1 =

Bin
(
n1/2 logd−1 n,

n4.4ε

nd−2n1/2 logd−1 n

)
. The number of steps t of case 2 is stochastically dominated by B2 =

Bin
(
n4.4ε,

n1/2 logd−1 n

nd−2n1/2 logd−1 n

)
. The numbers of steps t of cases (3.1) and (3.2) are stochastically dominated

by B3 = Bin
(
n2.2ε,

n1/2 logd−1 n

nd−2n1/2 logd−1 n

)
, B4 = Bin

(
n1/2 logd−1 n,

n2.2ε

nd−2n1/2 logd−1 n

)
, respectively. The four

binomials do not have to be independent.
Let Z be the number of steps t such that X̂t < X̂t+1. Z is a random variable. Then Q(Z > 22) ≤ P(B1 >

6) + P(B2 > 6) + P(B3 > 5) + P(B4 > 5) = o(n−2). Since X̂t+1 ≤ 2X̂t in every step in every instance in the
joint distribution, Z ≤ 22 at the end of time implies that X̂t(R)+1 ≤ 222 = C1. Therefore,

Q(Xt(R)+1 > C1) ≤ Q(X̂t(R)+1 6= Xt(R)+1) +Q(X̂t(R)+1 > C1)

≤ Q(Lt(R)+1 > (4e logd−1 n)
2) +Q(Z > 22) = o(n−2)

�

8. Coupling analysis: eliminate contaminated cycle structure within G(u) and G(x)

In this section, we prove that we can delete 73 edges from G(u)∪G(x) so that the resulting cycle structures
of u and x contain no bad edges, w.h.p..

We will analyze the cycle structure of u and x’s exploration together. Let Ht ≡ Ht(x) ∪Ht(u).
Recall from Lemma 2.7 that the cycle structure of a directed exploration can be built iteratively with

single add operations. Call an edge (u → w) vertical if u and w lie on different BFS layers, and horizontal
otherwise. For z ∈ {u, x} and vertex w ∈ V (Gz), let its ancestor path πz→w be the path from the root z to
w consisting of parents (Definition 2.3). After a collision at time t, the current cycle structure is updated
with the collision edge (horizontal or vertical) and the endpoints’ ancestor paths (vertical).

As v ∈ C implies par(v) ∈ C, we can equivalently characterize C(Ht) as the union over collisions of the
collision edge plus ancestor paths:

C(Ht) =
⋃

1≤t≤T
ht∈Ft(z)

(ut → wt) ∪ πz,ut
∪ πz,wt

— call (ut → wt)∪πz,ut ∪πz,wt the contribution of the collision at time t. If we remove all collisions whose
contribution includes at least one bad edge — call this set ERR — the resulting union of contributions,
which is the cycle structure of Ht(z)\ERR, contains no bad edges. In the remainder of this section, we show
|ERR| ≤ 73 w.h.p..

22 ALEXIS ZHOU AND CLAIRE ZHANG

bad collision bad collision discrepancy

Figure 9. A collision contributing bad cycle strucutre is either a discrepancy or bad colli-
sion.

Lemma 8.1. For each collision gt → ht in ERR, either
(1) (gt → ht) is a discrepancy, or
(2) At least one of {gt, ht} was bad right before the collision. Call (gt → ht) a bad collision.

Proof. Edge bad-ness is monotone in ancestor paths: a half-edge whose incident vertex is discovered by a
bad half-edge must also be bad. If neither gt nor ht are bad right before matching and (gt → ht) ∈ ERR,
(gt → ht) must be a discrepancy by construction (see Figures 6, 9). �

For any 1 ≤ R ≤ Rmax, let T = (d−1)R. Let Idisc be the set of discrepancies, Ibc the set of bad collisions,
and γ the set of collisions in HT . By Lemma 8.1,

ERR = Idisc ∪ Ibc.

We proceed to bound |Idisc| and |Ibc| individually.

Lemma 8.2 (few discrepancies).
Q
(
|Idisc| ≥ 5

)
= o(n−2)

Proof. See proof of Lemma 5.14 of [5]. In [5], It,2 is the event of a discrepancy, and the bound of X in case
(1) is precisely our desired result.

�

Next, we bound |Ibc|. To do so, we first bound the number of bad edges:

Lemma 8.3 (few bad edges). Let badT be the set of all bad half-edges explored up to and including time T .

Q
(
|badT | ≥ 300(log n)2n7/16

)
= o(n−2)

Proof. Call coupling errors and collisions in Gx or Guv source errors. If g is a bad half-edge, it either is
involved in a source error or is a descendant of a vertex involved in a source error. Here, b is a descendant
of a if a = park(b) for some integer k.

Crucially, all source errors occur after level L0 given that E0 holds. Therefore,

|badT | ≤ 2
(
|Idisc|+ |γ|

)
(d− 1)R−L0

≤ 2
(
|Idisc|+ |γ|

) n1/2 log n

n1/16

= 2
(
|Idisc|+ |γ|

)
n7/16 log n

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 23

where the factor of 2 accounts for the mirroring of errors. By Lemma 2.12,

Q
(
|γ(C(Ht(x))| ≥ (2e log n)

2
)
≤ exp{−(log n)2},

Q
(
|γ(C(Ht(uv))| ≥ (4e log n)

2
)
≤ exp{−(log n)2}.

Combining, we can say
Q
(
|γ(C(Ht(x))|+ |γ(C(Ht(uv))| ≥ 20e2(log n)2

)
≤ exp{−(log n)2}

=⇒ Q
(
|γ| ≥ 149(log n)2

)
= o(n−2).

By Lemma 8.2,
Q
(
|Idisc| ≥ (log n)2

)
< Q

(
|Idisc| ≥ 5

)
= o(n−2).

Overall,

Q
(
|badT | ≥ 2 · (1 + 149)(log n)2n7/16

)
≤ Q

(
|Idisc| ≥ (log n)2

)
+Q

(
|γ| ≥ 149(log n)2

)
= o

(
n−2

)
.

�

Most of the times, there are few bad edges at the end of time, in which the number of bad collisions is
dominated by a binomial with constant mean. Only rarely are there too many bad edges. The following
lemma formalizes this arugment:

Lemma 8.4 (few bad collisions).
Q
(
|Ibc| ≥ 68

)
= o(n−2)

Proof. Define

XBFS ≡
T∑

t=1

1((gt → ht) ∈ Ibc)

badmax ≡ 300(log n)2n7/16

Fmax ≡ 2(d− 2)(d− 1)R−1

and note |Ibc| ∼ XBFS . Couple XBFS with random variable XSIM , both over the uniform distribution on
G. We define XSIM and the coupling as follows:

Do a BFS exploration from δx ∪ δu. At time t (1 ≤ t ≤ T), sample Ut ∼ Unif[0, 1).
• If gt is bad, let

pl ≡
Ft−1 − 1

nd− 2t
,

pr ≡ Fmax

nd− 2t
.

– If U ∈ [0, pl), increment both XBFS and XSIM . Let ht be a frontier edge chosen uniformly at
random.

– If U ∈ [pl, pr), increment XSIM only. Sample ht according to Q(ht|ht 6∈ Ft−1).
– If U ∈ [pr, 1), sample ht according to Q(ht|ht 6∈ Ft−1).

• If gt is good, let

pl ≡
|badt|
nd− 2t

,

pr ≡ badmax

nd− 2t
.

– If U ∈ [0, pl), increment both XBFS and XSIM . Let ht be a bad edge chosen uniformly at
random.

– If U ∈ [pl, pr), increment XSIM only. Sample ht according to Q(ht|ht 6∈ Ft−1\Kt−1).
– If U ∈ [pr, 1), sample ht according to Q(ht|ht 6∈ Ft−1\Kt−1).

• If, after timestep t, there are badmax or more bad edges, set XSIM = ∞.

24 ALEXIS ZHOU AND CLAIRE ZHANG

The graph we create follows the random regular law, so XBFS is distributed as (2). Furthermore, in any
sample, XBFS ≤ XSIM as we never increase XBFS without increasing XSIM . Thus, XBFS 4 XSIM and

Q
(
|Ibc| ≥ 68

)
= Q (XBFS ≥ 68)

≤ Q (XSIM ≥ 68)

≤ Q (B1 +B2 ≥ 68)(3)
+Q (XSIM = ∞)

where we define

B1 ≡ Bin
(

badmax,
Fmax

nd− 2T

)
,

B2 ≡ Bin
(
T,

badmax

nd− 2T

)
.

By Chernoff bound,

E[B2] ≤ E[B1] ≤
2000(log n)3

dn1/16
.

Q (B1 ≥ 34) ≤ exp

{
−34 log

(
34dn1/16

2000(log n)3

)}
≤ exp

{
−2 log

(
C · n17/16

(log n)51

)}
= o(n−2).

and the same bound holds for B2 as it has smaller mean. Thus,

Q(B1 +B2 ≥ 68) ≤ Q(B1 ≥ 34) +Q(B2 ≥ 34) = o(n−2).

By Lemma 8.3,
Q (XSIM = ∞) = Q (|badT | ≥ badmax) = o(n−2).

As both terms in (3) are o(n−2), we conclude

Q
(
|Ibc| ≥ 68

)
= o(n−2).

�

Combining Lemmas 8.2 and 8.4,

Q (|ERR| ≥ 73) = Q
(
|Idisc|+ |Ibc| ≥ 73

)
≤ Q

(
|Idisc| ≥ 5

)
+Q

(
|Ibc| ≥ 68

)
= o(n−2).

9. Distinguishablility: concluding the coupling and proving Lemmas 4.4, 4.2

Proposition 9.1. In every instance of the joint distribution, at the end of time, if dist(C(BR(x)), C(BR(u))) ≤
C2 +73, there exist no more than C2 +73 delete (or add) operations, each removing (or adding) at most 2R
edges in the cycle structure, that turn C(BR(x)) into C(BR(u)).

Proof. In the previous sections we bound dist(C(BR(x)), C(BR(u))) by deleting edges in C(BR(u)) and
C(BR(x)) until the remaining cycle structure is that of C(Kt(R)(x)). Because operations are reversible, we
only need to look at delete operations in both graphs. We will prove that, in both graphs, we can delete in
such a way that removes at most 2R edges in each deletion. In fact, if in each step we delete the edge e that
is not in C(Kt(R)(x)), and that one of e’s vertices has the maximum depth, and then recursively prune the
leaves, the maximum depth of what remains of the cycle structure does not exceed R (otherwise, the new
deepest vertex has its depth changed by the operation, so before the operation it would have greater depth
than e’s incident vertices). Therefore, in each delete operation we remove no more than 2R edges. �

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 25

Combining two previous sections, we obtained that Q(dist(C(BR(x)), C(BR(u))) > C2 + 73) = o(n−2).
Similarly, Q(dist(C(BR(y)), C(BR(v))) > C2 +73) = o(n−2). Let C3 ≡ 2C2 +2 · 73, and E5 denote the event
that both distances ≤ C2 + 73 in the joint distribution. Then Q(not E5) = o(n−2). The goal is to prove
Lemma 4.4, that is, P(E and not E0(u,v)) = o(n−2).

P(E and not E0(u,v)) = Q(E and BR(u) ∼= BR(v)) ≤ Q(not E5) +Q(E , BR(u) ∼= BR(v), and E5)
It remains to prove that the second Q is o(n−2). By Lemma 4.5, E and dist(C(BR(x)), C(BR(u))) ≤ C2+73

implies that the neighborhood structure of x, TR(x), is in Ωdir,R.
Further, let Ξ denote the subset of possible cycle structures C for which γ(C) ≤ (2e log n)2, and note that

Q (C(BR(y)) /∈ Ξ) = o(n−2) by Lemma 2.12.
By Proposition 9.1, BR(u) ∼= BR(v) and E5 implies that we can turn C(BR(y)) into C(BR(x)) with no

more than C3 add/delete operations, where each operation adds/removes at most 2R edges. Let this be
event E6. Altogether this gives

Q(E , BR(u) ∼= BR(v), and E5) ≤ o(n−2) +Q(TR(x) ∈ Ωdir,R, CR(y) ∈ Ξ, E6)
Since the x- and y-explorations are independent under Q, the RHS is upper bounded by

(9.1) on(n
−2) +

∑
C∈Ξ

Q (C(BR(y)) = C)Q(TR(x) ∈ Ωdir,R, E6)

It follows from Lemma 4.6, taking ρ = 3, that if R ≥ R+(∆) with ∆ sufficiently large, then
max {Q (TR(x) = T ′) : T ′ ∈ Ωdir,R} � n−3.

There is a bijection between neighborhood types and cycle structures. For C = C(BR(y)) ∈ Ξ, the number
of C(BR(x)) that satisfies E6 is, crudely, at most (log n)8C3 : first, the number of edges in C is ≤ 2Rγ(C) ≤
(log n)3.1. Each operation can increase the total number of edges by at most 2R ≤ 2Rmax ≤ (log n)1.1,
so during C3 add/delete operations the total number of edges cannot increase beyond (log n)3.2. Recalling
Definition 2.10, for each add operation it suffices to either specify the start point, end point, length of the
new segment, or, the start point, length of segment, length of hanging cycle. For each delete operation it
suffices to specify a single cut edge. Note that due to E6, the length of the new path and hanging cycle
cannot exceed 2Rmax. So number of possible operations (including the identity operation) at each step is
then ≤ 3(log n)3.2+3.2+1.1 + 1 ≤ (log n)8. Given any C ∈ Ξ, the number of distinct C(BR(x)) satisfying E6 is
bounded by ≤ (log n)8C3 as claimed. Then altogether

Q(TR(x) ∈ Ωdir,R, E6) ≤
(log n)8C3

n3
� n−2

Substituting into (9.1) proves Lemma 4.4.

u v

w w

w w

L◦ + 1

Figure 10. Case 1: Solid triangles represent trees that do not intersect the rest of the
graph, while dotted triangles represent descendant subgraphs that may not be trees, and
may intersect the rest of the graph. If there is a direction w1 ⊆ w of size |w1| = d− 2 such
that BL◦(w1) ∩ BL◦(w) = ∅, then BR(w1) cannot be isomorphic to BR(ϕ

−1(w1)). Thus
BR(u) 6∼= BR(v). Note that w does not have to be the d− 1 downward directions, as shown
in the figure. The cases where w contains v bear the same analysis.

26 ALEXIS ZHOU AND CLAIRE ZHANG

u v

w w

w w

L◦ + 1

Figure 11. Case 2: If there is not a good direction w1 ⊆ w of size |w1| = d− 2, BL◦(w)
is not a tree. Thus BR(w) 6∼= BR(w), and so BR(u) 6∼= BR(v).

9.1. Proof of Lemma 4.2.

Proof. Given a G that satisfies (1) (2), let u 6= v ∈ V . We only consider the subgraph H = BL◦+1(δu) ∩
BL◦+1(δv). By (1) the total number of within BL◦+1(δu) collision(s), within BL◦+1(δv) collision(s), and
u − v crossing(s) combined does not exceed 2. For each of such collision/crossing edge, composed of two
half-edges g, h, trace the ancestors of g, h until we reach the half-edges g′, h′ attached to u or v (g′ can be
g itself). This gives us at most 4 half-edges attached to either u or v. And there are at least 2 · 3 − 4 = 2
remaining half-edges attached to u or v, whose descendants do not contribute to a collision or crossing. Let
one of them be e, which matches half-edge f attached to vertex w. w /∈ {u, v} since e does not lead to a
self-loop or crossing.

WLOG e is attached to u. Let w = δw\f be the d− 1 downward directions of w. No vertex in BL◦(w) is
part of a collision or crossing. No vertex in BL◦(w) has an edge in H with a v-vertex (so BL◦(w)∩V (v) = ∅),
or with a u-vertex that descends from an half-edge in δu that is not e. Any path contained in H, that starts
from a v-vertex and reaches a vertex in BL◦(w), must enter BL◦(w) through edge u−w. BL◦(w) is a tree,
isolated from the rest of BL◦+1(δu) ∪BL◦+1(δv) except for edge u− w.

We prove by contradiction that BR+1(δu) � BR+1(δv). Let there be an isomorphism φ(BR+1(δu)) =

BR+1(δv). Let w = φ(w), then w is distance 1 from v, so w 6= w. Let f = φ(f), w = δw\f = φ(w). Then
BR(w) ∼= BR(w); BL◦(w) is a tree. BL◦(w) must be one of the following two cases (see Figures 10, 11):

Case 1: if there is a direction w1 ⊂ w, |w1| = d− 2, such that BL◦(w) ∩ BL◦(w1) = ∅, then directions
w1 and φ−1(w1) satisfy (a). This is because φ−1(w1) ⊂ φ−1(w) = w, and BL◦(φ

−1(w1)), BL◦(w1) are
both trees. By (a), (b) holds, that is, BR(φ

−1(w1)) � BR(w1). Contradiction.
Case 2: for any half-edge k ∈ w, BL◦(w) ∪ BL◦(w\k) 6= ∅. So there is a non-self-intersecting path in

BL◦(w) that does not contain k, starting at w and ending at a vertex in BL◦(w): the latter implies that
the path must go through edge u−w. Pick an arbitrary k ∈ w and let the path be π1 ⊂ BL◦(w). π1 starts
with k1 ⊂ w. Given BL◦(w) ∩BL◦(w\k1) 6= ∅, there is another non-self-intersecting path π2 that does not
contain k1 and starts with k2 ⊂ w. Thus, π1, π2 depart w in two different edges. Both paths go through
edge u − w. Trace π1, π2 from w to w. Let x be the first vertex, other than the start w, shared by both
paths. x exists because u is shared by both paths. Moreover, x 6= w because neither path self-intersects.
The sections of π1, π2 respectively from w to x do not share any edge, as k1 6= k2. Walking from w to x along
π1, and back to w along π−1

2 , forms a cycle in BL◦(w). This contradicts the isomorphism which requires
BL◦(w) to be a tree.

As a result, BR+1(u) � BR+1(v) for any u 6= v ∈ V . We can reconstruct G. �

References
1. Béla Bollobás, Distinguishing vertices of random graphs, Graph Theory (Béla Bollobás, ed.), North-Holland Mathematics

Studies, vol. 62, North-Holland, 1982, pp. 33–49.
2. Frank Harary, A survey of the reconstruction conjecture, Graphs and Combinatorics (Berlin, Heidelberg) (Ruth A. Bari and

Frank Harary, eds.), Springer Berlin Heidelberg, 1974, pp. 18–28.
3. Paul J. Kelly, A congruence theorem for trees., Pacific Journal of Mathematics 7 (1957), no. 1, 961 – 968.

AN UPPER BOUND OF THE RECONSTRUCTION RADIUS 27

4. Elchanan Mossel and Nathan Ross, Shotgun assembly of labeled graphs, IEEE Transactions on Network Science and Engi-
neering 6 (2019), no. 2, 145–157.

5. Elchanan Mossel and Nike Sun, Shotgun assembly of random regular graphs, arXiv preprint arXiv:1512.08473 (2015).
6. Nicholas C Wormald et al., Models of random regular graphs, London mathematical society lecture note series (1999),

239–298.

Appendix A

Here we reproduce Lemma 7.5 and prove it.

Lemma A.1 (Lemma 7.5). Let N be a graph rooted in t where each vertex is of distance ≤ r from the root.
Then if edge e is in some cycle C, there must be some cycle C ′ with length ≤ 2r + 1 such that e ∈ C ′.

Proof. Given the fixed H, we do any BFS exploration starting from v. Let C be the shortest cycle containing
e, and the vertices of e are s, t with depth(s) = dist(s, v) ≤ dist(t, v) = depth(t).

If e is a collision edge in the BFS, then consider the BFS upward path from s to v, and the BFS upward
path from t to v. The two paths first intersect at w (w could be v). Then w, s, t, w is a cycle of length
≤ dist(s, v) + 1 + dist(t, v) ≤ 2d+ 1.

If e isn’t a collision, then dist(s, v) < dist(t, v). We travel along C in the direction of s → t. Let x → y
be the first edge we find on C such that dist(x, v) ≥ dist(y, v) (the first non-downward edge; x, y exist as
d < ∞; x can be t). Let π be the BFS upward path from y to v. Then x − y /∈ π. Also, if e ∈ π, it must
be t → s in π. Then we can replace the t → x → y part of C with the shorter y → t part of π, forming a
shorter cycle containing e: absurd. Thus, π does not contain e. Consider the path x → t → s → v and the
path (x → y)∪π. Remove edges above their first intersection (e won’t be removed). This is a ≤ 2d+1 cycle
C ′ with e ∈ C ′. �

