THE GAUSS CIRCLE PROBLEM AND FOURIER QUASICRYSTALS

RONI A. EDWIN AND ALLEN LIN

ABSTRACT. The Gauss circle problem asks for an approximation to the number of lattice points of
72 contained in B, the disk of radius  centered at the origin. Upper, lower, and average bounds
have been established for this number-theoretic problem and have been generalized to any lattice
in any dimension. We extend this problem to a more general class of structures known as Fourier
quasicrystals. Recent work from Alon, Kummer, Kurasov, and Vinzant provides an upper bound
#(A N By) = coVolg(Br) + O (rdfl) for any Fourier quasicrystal A C R? of density co, where
B, is the d-dimensional ball of radius r. In this paper, we improve the upper bound for any Fourier
quasicrystal, by showing we can write # (A N By) = ¢oVolg(Br)+0 (7“‘9(A))7 where % <O(A) <d-1
is some exponent depending only on the dimension d and the growth rate of the spectrum S of A. In
the special case d = 2, we also prove lower and upper bounds for the average of the error.
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1. INTRODUCTION

The Gauss circle problem is a classic problem in number theory. It asks for the number of integer
lattice points that lie in B, the disk of radius r centered at the origin. Note 72 is a reasonable
approximation because each lattice point is contained in one unit square, and so the real task involves
analyzing the error in this approximation. A rigorous formulation is as follows. For a discrete set
X C R? with density p(X), we define the corresponding error term

Err (r, X) = # (X N B,) — p(X)7nr?
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2 THE GAUSS CIRCLE PROBLEM AND FOURIER QUASICRYSTALS

that measures how good of an approximation p(X)nr? is to # (X N B,.). Here the density p(X) is
given by
X N B,
p(X) = lim 7#( F; )
r—00 wr
With Z?, Gauss [§] proved that Err (r,Z?) = O(r). This upper bound was improved to Err (r, Z?) =

@) (T%) by Voronoi [19], Sierpiriski [16], and van der Corput [I§]. In 2003, Huxley [12] proved the

current (peer-reviewed) best bound of Err (T, ZQ) =0 (T%>, though a recent preprint [I5] reports a
marginal improvement of Err (r, Zz) =0 (7"0'628966351948"'+5) for all € > 0. On the other hand, Hardy

[9] showed that Err (r,Z?) # O (r%) by proving

2
limsup L2 (29|

: AR
r—00 rz (IOg ’I")Z

The conjecture on the bound of this problem due to Hardy is Err (r,Z?) = O (r%“) for all ¢ > 0,

which he proved [I0] to be true in an average sense; that is,

e 2 _ 3+e
§/1 ‘Err(nZ)‘dr—O(R )

for all € > 0 (as R — o0), though this upper bound is not sharp: Bleher’s [4] results imply that

11%/1R|Err(r71")|dr =0 (R%)

for any full-rank lattice I' C R2. The analysis of the error term Err (r, ZQ) to a significant extent relies
on the Poisson summation formula, which says for a full rank lattice I' € R? and any Schwartz function
f, we have

~ 1
Zf(fc) = WWF) Z fw),
zel wel™

where I'* = {w € R?| (z,w) € Zfor all 2 € T'} denotes the dual lattice. The versatile nature of the
Poisson summation formulas leads to the natural question of whether these bounds hold for more
general structures that admit a similar summation formula. The particular class of structures we
examine are known as Fourier quasicrystals.

1.1. Fourier Quasicrystals. We follow the definition of Fourier quasicrystals given in Definition 1.1
in [2]. To that end, a discrete (locally finite) set A C R? is a Fourier quasicrystal if there exists another
discrete set S C R? and coefficients (c;) seg indexed by S, called the spectrum and Fourier coefficients
of A respectively, such that for any Schwartz function f € S (Rd),

STF0) =St (s), (L1)
AEA s€S
and the complex coefficients (c;),. g satisfy the polynomial growth condition
#ANB)+ Y e =0 (r")
seSNB,.

for some P > 0. In that case, we say A has coefficient growth rate P. In a similar vein, we call
N € [0, 0] a growth rate of the spectrum S provided # (SN B,) = O (T‘N).

It is worth asking if there are any non-trivial examples of Fourier quasicrystals, by which we mean
sets that are not finite unions of translates of lattices. For d = 1, Kurasov and Sarnak [14] gave the first
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examples of uniformly discreteﬂ Fourier quasicrystals that are not periodic structures. As a consequence,
they also obtained examples of uniformly discrete one-dimensional Fourier quasicrsytals that meet any
arithmetic progression in a finite number of points. In all dimensions, Alon, Kummer, Kurasov and
Vinzant [2] constructed uniformly discrete Fourier quasicrystals that intersect periodic configurations
in a finite number points. Moreover, the spectrum S of the Fourier quasicrystals coming from their
construction satisfy the growth rate # (SN B,) = Cr™ + O (r¥=!), where N is the dimension of the
ambient space used in constructing the Fourier quasicrystal. Thus, there exist Fourier quasicrystals
that are not finite unions of lattices, and we refer to such Fourier quasicrystals as non-trivial Fourier
quasicrystals.

When N = 2 and A is uniformly discrete, A is essentially a periodic configuration. In turns out in

this case that
Z les|] = O (7“2) , (1.2)
s€eSNB,

which can be seen by noting that |cs| < ¢o from the summation formula (1.1)), or from Theorem
to be introduced. Under the condition in (1.2), Theorem 5 in [7] implies that A is a finite union of
translates of several full-rank lattices.

Example 1.1. Consider the Fourier quasicrystal given by
A={(z,y) € R*| p(z,y) = 0, gq(x,y) =0},

s (o (e ) e o (- )
oo () o ) oo )
q(z,y) = sin <7r2 (—314x — \g?y>> Cos (27r (ﬁx + \5/03y>> — sin <2w <\1/§)x + ‘5/5’@/))
(o (e ) o (e 2

This Fourier quasicrystal comes from the constructions in [2]. Specifically, the set A is precisely
A= {z eR?| exp(2miLz) € X},
where L is the matrix
—m/34 —+/117/56
L=|3V7/65 —3/10
V5/9 V/3/25
and X C C3? is the algebraic variety defined by the equations
fl(Zl, 22, 2’3) = (1 — 21) — 21— 22+ (1 + 2’i)Z1Z2 =0,
fQ(Zl, 22, 23) = 1 — (1 -+ Z)Zl — (1 — Z)Zg —+ Z1%23 — O
The spectrum S is a subset of the set
{Ltk | ke 73 with at most 1 sign change in k discounting zeros} .

Figure|1| shows A given by (1.3)).

IA set X C RY is uniformly discrete if there exists a § > 0 such that ||z1 — z2|| > § for any distinct z1, 22 € X.
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FIGURE 1. A non-trivial Fourier quasicrystal A (left) as in (1.3) with its spectrum S
(right)

Fi1cURE 2. The spectrum S of A in Figure |1, where each s € S is represented by a
disk with radius proportional to |c|

The authors in [2] give a number of properties of Fourier quasicrystals in RY, among which they
showed that # (AN B,.) = ¢oVolg(B,)+0 (rd_l) for any Fourier quasicrystal A C R%. Here B, denotes
the closed ball of radius 7 in R?, and Voly the Lebesgue measure on R?. It is natural to ask how tight
this bound is, and this among with the results of the Gauss circle problem in the plane motivate our
generalization of the Gauss circle problem to Fourier quasicrystals. Like with the case of Z2, for a
Fourier quasicrystal A C R? with summation formula as in , we define its error term Err(r, A) for
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r > 0 by
Err(r,A) == # (AN B,) — conr?. (1.4)

We also define the normalized error term Nerr(r, A) by

# (AN B,) — comr?

1
2

Nerr (r, A) :=

: (1.5)

so Nerr (r, A) = r—2 Err(r,A). It is often more convenient to work with Nerr when comparing the error
term to 7’%, since that is believed to be the right order of growth for the error. Like with the case of
72, we similarly concern ourselves with bounding Err(r, A). We were able to show an upper bound of
the form Err (r, A) = r®®) for any uniformly discrete Fourier quasicrystal A € R?, with the exponent
O(A) € (%,1). We further developed lower and upper bounds for the average of the error.

We first describe previous works ([4] and [6]) on lattices. The authors in [4] instead consider the
corresponding normalized error term as in where B, is replaced by an oval scaled by a factor of
r. Note this includes the analysis of Err (r,T") for any lattice T', since the image of a circle under an
invertible linear transformation L: R? — R? is an oval (per the definition in [4]). To that end, the main
results in [4] can be phrased as follows: When A = LZ? + « is a lattice shifted by some translation
a € R? and linear transformation L € GLs (R), the normalized error term Nerr (r, L7? + a) belongs
to the Besicovitch space (see [3]) B? of almost periodic functions, which implies Nerr (r, LZ? + «) has
a limiting probability distribution vy, 4, in that for every bounded continuous function g € C°(R), we
have

i L[ 2 = V.ol
lim E/o g (Nerr (r, LZ —l—a))dr—/Rg(x)d L,a(T). (1.6)

R—o

Additionally, they showed the limiting probability distribution vy, , has mean 0 and finite variance
o (a; L)%, In the case where A is simply Z2 shifted by some translation o € [0,1)2, the authors in [6]
additionally show the distribution vy, o is unbounded, so

2
lim sup w —

1
r—00 T2

(1.7)
Our work involved trying to generalize these results to any Fourier quasicrystal A C R2, with some
success. Our main results are as follows.

1.2. Main Results in R2. Our first two results concern the pointwise error bound.

Theorem 1.1. Let A C R? be any Fourier quasicrystal, and suppose A has coefficient growth rate P.
Then

#(ANB,) = comr® + O (rlfzp%l) ,

For example, when A is a lattice, P = 2 and so we get Err (r,A) = O (r%)

It is interesting to note we can recover the exponent of % on the Fourier space for all coefficient
growth rates P rather than the physical space, if the Fourier quasicrystal is further assumed to be
uniformly discrete.

Theorem 1.2. Let A C R? be any uniformly discrete Fourier quasicrystal with summation formula as

in (1.1). Then
Z les|® = conr? + O (r%) .

seSNB,
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Applying Cauchy-Schwarz, we get the following corollary:

Corollary 1.2. Let A be a uniformly discrete Fourier quasicrystal with summation formula as in (1.1)).
If there exists some N such that # (SN B,) = O (r’V) asr — oo (like the constructions in [2]), then

In that case, the bound in Theorem reduces to
#(ANB,) = conr®* + O (’/‘NL“> .

We can improve the bound given in Theorem by instead considering the error Err(r,A) in an
average sense. We can note the fact that the distribution vy, o in has finite variance and mean 0
implies when A is a lattice, the average of |[Err(r, A)| over the interval [0, R] is upper bounded by (up
to a constant factor) Rz. This next theorem generalizes this observation:

Theorem 1.3. Let A C R? be any Fourier quasicrystal with spectrum growth rate N € N. Then

1 (B _
E/o |Err(r,A)|dr=O(R%+R§’%f—i‘).

As noted earlier, when A is a lattice we can take N = 2, and the upper bound reduces to O (R%>

We also obtained a lower bound on the error term |Err (r, A)|, illustrated in the following theorem. The
problem is radial in nature, so we introduce the following radial quantities ¢(y) and Sy.q given by

Z ¢y and  Spaq = {||s|| ‘ se 5\{0}}. (1.8)

lls H v

Theorem 1.4. Let A C R? be any Fourier quasicrystal with summation formula as in (1.1)). Then
1 L(y
liRrriiOr})f E/l |Nerr (r, A)|* dr > 7.2 Z |
YESrad
In particular, this implies Err (r,A) = Q (r%).
Remark. IfNerr (-, A) is Besicovitch B? almost periodic, then the first inequality is in fact an equality.
This is the case when A is a lattice or a finite union of translates of lattice, as shown in [4].

It is worth discussing the sharpness of our results. It is currently unclear to us if the upper bounds
in Theorem are uniformly sharp. For small values of growth rate N, say N = 3,4 we do not believe
they are sharp, as heuristic arguments and numerics seem to suggest the exponent % may be the best.

Example 1.3. Figure @ for example, shows the behavior of fOR |Err (r, A)|dr as a function of R for
the Fourier quasicrystal A given by

A= {(z,y) eR*| f(x,y) =0, g(x,y) =0},
f(z,y) = sin(mwz) cos(my) + sin(wy) (sin(rz) + cos(rz)), (1.9)
g(x,y) = sin(mz) cos (7r (—\/590 + \/33/)) — sin (7r (—\/53: + \/§y)) (2sin(7z) + cos(mx)).

We believe in this case the error would grow slower than that of Z2, since this Fourier quasicrystal does
not have the radial symmetry 7> has. We refer the reader to Appendi:r for further numerics.
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Iogfé?\ErrH dr

85"
: s
8ol Lo — 1.52889 log(R) - 0.309488
o -
[ 0
r o® R
o = o log([;|Errr| dr)
7.0- . .
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FIGURE 3. The log-log plots of fOR |Err(r, A)| dr and 0.73382R1-52889 with respect to
R of the Fourier quasicrystal A given by (1.9)). Here N = 3.

Another issue concerns the sharpness of the pointwise error bound. While the result in Theorem
implies
. Err (r, A
lim sup M

r—o0 r2

>0,

the limit superior in the left-hand side may not be finite; as stated earlier, it is infinite if A = Z2 + a,
but we do not know if this holds in general. To that end, a natural question to ask is whether there
exists a uniformly discrete Fourier quasicrystal A C R? for which

E A
lim sup M < 00

r—00 rz

1.3. Results in Higher dimensions. Before going over our results in higher dimensions, let us first
go over results in higher dimensions for the lattice Z? and its translates, and point out some of the
subtleties. For example, for the integer lattice Z¢, d = 3 appears to be the most difficult; the state of
the art results on this can be summarised in the following inequalities:

#(Z* N B,) = Vol3(B,) + O (r*+) ,
due to Heath-Brown [11], and
# (Z° N B,) = Vol3(B,) + Qx (r\/log r)

due to K.M. Tsang [17]. Here F(z) = Q4 (G(z)) means that limsup,_, . gg; >0, F(z) =Q_ (G(z))
means —F(z) = Q4 (G(z)). F(z) = Q4 (G(x)) says that both of these assertions are true, and
F(z) = Q(G(x)) means F(z) # o(G(z)). For larger values of d, the problem is essentially solved,
in the sense that the error is upper bounded by (up to a constant factor) r?=2, and least Cr9¢=2 for
arbitrarily large r. Formally, for d > 5,

# (2N B,) = Vola(B,) + O (r*7?), (1.10)
# (2% N B,) = Vola(B,) + Q4 (r*7?). (1.11)

See the survey article [I3] for more on this. One might naturally wonder what happens if instead of
74, we consider a shifted lattice Z¢ + «; similar to the work in [6], Bleher and Bourgain [5] initiate a
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study of the normalized error term for the shifted lattice in R?, which we will denote by
# ((2* + a) N B,) — Vol (B,)

a-1 )
r-z

Nerr (r, 7% + a) =

following their normalization. Unlike with d = 2, the behavior of this error term is highly sensitive
to choice of shift & € R%. For example, the results in and show for « = 0 and d > 5,
Nerr (r, Zd) grows like 7“z>. On the other hand, Bleher and Bourgain [5] showed that under an appro-
priately “irrational” shift «, Nerr (r, 7 + a) retains the Besicovitch B2 almost periodicity observed
in R2. This peculiarity in high dimensions suggests the behavior of the error term is highly sensitive
to the radial symmetry of the Fourier quasicrystal; a lack of radial symmetry heuristically means the
error behaves less erratically. For comparison, our Theorem generalizes as follows.

Theorem 1.5. Let A C R? be any Fourier quasicrystal, and suppose its coefficients have growth rate
P. Then

# (AN B,) = coVoly(B,) + O (r%) ,

Similarly, Theorem enjoys the following generalization.

Theorem 1.6. Let A C RY be any Fourier quasicrystal with summation formula as in (I.1]). Then
> lel?=0(").
seSNB,
Furthermore, if A is also uniformly discrete, then we have the finer estimate

> Jesl? = coVola(B,) + O (rdii”;f)) _

seSNB,

We get the following corollary by applying Cauchy-Schwarz.

Corollary 1.4. Let A be a Fourier quasicrystal with summation formula as in (L.1)). If there exists
some N such that #(SN B,) = O (rVV), then

Z les| =0 (7“#) .

s€eSNB,.

In that case, the bound in Theorem [I.5] reduces to
#(ANB,) =y Voly(B;) + O (T%ﬂ(d—n) .

Unlike Theorems[I.1]and [[.2] Theorems[I.3]and [I.4]do not generalize analogously, though we conjecture
that

# (AN B,) = cyVola(B,) + (r;) .

The breakdown of the paper is as follows. In Section [2] we introduce a number useful lemmas used
in proving our main results. In Section [3| we develop the pointwise error bounds (Theorems and
[1.6). In the proof, we introduce a smoothed out version (on a scale of some parameter ¢ € (0,1)) of
the error term, which is more amenable to analytic methods. In Section [d, we develop an expansion
for this smoothed out error term, with a lower order term independent of the parameter ¢t. Then in
Section |5| we develop upper bounds for the average of the error (Theorem [1.3). Finally in Section [
we develop the lower bound for the normalized error (Theorem for d = 2. Both Sections and
rely on the expansions developed in Section
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2. PRELIMINARIES

2.1. Notations and Conventions. Throughout the rest of the paper A C R¢ (we will largely focus
on d = 2) denotes any Fourier quasicrystal with the summation formula

Y FN = ef(s)
AeA s€S

and spectrum growth rate IV, typically an integer, as defined in Subsection We also use the
notation f(a;) < g(x) to mean f(x) < Cg(x) for some constant C' > 0 independent of the variable
z, and f(z) Say,....a, 9(x) to mean f(xz) < Cg(z) where the constant C' depends on the parameters

ai,...,a,. For any x € R% we define the Japanese bracket as (z) = (1+ |z|| )%7 where ||| denotes
the Euclidean norm in R%. We let B,(z) = {y € R?: ||y — || < r} denote the closed ball of radius r
in R? centered at x, and for z = 0, we drop the 0 so that B, = B,.(0). Finally, we denote by 14 the
indicator function for a set A C R%. We also introduce the following family of mollifiers:

Definition 2.1 (Radial Mollifiers). Let ¢: R% — [0, 00) be a fized smooth radial non-negative function
supported on By, with [y, ¢ = 1. Let ®: R>q — R be such that $(x) = ®(||z||). For any t € (0,1),
define

oila) = o (5) s Gilw) = B(ltwl)).

Then we say (pt)ye(0,1) % o family of mollifiers.

We fix an arbitrary ¢ that we use in the rest of the paper. For convenience, we state the following
lemma. We omit the proof, as it is fairly simple.

Lemma 2.2. Let p; be the mollifier as in Deﬁm'tion and pick r > 1. Then for any x € R?,

Ip,_,(z) <(1p, *x¢:) (x) < 1p,,,(2).

As a preliminary result we have the following proposition.

Proposition 2.3. Let X C R? be a discrete set, and let (bz)gex be complex coefficients indexed by X .
Let 6 > 0 be the separation of X around 0, i.e., X N Bs C {0}. Suppose there are constants Bx > 0
and P > 0 such that the coefficients b, satisfy the growth rate

Z [b2] < Bxr?  for all r> 6.
reXNB,

Then for any a > 0 with a # P, there exists a constant W5, p > 0 such that for any t > 0, we have

b p(t -
> ||§(||f b < B Wonn (L+17).
z€X\{0}

—P-1

Proof. We use dyadic decomposition. Because @ is Schwartz, we have |p(x)| < Cp (x) for some
constant C'p > 0. Thus,
b, 3 ()] |ba| (tz)~ " |bs | (tz) ™"
2 el <O 2 TR O Z 2 Pre Y

zeX

zeXx\{0}
2 ko<||z||<2ktts

zeX\{0}
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Note (tz) 77! < <2k(5t>_P_1 when 2%§ < ||z||, so

—P—-1 —P-1
[b| (t2) "1 _ (2*0t) (2"ot) kg P
< byl < ~—L By (2815
2 Rl S w2 Ml Tmm B ()
2k§<||z|| <25 t1s 2k5< ||z || <21

where in the last inequality we used the growth condition on the coefficients b,. Summing both sides
over k € NU {0} and substituting this into (2.1 implies

Z 5. (t)) < BxCpst—*2P Z ok(P—a) <2k5t>_P_1 )

cexoy 7l =
We partition the last sum over k into 2¥§t < 1 and 286t > 1. When |[|z|| < 1, we have (z) 7' < 1;
when ||z| > 1, we have (z)" 7~ < ||z ~F~1. Therefore, we obtain
b p(t
ALl NN I S LU N e SN BRCYY
zeX\{0} ||x|| keNu{0} keNuU{0}
2kst<1 2k§t>1

Recall P # a by assumption. To bound the second sum, we use the standard bound of the geometric
serie

(t0)~P71 ST ok < (1) P (g (1 -2 ) T = (127 ) T e (23)

keNu{0}
2kt5>1

For the first sum in parenthesis in (2.2)), from the formula for geometric series, we have

Z oh(P—a) _ 1 — 2(kot1)(P—a) < (1- 2P‘“)_1 if P < a,
keNU{0} 1—2P~a B (1 - 2afp)71 (&)aip if P> a,
2kst<1

where kg = [—1logy(dt)] — 1. Combining this bounds with that in (2.3) and plugging it into (2.2]), we
get

~ o1 _ o1 .
e (o B I T
e X0} fzlle — (1—271) 7 (3) P+ (1—20P) " (a0)* " if P>aq,
and the claim follows. O

If A C R? is a Fourier quasicrystal, it is shown in [2] that # (A N B,(z)) = co Vola(B,) + O (r?™1)
uniformly in x, and so if A is furthermore uniformly discrete, the proof above implies the following
corollary:

Corollary 2.4. Let A C R? be any uniformly discrete quasicrystal and a # d. Then

GOy ——

aeh =z~

TEA AEA\{x}

2When 206t > 1, then Y352, 27 % = 27koe (1 —2-e) 7! < (5t)> (1 —27) "L,
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3. POINTWISE ERROR BOUNDS
We now prove Theorem [1.5] restated below.

Theorem 3.1. Let A C R? be any uniformly discrete Fourier quasicrystal, and suppose its coefficients

have growth rate P. Then
(2P—d)(d—1)
Err(r,A) == # (AN B,) — ¢o Volg (B,) = O (rﬁ> '

Proof. To bound Err(r, A) using the summation formula, we use ¢; to smooth the error term on a scale
of t: To that end, we define the smoothed out error term of scale ¢, denoted Err;, by

Erry (r,A) = Z (1p, * ) (A) — coVola(B,). (3.1
AEA

We first bound the difference between Err(r, A) and Err;(r, A), which is on the order of r?~1¢. Second,
we use the summation formula to bound Erry(r,A). 1p, * ¢; is Schwartz, so applying the summation
formula to the sum in (3.1)), we have

rJy (2mr|s]])

d
Is]|2

Err; (r,A) = ré Z cs]l/B\1 (rs) p(ts) = Z cs@(ts)

seS\{0} s€S\{0}

: (3.2)

where in the second equality we use the well-known formula for the Bessel function of the first kind J
of order k
gyl
B (W) = = ——5—
[[wll=

Recall ¢ is radial, so we can also write this as

vl

r2Ja (277
Brry (r,4) = Y e(v)@(tw;(g”. (33)
YESrad

Recall p(z) = ® (||«]|). We then apply the asymptotic relation Ja (2)=0 (:C_%) to (3.2) to see that
|Err: (r,A)| < riT M
sesvoy 17

Let P be a coefficient growth rate for A, so 35 cgnp, |cs| = O (7). Applying Proposition [2.3] to the

above expression, taking P > %, we get

|Err, (r, A)| < ri7 e (P50, (3.4)

2 . < 1p, * ¢, < 1p,,, or alternatively

Ip,_, ¢ <1p, <1p,,, *¢; Summing over A € A, we get
Do (Lp, v 9) NS #UANB) <Y (L x 1) V). (3.5)
AEA DYSIIN

Note Voly(B,) = Voly(B;)r?. Subtracting co Volg(B1)r? from (3.5)) implies

Let t € (O 1), r > 1. We know from Lemmathat 1p

Erry (r — t,A) + co Volg (By) (r — £)* — ¢o Volg (By)
< Err (r, A) < Erry (r 4+ t,A) + ¢o Volg (By) (r + )" — ¢o Volg (By) 7.
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Note that for ¢ € (0,3), and r > 1, we have ¢ — (r — )* < 797, (r +¢)* — r? < r?~1t. Taking the
absolute value of both sides of the above inequality gives

|Err (r,A)| < 471 + max |Err, (r + 7, A)]|, (3.6)
Te{£1}
and combining this with the estimate in (3.4), we get

r 2

|Err (r, A)] < 7+ o
2

Choosing t = r~ P41 then gives
(d—1)(2P—d)
Err (r,A) =0 (7’ IP—d+1 )
as desired. 0

Finally, we prove the generalization of Theorem [I.2] given in Theorem [T.6] restated as follows.
Theorem 3.2. Let A C R? be any Fourier quasicrystal with summation formula as in (1.1)).
i. If A is uniformly discrete, then

Z |Cs‘2 = ¢oVoly(B,) + O (rd(dd{ll)) .

s€SNB,.

. If A is not necessarily uniformly discrete, the bound above can be weakened to
Z les]? =0 (rd) .
seSNB,
Moreover, we can bound the sum of the coefficients squared in an annulus, by
d(d—1)
Yoo lel Sttt

seS
r<ls<r+t

forte (0,%), r> 2.
In the proof, we use the following result of Alon, Kummer, Kurasov, and Vinzant [2].

Theorem 3.3 (Theorem 10.1, [2]). Let A C R? be any Fourier quasicrystal with summation formula
as in ([L.1). Let f € S (R?). Then

S leaf? f(s) = Jim S Y-
ses Rmreo VOld Br) ©€ANBR yeA
Proof of Theorem[I.6. We start with proving statement

We take t € (0,%), r > 1. Consider an arbitrary function f € S (R?). We write the equality in

Theorem [3.3] as
S Jeaf? £(s) = lim S Y
ses Treo VOld Br) zeAmBT yeA
and introduce a factor of # (AN Br) to get
i AN Br)
Z |CS| f T—>oo Volg(Br) #( AﬂBT Z Zf (37>

ses rz€EANBT yeA
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Recall the density of A is ¢, so

lim #(ANBr) (A0 Br)
T—o0 VOld(BT)

= Cp.
(3.7) then becomes
Z|cs| f(s) =co hm Z Z fly—a).
s€s *° 2eANBr yeA #( A N Br)
Pulling out the terms in the summation where y = x yields
sES z€ANBT yeA\{z}
From Lemma 2.2 we have 1p,_, <1p, *¢; < 1p,,,. Thus,
Z |CS‘2 < Z|CS|2 (1, *pt) (s) < Z |CS|2~
SESNB,_¢ ses s€SNBr4¢
Let f.: = 1g, * ¢, so the above inequality can be rewritten as
Yol frorals) < D0 el <D lesl frrrals):
seS seSNB, SES

The Fourier transform of f,; is given by

— _ 7‘2Jd 27r||w tw
fri(w) =1p, (w)P(tw) = el o ),

leoll %

where Jj, is the Bessel function of the first kind of order k. Note fr\t(O) =15, (0) = Voly(B

the asymptotic relation J% () =0 (x*%), we get

7@ ()

i
]2

Fralw)| 5
Substituting f = f,+ into (3.8]) implies
Z|Cs\2fr,t(8)=COV01d( ) + co hm AﬂB Z Z frt — )
s€S 7) w€ANBr yeA\{z}
Using the estimate (3.10)), for z € A,
— d—1 7] xT
Y |w-o| e Y B D)
yen{x) vemgoy 19 =21
Recall A is uniformly discrete, so from Corollary 2.4] we may write
> Bl
yeA\{z} ly — | =
independently of z. Averaging over x € A N By then gives

FanE. s >

2€ANBr yeA\{a} c€ANBr ye A (z} Hy x|

Zlcs|2f(s)=60f()+lglgo#Am By 2 2 fly—=), Vfes®RY.

frt ’<T% AQBT Z Z d+1>|57” 7

13

(3.8)

). Using

(3.10)

(3.11)
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and substituting this into (3.11)) implies
S lesl? frals) = coVola(By) + 0 (r'5'4= ")
ses
Note Voly(B,) = Volg(B;)r. Substituting this into (3.9) implies
coVola(By) (r — )4 + 0 (r e ) < 3 e < eoVola(By) (r+ 1) + 0 (r 2 ) .
s€eSNB,.

We then subtract c¢oVolg(By)r? from both sides and take the absolute value to get
d—1

,
P A e

2

> lesl® = coVola(By)r

seESNB,

Choosing t = p T implies

d(d—1)
Sprart

> lesl® = coVola(By)r

seSNB,.

as desired. This completes the proof of statement

We now prove statement fiii We start by substituting f = f,; into (3.8), and write it as

Z|Cs| fra(s) = hm m Z Z f/rjt(y_l")‘i‘ Z Z f/rjt(y_'r)

seS zEANBT yeANB1 () z€ANBr y€eA
ly—=z|>1
(3.12)
Recall fr+ = 1, * ¢, and from (3.10) we have
T |B(tw)|
—~ 2 |p(tw
Fra)| 8 = (3.13)

o] ™2

For each = € A, Theorem 10.1 in [2] implies # (A N B,.(x)) < Cr? for r > 1, for some C > 0 independent
of z. Applying Proposition to the set (A — ) \ By(z), we see that

d—1

d—1 | d—1
SR I UUEE) P
d+1 ~ T d—1>
= el 1%
ly—=z||>1

independently of x. Taking the average of this over x € AN By and combining this with the bound in

B-13), we get

AﬂBT Z Z frt —ZE St;I.

rzEANBT yeEAN
ly—zl|=1

Plugging this bound into (3.12)), we get

D lesl frls) = lim AmBT S Y —ac)+0( t—*) . (3.14)

s€S atEAﬂBT yEANDB; (z)



THE GAUSS CIRCLE PROBLEM AND FOURIER QUASICRYSTALS 15

We first quickly show that 3, g |cs|* = O (%). From Theorem 10.1 in [2], sup, cza # (A N By (2)) < oo,

and from the definition of f,;, fr+ = 1B, * ¢, we can see that fr\t(w)‘ < Voly (B;). So

B X X T ’
— rt(y — )| < co sup # (AN By(x)) Voly (B,) S re.
# (AN Br) zEANBr yEANB; () z€R?
Substituting this into (3.14) tells us > g les|® fri1.1(s) < 74, and combining this with (3.9), we get

Y sesnB, les|* < ¥, as wanted. Now, we show the other part of statement

From (3.9) we know that > _¢ les|® froia(s) < Y sesna, lcs|?, and we can further deduce
Do el <D el frrara(s).
s€SﬂBr+t ses
These two inequalities imply
S el < Sl Fraonn(s) — frna(s))
seS ses
r<|ls|<r+t
Combining this with (3.14]) implies
—_— d—1
> el <11;nSUP AmBT > X (fr+2tt( 2) —~ Fooealy — ))+7“ Tt

seS x€EANBT yeAﬁBl(x)
r<llsll<r+t

(3.15)
Recall f,; = 1p, * ¢, so
Frvanalw) = Frmea(@)| = [T, @) = o, )| 18(t)] < Vola (Byszi \ Brt) S 79711,
Plugging this into (3.15)), we get
1 - -
Z le]? < v 1thmsup7 Z #(AﬁBl(I))—Fr%t*%.
ses T—oe # (AN Br) z€ANBr
r<|lsl<r+t
As noted earlier, Theorem 10.1 in [2] implies sup,cpe # (A N B1(z)) < 0o, so this reduces to
Z les|? ,Srd_lt—kr%t_%. (3.16)
seES
r<llsli<r+t
Now, we consider two cases. If t <~ @+1, then then
> el X el
scS ses s
r<|lsl<r+t r<||sl| <rpr T
so using t = r~ T in , we get
Z les|? < P < (3.17)

seS
r<sli<r+t
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If on the other hand ¢ > rf%, then r?=1t > r%t’%, so (3.16]) implies

2 d—1

Z les|” S ré .
seS

r<|s||<r+t

Combining this with (3.17) tells us that in general,
< pd= s
S fel Sttt
ses
r<l|ls|<r+t
This completes the proof of statement O

4. EXPANSION OF THE SMOOTH ERROR TERM

Next, we perform a more detailed analysis on Err; in R?. We use Hankel’s asymptotic expansion of
the Bessel functions (see Chapter 9, page 364 in [I]) to write

M iTT
OEY Z‘ij;+o<xﬂj+g> (4.1)

re{x1} k=0 ¥

for fixed v, as x — oco. The constants ay ,(v) are explicitly given in [I]. In particular, when v =1, we

have the expansion
[ 2 3T _3

We use this formula for the Bessel function to prove the following statement about the smoothed out
error function Err;.

Proposition 4.1. Let A C R? be any Fourier quasicrystal. Let Erry (r,A) denote the smoothed out
error term of scale t defined in (3.1). Then we have

Tg (¢ 2miTrYy
Err, (7‘7 A) = 7“% Z Z a (7) ;/)6 + O(l) (43)
TE{£1} 7ESrud v

forr > 1 asr — oo, where £(y) and Syuq are as in (L.8), and coefficients a; = ag (1) = L. e
The constant in the big O is independent of t.

The proof of Proposition [£.1] relies on two supporting lemmas. The first lemma is as follows.

Lemma 4.1. Lett € (0,1), 7 € {£1} and k > 1. Then
Y/ P(t 2mwiTrYy .
> (7)®(ty)e _0 (T,f)

3
*2+k
'yeSmd ’Y

independently of t. Here T and k are considered to be fized, with t € (O, %) and r > 1 variables.
This lemma relies on the following lemma which provides some useful estimates.

Lemma 4.2. Let § > 0 be such that SN Bs = {0}. Let ¢: R — [0,1] be a fizred smooth function such
that ¥(z) =0 if z < % and Y(z) =1 ifx > 6. Fiz k > 1 and define GL.: R?* = C fort € (0,3), r> 1
by

@ (el () e2mirrlel

t —
N T

(4.4)
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Then
(r = llwl)™ 1
|M+% ’

G1w)| Spa

for all ||w|| > 1, for some M > 1.

1
[[wll2 ]

We first assume the truth of these lemmas and prove Proposition

Proof of Proposition[{.1 We start with the formula for Err; (for d = 2) given in (3.3)),

L()P(ty)rJy (2
e () = 3 L0000 @),
’Yesrad ’y
We use the asymptotic formula for J; given in (4.1)) to get

M

ag T(l)eQTriTT’y 1
Ji (27ry) = are (e o 1 "
re%zl} 1;) (2777“7)]““% PM+3 A M+E

Multiplying (4.5) by =, we get

M .
Ji (2 - 1 2miTrYy 1
rJp ( 7TT’Y) . Z Z g ( - +O< T M+5>. (4.6)
v Ty a2 V2R (2mry)t r TRy

By Proposition 2.3] if M is sufficiently large,

1)l s
Z M+35 = Z ||3||M+g < 0o

0€S,ma | s€S\{0}

We choose a sufficiently large M, multiply both sides of (4.6]) by £(v)®(¢v), and sum over Sy,q to obtain

M 2miTry N
Brre ()=t Y Y1) 32 VBT o ().

re{£1} k=0 YE e V2T (2mr7y)
Equivalently,
M .
- 1 27rz‘rr'y
B ()= 3 Z% sy L Qk co (Mt )
e{+1} 27T) : YESrad

We now use Lemma to bound the inner sums. Note that if ¥ > 1 then rz—k < r3, Invoking
Lemma [£.1] on the sum below implies for k > 1,

)27rz‘r7"y

Dy —20(1).

’Yesrad 7

Separating the sum in (4.7]) into £ =0 and k& > 1, we get

7- /¢ P(t 2miTry
Err; (r,A) = _ Z %o, Z (®(ty)e +0(1),
rezy V2T ESL, v

proving Proposition (] O

3
2

We now prove Lemma [4.2]
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Proof of Lemmal[].2 Let us recall the statement of the lemma. We defined G%L: R? — C in ([4.4) by
(without loss of generality we take 7 = 1)

@ (tfll) % () >l
[Ellka

Gr(x) =

where k > 1, and ¥ : R — [0, 1] is a smooth function satisfying ¢(z) = 0if < § and ¢(z) = L ifz > §
for some § > 0. Also, t € (O, %) and r > 1 are variables, and we want to show that

(r =l * L
|M+35 7

GLw)| Spa

1
]2 ]

where M > 1 is some large integer. Note G is a radial function, so we can write its Fourier transform
as a Hankel transform of order 0,

Grlw) = 2n [ MV

H(w) = 2 @ gy gl da.
0 q2

where ® denotes the radial component of @, i.e., p(x) = ®(||z||). We now use the expansion for Jy

introduced in (4.1)), writing

- > S metio( 1)
S pmtl M+3
oe{+1} m=0 xm 2 z :
for complex coefficients h,, ,. Thus

M

o ( ) ( ) 27irq B, Ue2ﬂ'iaq|\w|\ 1
t _ )
Gr(w)—27r/0 = > S )m+%+0 e TIIE dg

gzt veqz1}y m=o (2mglw||

q)(tq),(/}(q)eQTriq(T+a'HwH) ( 1 >
dg+ 0| —+
Z ZHme+ / gitk+m q HWHM+%

oe{+1} m=0

for complex coefficients by, », and the constant in the big O is independent of ¢ and r. Define F},: R — C

by
> P tq ,(p q 627riqm
Fy(z) :/0 ( q)1+(k42m dg,

so that we can write the above identity as

> ZH e PG+ ollel) +0 (g ) (45

oe{+1} m=0
We will now show that
| Fr(@)] Sp ()" (4.9)
independently of ¢. First, recall that ¢(q) = 0 if ¢ < g and ¥(q) = 1 if ¢ > §, and that @ is bounded.

Since k > 1, we have

IFTZ(I)|§/ idq (4.10)
P

2
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From the definition of ®, p(z) = @ (||z||), ®(¢) and its derivatives are rapidly decreasing as ¢ — oc.
Using integration by parts, we have

. 1 G ([ D(tq)p
50 = Gy |, o ()| e

for each integer p > 0. Using the product rule,

P (@(tq)w(q)>: > P! 8’“( 1 )3”2‘1>(tq)3”3¢(Q)

HaP T+k+ 105 pal I+k+
dgP \ g'THm 1T ey P1ID2ID3L OgPr \ i ) Qg2 OgPe
! P2 B (P2) (£q) ) (P3)
B Z Pﬂpp;lpsl (k,m) q1+1£+q;3jﬁm =
p1+p2+p3=p

for constants @ (k,m). The derivatives of ® are bounded, and similarly for ¢ since it is eventually
constant. Thus we can take the absolute value and use the fact that ¢ € (0,1) to obtain

’ o (‘I’(tq)w(Q))‘ - B(ml[g,m)@ < B(p)l[g,oo)(q)

qu gitk+m gl thtm PE

because k > 1 and ¢(q) = 0 if ¢ < 3. Substituting this into ({.11)) implies |F’,(z)| <p |2| 7P for each
integer p > 0. This combined with ([4.10)) shows that |F}, (z)| <, (z) " for each p > 0, so ([4.9)) follows.
Taking the absolute value of both sides of (4.8), we get the inequality that for ||w| > 1,

eh (r =l " !
‘Gﬁ("'})‘sk’p 1 +0 ||w||M+% ’

since o € {£1} and M is some large integer. This completes the proof of Lemma O

We now show Lemma [4.1| using Lemma hence completing the proof of Proposition [4.1

Proof of Lemma[{.1] We start by noting it is sufficient to show the lemma for 7 = 1; the case of 7 = —1
follows by conjugation. We first expand the sum in the lemma using the relation £(v) =  ses\ {0} Cs

. Isll=>
to obtain

L) R (ty)e™ ™ cs® (t]s])) e*mrlel
Z 7%Jrk - Z HSH%Jrk ’ (4.12)

YESrad s€S\{0}

As S is discrete, let § > 0 be such that SN Bs = {0}. Let ¢»: R — [0, 1] and GL be as defined in Lemma
and for reference,

® (tl|z[1) ¢ ([l]]) >l
[EdlEa

Gl(z) = (4.13)

Therefore, we have

cs @ (ts]) e le ¢
2. || s]| 2+~ =D _Gis),
s€5\{0}

so we now want to show Y~ ¢ csGL(s) = O (r%> independently of t. We apply the summation formula

to GL. We first check G%. € S (R?). This follows because  is Schwartz, ¢ € (0,1), and all the derivatives
of

_, v el el

3
=+
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are bounded over z € R%. The summation formula gives

s 27T’LTH Il
3 Uy g (1.14)

seS\{0} AEA

To prove Lemma it suffices to show that >, , é\ﬁ()\) =0 (r%> independently of ¢. Note we can
bound é\’; independently of ¢ and r: ® and ¢ are bounded, and ¢¥(z) =0 if x < g for some § > 0, so

from (£13),

@) s/ <o,
wo\sy ol T

since k£ > 1. Thus we can write

Slam s+ > @
AEA AEA
A1

and substituting the bound from Lemma we get

— (r— A" 1
GLN| S ( LA -,
A%‘ ‘ 3 Z% BE IA[M+3
[[AI>1

for some M > 1. Theorem implies # (ANB,) = O (7“2), and so from Proposition we may

deduce 3> aea |[A7M 2 < o0, s0
[PYES

S fao] s ¥ Sl (1.19

‘We now bound the last sum. We write this sum as

I I D T et D S DI (g

1
AeA i=1  AeA =177 AeA
[IANI>1 J<IMI<i+1 J<[IAI<i+1

and extract the maximum term in the inner sum to get

r—[IAll) #EA|j<|N <j+1 _ . :
5 =1 Z AT NI+ (1 g e, 5 <5 +1).
oL it
IA1>1

Theorem implies # (AN B,.) = comr? + O(r), and so #{ A€ A |j<|A| <j+1} S jforj > 1.
From the above inequality, this implies

DT ) | |
> T > jFmax (=MD A€ A, GSIA<j+1). (4.16)
NES 3=1

We consider r > 1, and analyze the max expression. We see that
(r=4)" ifj+1<r
max (= M) (A€ A, j<AI<5+1) $p {1 ifr—1<j<r
G—r+1)7" ifj>r
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Substituting this into (4.16)) gives

AEA
IAI=1 j<r—1 J>T

%/\
(]
N =
N=
+
e
+
]
<@
\lg bm\»a
=
hS]

If p is sufficiently large, then

j<r—1
so by taking p large enough, we get
{r—1lAh—" H/\H j?
1 Sp ri 4
2 G
IAl>1 j>r

We split the second sum on the right-hand side, writing

AEA JEN
IA[>1 r<j<2r j=2r
DD
~p p p
= h e (j—r+1)
Jj=2r
If j > 2r, then j —r > %, and so we get
r—|AID? L 1 1
DA LR S EY
EA A2 jen o ?
Ix[>1 j=2r

Substituting this into (4.15|) implies

and so from (4.12)) and ( -, we get

’YESrad ’Y

completing the proof of Lemma

5. AVERAGE BOUNDS

r— I A b
D A DV AR M oy,

=AD"~ s j? j*
<, rr + 1t —
Z By E P Z (j—r+1)P J%:V (j—r+1)P

21

The goal of this section is to consider the error term Err (r, A) in an average sense. Hardy considered
this problem in [I0], and we attempt to do something similar by proving Theorem restated below.
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Theorem 1.3. Let A C R? be any Fourier quasicrystal with spectrum growth rate N € N. Then
1 [ -
E/ |Err (r, A)|dr = O (R% +R%) .
0

Remark. The condition that N € N is purely cosmetic. We could allow N to be any positive constant
and the upper bound would still hold save for the inclusion of a \/log R factor in the upper bound when
_7
N=3.
The proof proceeds in a number steps, which we outline, before delving into the technical details.
The first involves bounding the average of Err(r, A) in terms of the average of Err;(r, A):

Lemma 5.1. Take R > 1 large, t € (0, %) Then

I 1 [t
—/ |Err(r,A)|dr§Rt+—/ |Errs(r, A)| dr.
R Jo R Jo

Proof of Lemmal[5.1] Recall Err; is the smoothed-out error term of scale ¢ introduced in (3.1]), given
by Erry (r,A) = >, ca (I, * ¢¢) () — comr?. Note that

Err (r,A) — Err; (r,A) = Z 1g.(N) — Z (1, * @) (N).
AEA AEA

From Lemma we can deduce (Lp, * @) (z) = 1p, (z) if ||z|| < r —t or ||z]| > 7 + t, and both
1p,|, |1, * ¢ <1, s0

|Err (r,A) — Erry (r,A)| <2#{AeA|r—t<|A| <r+t}=2#ANBry) —2#(ANB,_;). (5.1)
Observe that

R R+t R—t
/ (#FANB,yt) —# (AN B_y))dr = #(ANB,) dr — #(ANB,)dr
t 2t 0
R+t 2t
= #(ANB,.)dr — # (AN B,.)dr,
R—t 0
so from (5.1),
R R+t R+t
/ |Err (r, A) — Erry (r, A)|dr < 2 #(ANB,)dr < / r2dr < R*t.
0 R—t R—t
Applying the triangle inequality, we get
I I
—/ |Err (r, A)|dr < Rt + —/ |Err; (r, A)| dr. (5.2)
R Jo R Jo
O
Our next step involves bounding the average of Err;. For 7 € {—1,1} and ¢ € (O7 %), we define
Y v P t,y)eQﬂ'i'r’r'y
Xio(r)= Y ()% : : (5.3)

'Yesrad FY
so that from Proposition [I.I] we can write

Errg (r,A) =12 Z a: Xt -(r)+0(1), (5.4)
Te{x1}
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__3mTi
where a, = w (We omit the A in X; . since we consider the Fourier quasicrystal to be fixed

throughout our analysis). We then control the average of Err; by bounding the averages of \XtJ\Q for
T = —1,1. We start by squaring X, ,(r) and integrating to get

—/ X (r |dr7—/ Xor () Xrr () dr

Z C(71) £ (72)® (ty1) P (tya) e —2)

3
2
71,72E€Srad Vi

dr.

= E i
Recall that @ is Schwartz and @(z) = @ (||z||), so by Fubini’s theorem we may switch the sum with the
integral to get

1 (B () ()@ (ty) @ (ty2) 1 7,
E/ |Xt,r(7")|2 dr = Z () (72)§ (;/1) (t72) R/ 2T (n=2) g
0 71,72 E€Srad QElels 0

Evaluating the integral, we get

/ 2miTr(1i—2) g [ e2mirrin—) ]R e2miTR(n—72) _ 1
— T = — - . 9
R [ 2miT (y1 —72) ], 2miTR (71 — 72)

SO

f 2miTR(y1—72) _
l/ X )fPar= 3 L0V E)2 (M) () ¢ 1

3 3 5 — .
71,72 € Srad YL Y5 TR (71— 72)

We split this sum based on whether or not the difference v, — 1 is small. To that end, introduce the
following quantities of R > 1 and € € (0, 3): A1 (R, ), As4(R,¢), defined by

3 (1) €(12)® (t1) @ (tye) €™ mHn—2) 1

Ave (Rre) = . : 5.5
S V1,72€Sraa 71%72% 2miTR (71— 72) (5:5)
[v1—2|<e
((31) T2 (1) T (f73) e2mirin =) _ 1
Ay (Rie)= > (1) (72)3 (!1) (t72) 62 - ’ 56)
Y1,Y2E€Srad 712722 T (’71_72)
[v1—="2|>e
so that
1B )
7 ), [ Xer ()" dr = A1i(R, ) + Az (R, €). (5.7)

The most difficult task involves bounding A; ; and Ay, in terms of ¢, € and R, and optimizing the
choice of € to give the best bound. The following lemma gives us the desired bounds.

Lemma 5.2. Lete,t € (0 l). Then we can bound Ay (R,€) and A2 (R, ¢€) as defined in (5.5)), (5.6

by )2
|A1¢(R, 5)|<1—510gt+tN 2+25N%%7 (5.8)
and
[As. (R,)| S 1 (59)

Assuming these bounds, we prove Theorem and then prove the Lemma:
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Proof of Theorem[1.3 The first thing to do is optlmlze the choice of €. We first con81der the case
where N = 2. In that case we set € =t in and ( and add the resulting bounds in ,
to get

Av(R.&)| + [ Aoa(Roe) 1+ s

th
For N > 3, we let ¢ =tV =2, and add the resulting bounds in , to get
1 1
|A1 (R, e)| + [A24(R,e) S 1+ NT T RpN-3
The last bound above is the strongest of the two, so in general, we have
1 1

[A1a(Bo)| + | 424 (R9) S 1+ 7 + s

and so from ([5.7)),

1 (B 5 1 1

E/o | X, ()] d7’§1+tN7,%+W'
Combining this with (5.4]) implies

I 5 R 1
E/o |Err; (7, A)| drf,R—i—ﬂ-i-m.

The Cauchy-Schwarz inequality then implies

</0311%|Errt (r,A)Idr>2 < (/ORldr> (/OR}%'EW (T,A)Izdr>,

1 (B 1R ) ? R3 1
E/o |Err; (r, A)|dr < E/o |Err, (r, A)|” dr < R? + prre +tN7_%.

We then combine this with the bound in Lemma[5.1] to get

Rz 1
R/ |Err TA|dr<R2+ 3N7+tj\/7—g+Rt' (5.10)

SO

If N =2, we choose t = R‘f, and the above inequality reduces to
1 [ 1
= |Err (r, A)] dr < R>2.
R Jo

For N > 3, we choose t = R~ 3N371, so that

R% 3N_4
Rt = = R3N—T,
t— 6
and
1 3 _2N-3 N-—4
3 = R3N-1 2 S R3Nv=1

in which case the inequality in ([5.10]) reduces to
1 [ -
R/ |Err (r, A)|dr < R* + R3v-1,
0

proving Theorem [I.3]
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We have now reduced our task to proving Lemma [5.2} the proof of which is given below.

Proof of Lemma[5.2. We do this in two steps, first by proving the upper bound for A, ;, then proving
the upper bound for A; ;.
We start with bounding As . Recall from (5.6 that

Z (1) L (y2)® (t71) D (ty2) ' e2miTR(m—y2) _ 1

Az,t (R» 5) = 3 3 ; ’
Y1,¥2€Srad e 2mir R (’Yl N 72)
[v1—72|>€
Note that
e2miTR(1—72) _ 1‘ 1
< )
2miTR (71 —72) | — Ry — 72l
SO
1 14 /! D (tyy) P (¢
sy (o) < 5 )2 2]l (5.11)
1742 Srad g [v2 —ml
[v1—"2|>€
‘We have
Z 1€ (1) £ (y2) @ (t71) P (t72)] < Z 1€ (71) € (72) @ (t71) @ (ty2)]
3 3 = 3 3
V1:72€ Srad Yz [v2 — Ml Y1,72€ Srad EVL 3
[y1—=72|>¢ [y1—=72|>¢
(v1) £ (v2) @ (ty1) @ (ty2
SZH)(>;(;)()‘7
Y1,72€ESrad 6712 722
and
2
3 (11) L(12) @ (t1) @ (tre)| 1 Z (1)@ (ty)]
3 32 e 3 ’
Y1,Y2E€Srad 5712 722 YESrad v
SO
2
(1) £ (y2) @ (t71) P (72 1 £(y)® (ty
SO SLIGHLIGAISY o G 612
V1,72€Srad Vs |72 -] YES:rad 2
[y1—=72|>¢

From Corollary [1.4{we can take P = 1+ for the cocfficient growth rate, so Y- cgp |cs| = O (rl“‘%).
Using this value of P in Proposition [2.3|for the coefficients (cs),. g and the fact that £(y) = > ses cs

o llsll=~
implies

Z M < Z \Cs@(ts)\ <t_N;1

3 ~ 9
[ls]I2

3 =~
YESrad v seS\{0}
and substituting this into (5.12)), we get

(1) €(12) @ (t2) @ (ty2)] 1
Z % % ~ EtNil .
1,72€ Srad Vs [v2 —ml
[v1—"2|>e
From (5.11)), this implies
Aot (R <
[Ass (R S 7

proving (5.9).
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Recall from (5.5)) that

Z t(n) m@ (ty1) @ (ty2) . e2miTR(m—y2) _ 1
2miTR (1 —72)

Al,t (R, 6) =

3 3

2.2
V1,72 €Srad Y172
[v1—72|<e

By the mean value theorem,

2miTR(mi—72) _
esmT (1 =72 1‘§§up’8x(€l£)|:1’

2miTR (y1 — 72) i
SO
C(71) € (72) @ (ty1) @ (¢
AgRel< Y L)L) 2lm) ()]
Y1,Y2€ Srad 712 722
[y1—2|<e

Because S is discrete we let 6 > 0 be such that S N Bys = {0}. We partition the radii into bins
(ej,e(4 + 1)] of size €, so

(26,00) € | (ed,e(G + 1)1,
jEN
ej>0

since £ [de~!| < 26 for & small enough. We now write the bound for Ay (R, ) as

Y4 D (¢t J4 D (t
A1 (R€)| < Z Z Z 1€ (1) §( Y1) 1€ (72) §( ’72)|’
JEN V1€ Srad Y2 E€Srad 712 722
j>6e t v1€(ede(G+1)] [v2a—ml<e

where ¢ is sufficiently small such that de=! > 2. If y; € (gj,e(j + 1)] and |y2 — 71| < &, then
Y2 € [vi —e,m +e] C (e —1),e(j +2)],

so this implies

|41 (R, e)| < Z Z Z € (1) @ (t71)| |£(72)‘I’(t72)|.

3 3

2 2

JEN Y1€Srad Y2E€Srad 71 72
j>de7t 11€(eg,e(G+1)] v2€(e(G—1),2(5+2)]

Note (g,e(j +1)] C (e(j —1),e(j + 2)], so by summing -; over the larger range (¢(j — 1),e(j + 2)],
we get

g’qu)t")/l g’}/gq)t"h
e T > £01) @ ()] 1) @ (12)]
JEN Y1,72€Srad ’712 722
j>6e " y1,72€(e(G—1),6(5+2)]
and evaluating the right-hand side above, we get
2
[£(7)®(ty)]
ARl < 3 > >
jEN YESrad

j>6e™t \v€(e(l—1),e(j+2)]
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Let 61 = 3,50 j—1 > de~! —1 > 67!, Re-indexing the sum j — j — 1, and using the fact that
|®(x)| <p (x) P, by taking p sufficiently large we get
2
L) ()"
Arols, S|y Ml Ty (5.13)
JjeN YESrad v
j261871 76(6j7€(j+3)]
Recall £(7) = > ses\{0} s, SO
lIsll=~
2 2
-p -p
Z 1¢(v)| (;77) < Z |cs| <t5§> 7
e ok po=ye sz
v€(ede(7+3)] lIsll€(ed,e(3+3)]
and combining this with Cauchy-Schwarz,
2
29| (ty)* o o (ts) "
> MO chpesiieeegrany L
YESraa v s€s sl
vE(ed,e(j+3)] lIsll€(ed,e(5+3)]

Summing over j € N, j > §1e7 1, from (5.13), we get

o e (ts) %P
A (RIS Y [#{sesllslle e+ > |
jEN = 8|
j>81e? Isll€(ed,e(3+3)]

and using the fact (z) " is decreasing in ||z, we get

3 #{s €S| llsll € (e4.2(j +3)]} {tej) " 3 2
|A17t (R? €)| rSp 53]3 |CS|
jeN sES
jzjéle* lIsll€(es,e(5+3)]

We now invoke statement [if in Theorem [3.2] which implies

Z |CS|2§€2J+5%j%7
seS\{0}
lIsll€(es.e(i+3)]

since je is bounded below. This implies
#{s € S|ej < sl <e(+3)} (% +235%)
e33 (tef)” '

[Are(Roe)l Sy D

JEN
j>b61e7t
We now use dyadic decomposition on this sum. Let d; = %, and € be small enough so that

(61671, 00) C U [2m,2mH 1)
meNU{0}
27 > 5y
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Then

2t {s € 5| ej < sl < e +3)} (%) +eH5?)

A(Re)l S Y Z

meNuU{0} j=2m gj <t€j>
2m252671

If j > 2™, then

(€J+s§y%)_ 1 <1+ 1)< 1 (1 L1 >
33 (te)®  (tef) \&4®  eFjF) T (2mte)® \22me  2%ed )]

therefore,
1 1 TR i
ARES Y , ( 1, ) S #{seS|ei< sl << +3)
mENU{0} (2mte) P\ 24Mme 9% e3 i=om
2’"252571
(5.14)
Observe that
omtl_q
S #{seS|ej<lsl <c(G+3)} <3#{s €S| |ls] € 2", 27 +2)¢]}
g=2m

< 3# (S N Ba(gm+1+2)) .

Using the growth condition # (SN Bgr) < RN, we get # (S N B€(2m+1+2)) < eN (2m+1 + 2)N, and
since 2™e > §o > 0, we can weaken this to # (S N Be(2m+1+2)) < eN2mN - Qubstituting this into the
above displayed equation implies

27n+1_1
> #{seS|ej<|s| <e(i+3)} SNy,
j=2m
and substituting this into (5.14)) implies
AR S Y (2m<N—2>sN—1 + 2m(N*%>gN—%) (2met) %, (5.15)
meNU{0}
2M>re
We split this sum into 2™ < (et)~! and 2™ > (et) !, by defining
L(R,e) = 3 (2m<N*2>sN*1 + 2m(N*%)sN*%) (2met) 2P (5.16)
meNU{0}
ST <2m < (et) 7t
URe= Y (2m<N*2>eN*1 + Qm(N‘%)eN*%) (2met) 2 (5.17)
meNU{0}
2™ > (et) Tt
so that
A1 (R,e)] S L(R,e)+ U (R,¢). (5.18)
We start by bounding U(R, ). We use the fact that (2met) 2P < 272mP (¢£) ™% to get
URe) < ()™ Y (sN*z*m@P*?*N) 4 eN-Fgm(2ri- )) . (5.19)
meNU{0}

27n>(8t)—1
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Using the formula for the sum of a geometric series and taking p large enough, we have the inequalities

7

Z 27m(2p+27N) _ 27(L1710g2(€t)J)(2p+27N) Z 27h(2p+27N) <p N (5t)2p+2_N

meNU{0} h=0
2™ > (et) Tt

and similarly,

Z 9—m(2p+5-N) _ 9—([1-logy(ct)]) (2p+5 22 (2p+7 pN(et)Qp-‘r%—N

meNU{0}
2> (et) 7t

Substituting these bounds into (5.19)), we get
1

e
For L (R,e), we use the fact that (2™et)”* < 1, substituting this into (5.10) to get
L(R.e) < 3 (2m<N*2>sN*1 + 2’”(N*%)5N*%) . (5.21)

meNU{0}
62671 S27'LS(61‘,)71

We now consider 2 cases: N =2 and N > 3. When N = 2, note
Z (6+€7%27%) <e#{m e NU{0} | dpe™" < 2™ < (et) s Z 275,

meNU{0} meNU{0}
JaeT1<2m <L (et) Tt 2M >t

so the inequality in (5.21]) implies

L(R,e) <e# {m e NU{0} | b7 ! < 2™ < (et) 1}—}—5% Z 27% .
meNU{0}
2M>§re

We note # {m € NU{0} | d2e71 < 2™ < (et) 1} < —logt when €,t € (0, 3), and
log (5 5 1 o 0
S g _ p-lenle )] Z -5 < cds %Z -5 <8,
meNU{0} k=0 k=0
2m252€71
so this tells us L(R,e) S 1 —c¢logt for N = 2. Adding this to (5.20) implies
1
(Rs)+U(R€)<1—slogt+tN 2+tN7*% for N = 2. (5.22)
For N > 3, by summing the relevant geometric series, we have
| —log, (et) ] - _
gll-logs(et) | (N=2) _q B
m(N—-2) _ m(N—-2) _ 2-N
Z 2( ) = Z 2( ) = oN-2 _ S(&:t) ’
meNU{0} m=0
27ng(6t)71
[—logsy (et) ] [1—logs(et)] (N*Z)
2 €2 3)—1 7_
Z om(N-%) _ Z om(N-%) _ — < (Et)g N
meNU{0} m=0 2775 -1
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Substituting these bounds into the right-hand side of (5.21]), we get

_ _ _z 7_ € 1
L(R,e) SeNl(et)> N 4 eN=s(et)s =N = N2 +ﬂ.

Adding this to ((5.20)) implies

€ 1
L(R,e’:‘) +U(R,€) ,S N2 + tNi_%,

for N > 3. Combining this with the result in ([5.22)) implies that in general,

€ 1
L(R,e)+U(R,e) S1—clogt + N2 + g
Substituting this into (5.18)) implies

€ 1

|A1,t(Ra5)| S 1 _Elogt+ tN,g + tN_%’

as desired. This completes the proof of Lemma [5.2 O

6. LOWER BOUNDS FOR THE ERROR

We consider lower bounds for the average. For Z?, Hardy [9] showed that Err (r, Z%) = Q (r% (log r)%) :

Here we perform a similar analysis. Define smoothed out normalized error term of scale ¢, Nerr;, by
Nerry(r,A) := r~2 Err, (, A). From the definition of Err; in (3.1)), we have the expression

Nerry (r,A) = ro2 (Z (1, x¢) (N) — co7rr2> . (6.1)

AEA
Recall the definitions of S;.q and ¢(y) from (1.8)),

Srad = {HSH | s € S\{O}}a

L(y) = Z Cs.
seS\{0}
lIsll=

For convenience, we restate Theorem [T.4] below.

Theorem 1.4. Let A C R? be any Fourier quasicrystal, with summation formula as in (1.1]). Then

1 R 1 g 2
hrninfﬁ/1 |Nerr (7‘,A)|2 dr > 5.3 Z M > 0.

R—o0 3
YESrad

In particular, this implies Err (r, A) = Q <r%>.

We first show the lower bound holds with respect to a smooth probability density function p €
C°((0,1)). In other words,

o rgs Ly P
fimint 5 [ o () Nerr(r, ) Tam 2 T
rad

and approximate the constant function on [0, 1] from below. We show the above inequality by treating
Nerr as a Besicovitch B? almost periodic function, beginining by calculating its generalized Fourier
coefficients, given by the following lemma:



THE GAUSS CIRCLE PROBLEM AND FOURIER QUASICRYSTALS 31

Lemma 6.1. Let p € C°((0,1)) be a non-negative function, with p(x) < 1 for all x. Then for any
¢ € R, we have

pO)exp (=25 ) g
2m €15

lim E/ Nerr (r,A) e 2™ dr =

R—o00

Once we establish this lemma, we then show we can bound the average of | Nerr|? from below by
sum of these coefficients squared. We first prove Theorem under this lemma, and then prove the
lemma.

Proof of Theorem[I-]] We first establish the second inequality in Theorem [I.4] that

s 1ol

3
'Yesrad ry

Suppose for the sake of contradiction that £(y) = 0 for all v € Spaa. Let f € S (R?) be radial, and
let F(r) for r > 0 denote the radial component of f, so f(z) = F (||z||). Substituting f into the
summation formula yields

Zf =afO)+ Y | D | FO)=cf0)+ Y tMF(H)=cof(0),

AEA YESrad seS YESrad
Isll=>

since ¢(y) = 0 for all 4 € Syaq by assumption. Let g € C° (B1) be radial with g(0) = 1 and ¢(0) > 0.
Pick T > 0, and define f by f(x) = g(Tx) in the above equality, to get

Z %g (;) = ¢p. (6.2)
AEA

We now let T"— 0. Recall that we chose g to be supported on B;. Since A is discrete, let n be the
separation around 0, so AN B,, C {0}. If 0 ¢ A, then the sum in is eventually empty when T' < 1,
so we obtain ¢y = 0, a contradiction. On the other hand, if 0 € A, then when T' < 7, the sum in
becomes T(g) Hence we have T“;) = ¢, a contradiction since 9T<2> is unbounded as T — 0 but ¢
is ﬁmte Both cases lead to a contradiction, so there exists some vy € S;aq for which ¢(v) # 0, as desired.

We are now left with showing that

I 1
liminfﬁ/1 |Nerr(r, A)[* dr > 3.2 Z

R—o0
YESrad

le(y)I?
v

Let p € C° ((0,1)) be a fixed but arbitrary non-negative function, with p(x) < 1 for all . Note in
that case

R—o0

1iminfl /R |Nerr(r, A)|* dr > liminfl /R (1) |Nerr(r, A)|* dr (6.3)
R/ ’ SRR RS, P\R ’ ' ‘

Note we can use a lower limit of 1 instead of 0 in the integral on the left-hand side, since p is compactly
supported in (0,1). For functions f, g : [0,00) — C, we define the Hermitian positive semi-definite form
(f,9) (assuming it exists) as the following limit:

(f,9) s = lim I/ORP(;) f(r)g(r)dr.

R—oo R
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We can then interpret Lemma [6.1] as saying that

o pOep (~tmmter
(e, coriry PO () e
< 2 €f?

2mi&r 2mikr

Here we abuse notation and denote by e the function r — e We can verify that for any

1,& € R we have (e2™617 2627y — 5(()§ as
§1,& ) o P §1,€2>
R
<627ri§1r e27ri£2r> — lim l p (1) 6271'1'7"(61752)(17,
’ o R—o0 R 0 R

and making the substitution r = Rq yields

1
(ePriar,e?mieer) = lim [ p(g)e MO dg = lim p(R (& —&)).
— 0

0 R—o0 /o

The limit in the right-hand side above is p(0) if &1 = &2, and 0 otherwise. This implies that the set
{r > 2T | € e R} is an orthogonal set with respect to the hermitian form (-, -) . We define another
form (-,-) p by

o= [ o () s ar,

so imp oo (f,9) p = ([, 9) o, if the limit exists. Let I' be a finite subset of Siaq U —Siaqa, and define
G :[0,00) = C by

G(r) = AL Z <Nerr, 62”'“>00 e2mir,
p0) 7=
We write
(Nerr, Nerr) , = (Nerr —G + G, Nerr —G + G) , = (Nerr —G, Nerr —G) , + 2R (Nerr -G, G) , + (G, G)
and since (-, -) 5 is a Hermitian positive semi-definite form, we obtain
(Nerr, Nerr) , > 2R (Nerr -G, G) p + (G, G) .,
and taking the limit inferior of both sides as R — oo, we get
1iRni>ior<1)f (Nerr, Nerr) , > 2R (Nerr -G, G) _ + (G, G) ., -
Note from the definition of G that

— 1 2miyr 2 _ L 2miyr 2
(G,G) = 502 ; |(Nerr, e >Oo‘ p(0) = 50) Z |(Nerr, e >OO| ,

yer
and so
1 o
lim inf (Nerr, Nerr) , > 2R (Nerr -G, G)  + == Nerr, 27" 6.4
ninf ) > 2R 55 SN ) (6.4)
‘We have

<Nerr, 62”72T> < 1 ) . )
~ 7 7o { Nerr——— Z <Nerr, esznr>oo 62”””, e2mivar ) (6.5)
p(0) p(0) 2=,

o0

(Nerr -G, G) = Z

vy2 €
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Because {r — €™ | ¢ € R} is an orthogonal set with respect to (,-) ., for any v, € T,

< 2 <Nerr, 6277271r> e27rz'nr’ 627rz'y21"> _ <Nerr, 6271'1’}/27“> <627m'ygr’ e27rz'y2r>
00 oo oo

1€l 00

= p(0) <Ner1r7 62”72T>

oo’

SO

<NGI‘I‘ E <Nerr 627r7n/yr> 27rzv1r7 6277272r> = 0.

’Y1EF

From (6.5), this implies (Nerr -G, G)_ = 0, and so (6.4 becomes
liminf (Nerr, N (Nerr, e™"
%Hiloré (Nerr, Nerr) ,, Z| err, e >| ,

where T is a finite subset of S;aq U —Spaq. We have from Lemma [6.1] that

iy |2 ﬁ(O)Q |£(|’7|)|2
|<Ne1r1r,e2 v >‘ :W7

so taking I' = Sy U — S for any finite subset Sy C Siaq, this implies

1 0y
lhni)loréf (Nerr, Nerr) , = %{Higo%f R/o p (%) |Nerr(r)|? dr > ; it
0
By considering an exhausting sequence of such subsets Sy, we get
1Ry 245 P0) 5~ )P
lﬂlﬁfﬁ/o p <§) |Nerr(r)|” dr > Wﬂ; et
rad

Combining this with (6.3]), we get

N 2 P0) L)1

lﬂlo%f E/l |Nerr(r)|” dr > 5.2 Z e

’YESrad

Letting p(x) — 17, we see that p(0 fo ) dz — 1, and so

1 F 2 1 ()

lﬂlo%f R/l |Nerr(r)|” dr > 33 Z ot

’Yesrad
The proof is complete. O
It now remains to prove Lemma
Proof of Lemma[6.1] Define I(R,&) by
I(R,¢) = 1 /Rp (1) Nerr (r, A) e 2™ dr, (6.6)
R Jo R

so we want to show

PO exp (— 2750 ) g
27 €Iz

Jim I(R,§) =
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By definition, Nerr;(r,A) = r=2 Err,(r, A), so from Proposition we may write

NeI‘I't T A Z Z (ZT )627Ti7'7”7

TE{£1} 7ESraa

+ B(r,t), (6.7)

1

where a, = exp (—2Z%) /2 and B(r,t) satisfies |B(r,t)| < 7~ 2 independently of ¢. We start by noting
that lim; (15, * ¢¢) (x) = 1p, (x) for every = such that ||z|| # r. Now, if (A€ A |||\ =r} = 2,
then

lim (1, * ¢¢) (A) = 15,(A)

for each A € A. This implies lim;_,q Nerr; (r, A) = Nerr (r, A) for almost every r > 0, from the expression
for Nerr; in (6.1]). From that same expression, we can see that

K(1+7r?
|Nerr; (r, A)| < #
r2
for some constant K > 0, and
1 2
— / —’; dr < oo.
T2
Then by the dominated convergence theorem,
—= Nerr (r,A) e~ 2™ dr = lim 1 "’ p <L> Nerr; (r, A) e~ 2™7dr (6.8)
t~0R J, "\R L '

for each ¢ € R. To that end, let

1R o i
_ o —2mi€r
I(R,¢) 7 /0 P (R) Nerr; (r,A) e dr,

so that I (R,§) = limy_0 Iy (R, €). From the formula for Nerr; in (6.7), we have

Z Z / i3 )CI)(tfy)% e2mir(Ty—¢€) dr + R/ )B(T t)e —2migr ..

re{=1} YESraa v

where the switch of the sum and the integral is justified since ¢ > 0 and @ is of rapid decrease. Using
the fact that |B(r,t)| <r~2 for r > 1 independently of ¢, we may simplify this to

= Y Y [ () NI o ().

re{£1} ¥€Sraa v

We make the substitution » = Rq to get

1
Z Z Clq— )A p(q)GQwiqR(‘r’y—f)dq_’_O(R—%)

Te{il} YESrad

al(V)P(ty)p(R(E—T _1
Z Z () W)P%( (€ 7))+O(R 2)’

T€{%£1} YESrada v

since supp p C (0,1). We extract the terms where £ = 77, so

-3 3 art(y) 2 (ty)p(0) + Y% arl( )5(R(5_77))+0<R—é>.

T€{+1} YESraa 7€{£1} YE€Sraa v
Ty=E§ TY#E

wlw
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The first sum above is finite, so we can take the limit termwise as ¢ — 0. Note p is Schwartz because
it is smooth and has compact support. But ® is bounded and g |c;|ds is tempered, so

LY)p(R(E—T csp(R(E—T]s
3 14(v)p ( (3 7))|S >y |esp (R ( [Is1))]

YESraa v s€5\{0}
TV#E |lsll#€

By the dominated convergence theorem, we take the limit termwise as ¢ — 0 (recall ®(0) = $(0,0) = 1)

and conclude
-y oy el vy R o (). 69)

€{+1} ¥E5xa v €{£1} 7E€5xa
= =3

We now take the limit as R — co. Since p € S (R), we have

R =i L)
i ~ Rey3 € — P

and by taking p large enough,

Y4
Z 3|(7)| pS Z . |cs | S < o0
~YESrad 2 |£_T’V| seS\{0} ||S||2’§—THS|||

T#E |sll#€

By the dominated convergence theorem, we can also take the limit termwise in R in and conclude

Jim T(RO= > Y art(y)p(0) _ asgn<§>€(|§|)ﬁ(0)7

re{£1} YESraa NE
TY=¢

where we take ag = 0. Recall a, = exp (—2Z) /27, so from the definition of I(R,¢) in (6.6, we can
write this as

~ 3msgn(§)i
lim /R (i) Nerr (r, A) e 2™"dr = PO) exp <_ K l) ¢ (I€])
R R Jy P\R ’ N 2 R
This proves the lemma. O
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APPENDIX A. OTHER NUMERICS

Here we give more numerics on more nontrivial Fourier quasicrystals. Specifically, consider the
functions

1-+2 14++v2

f(z)=sin |~ — | —4sin (7 5 x|,

g(y)z?cos(wﬁy) sin |7 @ y| +cos|m @ y sin(wx/gy),

2 2
and their zero sets
Ap={z eR]| f(z) =0},
Ag={yeR|g(y) =0}
Then the set
A = Af X Ag (Al)

is a Fourier quasicrystal. We call this special case a product Fourier quasicrystal; this can be seen from
the construction of A, as it is a product of two zero sets of functions that only depend on one variable.
Both Ay and A, are Fourier quasicrystals from [I4], and their product is a Fourier quasicrystal as well.

Figure [4| shows that the error again grows like O (rl/ 2).

Figure [5| shows the normalized error Err(r, A)/r/2 for r < 10000. The distribution appears like a
normal distribution, similar to Bleher [5].

Next we consider

A={(z,y) €R?| f(w,y) =0, g(z,y) =0},

(e () o)
g(z,y) = 2 cos (77 (—\ﬁx + \/5y)) sin (g (—\/ﬁx + \/Ey))
+ cos (g (—\/ix + \/§y)) sin (7r (—\f?x + \/Ey)) .

(A.2)
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Iogﬁ$|Enr\dr
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FIGURE 4. The log-log plot of Err(r, A), where A is a product Fourier quasicrystal as
in (A.1), for R < 10000
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FIGURE 5. A histogram of the normalized error Err(r, A)/r'/? for A as in (A 1)

This Fourier quasicrystal comes from the constructions of Alon, Kummer, Kurasov, and Vinzant [2].
Specifically, from their construction we take the matrix

()

and the algebraic variety X C C defined by
p1(21, 22,23, 24) = =3 — 21 + 22 + 32120 = 0,
p2(21,22,23,24) = —3 — 23+ 24+ 32324 =0,

so that A in (A.2) is precisely defined by A = {z € R? | exp(27wiLz) € X }.
Figure |§| again shows that the error grows like O (7"1/ 2).
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Iogf§|Errr\ dr

94f
9.2;
9A0§ mm 1.51008 log(R) +0.34309
BAB; o log [F|Errr| dr
8.6;

8.4}

I|||w\w|||||www\|wwwlnnnw\wwnnlnwnnlIog(R)
53 54 55 56 5.7 58 59 6.0

FIGURE 6. The log-log plot of Err(r, A), where A is a nonproduct Fourier quasicrystal
as in (A.2), for R < 500
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FIGURE 7. A histogram of the normalized error Err(r, A)/r'/? for A as in (A.2)

Figurelzl shows the normalized error Err(r, A)/r'/? for r < 500. Again like Bleher [5], the distribution
appears normal.
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