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Abstract

Let K be a global function field. Using Haar measures, we compute the densities of the
Kodiara types and Tamagawa numbers of elliptic curves over a completion of K. Also, we
prove results about the number of iterations of Tate’s algorithm that are completed when
the algorithm is used on an elliptic curve over a completion of K.

1 Introduction

Let p be a prime and q = pn for a positive integer n. Let K be a finite extension of Fq(t).
Define MK as the set of places of K. Suppose P ∈ MK . Let KP be the completion of K at
P and RP be the valuation ring of KP . Suppose E is an elliptic curve over K with equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

such that a1, a2, a3, a4, and a6 are elements of K. E has a long Weierstrass form, and if
a1 = a2 = a3 = 0, E has a short Weierstrass form. We study densities for elliptic curves
over K in long Weierstrass form.

As an elliptic curve over KP , E has a Kodaira type, which describes its geometry. Partic-
ularly, E has a Tamagawa number cP = [E(KP ) : E0(KP )] over KP . A method to determine
the Kodaira type and Tamagawa number of an elliptic curve over KP is Tate’s algorithm ([6],
[7]). The description of the algorithm in [6] is used in this paper to compute local densities.
Often, steps from this description of the algorithm are referred to.

The papers [2] and [3] discuss densities of Kodaira types and Tamagawa products for
elliptic curves over Q. In these papers, the densities at the nonarchimedean places of Q are
considered. In [2] and [3], the density is for elliptic curves in long and short Weierstrass forms,
respectively. Moreover, [1] discusses densities of Kodaira types and Tamagawa products for
elliptic curves over number fields in short Weierstrass form. Note that some of the methods
for computing local densities with Tate’s algorithm used in Section 4, Section 5, and Section 6
of this paper are similar to methods used in [1], [2], and [3].

Local densities over KP can be obtained using the Haar measure. Let N be a positive
integer. Note that KN

P as an additive group is locally compact, and because of this, Haar’s
theorem can be used on KN

P . Particularly, suppose µP is the Haar measure on KN
P with

µP (R
N
P ) = 1.

Let GP be the set of curves y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 over KP such that

a1, a2, a3, a4, a6 ∈ RP . Because the discriminant of an elliptic curve must be nonzero, not
all elements of GP are elliptic curves. Also, note that GP can be considered to be R5

P . The
local densities for GP are obtained from the Haar measure on R5

P .

Definition 1.1. For an elliptic curve E ∈ GP , let MP (E) be the number of iterations of
Tate’s algorithm that are completed when the algorithm is used on E.
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Suppose T is the set of Kodaira types. Let r be an element of T and n be a positive
integer. Define δK(r, n;P ) to be the Haar measure of the set of elliptic curves E over KP

with coefficients in RP such that E has Kodaira type r and the Tamagawa number of E is
n. For k ≥ 0, define δK(r, n, k;P ) to be the Haar measure of the set of elliptic curves E over
KP with coefficients in RP such that E has Kodaira type r, the Tamagawa number of E is
n, and MP (E) = k.

In this paper, we often consider the number of iterations that Tate’s algorithm completes
when the algorithm is used on an elliptic curve over KP . Note that in order to study this
topic, Proposition 2.4 is useful. Next, we give an important result of the paper.

Theorem 1.2. For a Kodaira type r, positive integer n, and nonnegative integer k,

δK(r, n, k;P ) =
1

Q10k
P

δK(r, n, 0;P ).

We prove Theorem 1.2 by considering the cases p ≥ 5, p = 3, and p = 2. Note that the
general method used to prove the theorem is to use translations. The proof of this result is
given in Section 7.1.

Organization. The paper is organized as follows. In Section 2, we introduce elliptic
curves and Tate’s algorithm. Next, in Section 3, for a nonempty finite subset S of MK and
a positive integer N , we discuss how to obtain global densities for ON

K,S . Afterwards, in
Section 4, Section 5, and Section 6, we compute the local densities if the characteristic p
of K is at least 5, equal to 2, and equal to 3, respectively. Finally, in Section 7, we prove
additional results about local and global densities.

Notation. Suppose P is a place of K. Let the degree of P be [RP /πPRP : Fq]. Also, let
QP = |RP /πPRP |. Let πP be a uniformizer of P in K. Also, denote vP to be the valuation
vπP

over KP ; note that vP is also a valuation over K because K ⊂ KP . Moreover for a
nonnegative integer k, let LP,k be a set of representatives of the cosets of RP /π

k
PRP such

that 0 ∈ LP,k.
Suppose S is a finite nonempty subset of MK . We let OK,S be the set of x ∈ K such

that if P ∈ SC = MK\S, vP (x) ≥ 0. Also, let WS be the set of curves y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6 such that a1, a2, a3, a4, a6 ∈ OK,S .
For d ≥ 1, let Td be the number of places of P with degree d. The zeta function of K is

ζK(s) =

∞∏
d=1

(
1− 1

qds

)−Td

.

Suppose D is a divisor of K. Define L(D) as the set of x ∈ K such that x = 0 or x ̸= 0
and (x) +D ≥ 0.

Acknowledgements. This research was done in MIT SPUR. The author would like
to thank Hao Peng for providing useful guidance. Also, the author would like to thank
Zhiyu Zhang for suggesting the problem. Additionally, the author would like to thank David
Jerison and Ankur Moitra for giving advice about the project.

2 Elliptic Curves and Global Densities

Suppose P is a place of K. An elliptic curve E over KP has an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

such that a1, a2, a3, a4, a6 ∈ KP . Additionally, using [6], for an elliptic curve E over KP ,
define

b2(E) = a21 + 4a2, b4(E) = a1a3 + 2a4, b6(E) = a23 + 4a6,

b8(E) = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.
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Also, the discriminant of E is

∆(E) = −b2(E)2b8(E)− 8b4(E)3 − 27b6(E)2 + 9b2(E)b4(E)b6(E).

Definition 2.1 ([7]). Elliptic curves E and F overKP are equivalent if there exists l,m, n, u ∈
KP such that u ̸= 0 and the equation for F can be obtained from the equation for E by first
replacing x with u2x+ n and y with u3y + lu2x+m and then dividing by u6.

Definition 2.2 ([7]). An elliptic curve E over KP is minimal if the equation for E has
coefficients in RP and if there does not exist an elliptic curve F over KP such that the
equation for F has coefficients in RP , F is equivalent to E, and vP (∆(F )) < vP (∆(E)).

The following proposition generalizes Theorem 3.2 of [7] to nonminimal equivalent elliptic
curves. Note that the proposition is used later in the paper to compute local densities.

Proposition 2.3. Let E and F be elliptic curves over KP that have equations with co-
efficients in RP , are equivalent, and satisfy vP (∆(E)) = vP (∆(F )). Then, there exists
l,m, n, u ∈ RP such that vP (u) = 0 and the equation of F can be obtained from the equa-
tion of E by first replacing x with u2x+ n and y with u3y + lu2x+m and then dividing by
u6.

Proof. The proof of Theorem 3.2 of [7] can be used to prove this proposition. ■

Proposition 2.4. Let k be a nonnegative integer. The elliptic curve E over KP with
coefficients in RP has MP (E) ≥ k if and only if l,m, n ∈ RP exist such that if x is replaced
by x+ n and y is replaced by y + lx+m, the resulting elliptic curve

E′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6

has a′i ≡ 0 (mod πki
P ) for i ∈ {1, 2, 3, 4, 6}.

Proof. Suppose l, m, n exist. Then, MP (E) ≥ k follows from replacing x with x+ n and y
with y + lx+m to get the curve E′ : y2 + a′1xy + a′3y = x3 + a′2x

2 + a′4x+ a′6 such that for
i ∈ {1, 2, 3, 4, 6}, πik

P divides a′i. From Tate’s algorithm, we have that MP (E) = MP (E
′) ≥ k.

Next, we prove that if MP (E) ≥ k, l, m, and n exist using induction on k. The base
case k = 0 is clear. Let a be a nonnegative integer and assume the result is true for k = a.
We prove the result is true for k = a + 1. Assume MP (E) ≥ a + 1. Because MP (E) ≥ a,
l, m, and n exist such that if x is replaced with x + n and y is replaced with y + lx + m,
the resulting curve E′ : y2 + a′1xy + a′3y = x3 + a′2x

2 + a′4x + a′6 has a′i ≡ 0 (mod πia
P ) for

i ∈ {1, 2, 3, 4, 6}. Using Tate’s on E′, E′ after a iterations will be

F : y2 +
a′1
πa
P

xy +
a′3
π3a
P

y = x3 +
a′2
π2a
P

x2 +
a′4
π4a
P

x+
a′6
π6a
P

.

We have that F is E with x replaced with π2a
P x+ n and y replaced with π3a

P y + lπ2a
P x+m

divided by π6a
P .

Because MP (E
′) = MP (E) ≥ k+ 1, F will complete at least one more iteration. During

this iteration, suppose x is replaced with x+n′ and y is replaced with y+ l′x+m′. We have
that the resulting elliptic curve

F ′ : y2 + a′′1xy + a′′3y = x3 + a′′2x
2 + a′′4x+ a′′6

has a′′i ≡ 0 (mod πi
P ) for i ∈ {1, 2, 3, 4, 6}. Moreover, F ′ is E with x replaced with π2a

P x +
n+ π2a

P n′ and y replaced with π3a
P y + (l + l′πa

P )π
2a
P x+m+m′π3a

P + ln′π2a
P divided by π6a

P .
Because a′′i ≡ 0 (mod πi

P ) for i ∈ {1, 2, 3, 4, 6}, we are done. ■
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Note that Tate’s algorithm cannot be used on a curve inGP with discriminant 0. However,
this is not considered in the calculations of local densities later in the paper. Suppose r ∈ T ,
n is a positive integer, and k is a nonnegative integer. The set U of elliptic curves E ∈ GP

with Kodaira type r, Tamagawa number n, and M(E) = k is an open subset of GP , because
if E ∈ U , if multiples of πM

P are added to the coefficients of E for sufficiently positive large
integers M , the resulting curve will be an element of U . Particularly, the set of elliptic curves
is an open subset of GP . In the next proposition, we prove that the Haar measure of this set
is 1; note that it follows that the Haar measure of the set of curves in GP with discriminant
0 is 0.

Proposition 2.5. The Haar measure of the set of elliptic curves is 1.

Proof. For a positive integer M , let EM be the set of subsets of GP of the form (ri + πM
P )5

for ri ∈ LP,M that are contained in the set of elliptic curves. For E : y2 + a1xy + a3y =
x3+a2x

2+a4x+a6, we see that the number of solutions to ∆(E) ≡ 0 (mod πM
P ) is O(Q4M

P ).
Therefore, we have that |EM | = Q5M

P − O(Q4M
P ). However, the Haar measure of the union

of the elements of EM is |EM |
Q5M

P

= 1−O
(

1
QM

P

)
. The result follows from taking M → ∞. ■

3 Global Densities

Next, global densities are established. Definitions and theorems from [4] are used in this
section.

Let S be a finite nonempty subset of MK . Also, suppose N is a positive integer. Let
Div(S) be the set of divisors ∑

P∈S

nPP

such that for P ∈ S, nP is a nonnegative integer, and there exists P ∈ S such that nP > 0.
Suppose U ⊂ ON

K,S . The upper density of U at S is

dS(U) = lim sup
D∈Div(S)

|U ∩ L(D)N |
|L(D)|N

,

and the lower density of U at S is

dS(U) = lim inf
D∈Div(S)

|U ∩ L(D)N |
|L(D)|N

.

If dS(U) = dS(U), the density dS(U) of U at S exists, and equals dS(U) = dS(U).

Theorem 3.1 ([4], Theorem 2.1). For P ∈ SC , let UP ⊂ KN
P be a measurable set such

that µP (∂UP ) = 0. For a positive integer M , let VM be the set of x ∈ ON
K,S such that

x ∈ UP for some P ∈ SC with degree at least M . Suppose limM→∞ dS(VM ) = 0. Let

P : ON
K,S → 2S

C

,P(a) = {P ∈ SC : a ∈ UP }. Then:
1.
∑

P∈SC µP (UP ) is convergent.

2. For T ⊂ 2S
C

, ν(T ) := dS(P−1(T )) exists. Also, ν defines a measure on 2S
C

.

3. ν is concentrated at finite subsets of SC , and for a finite set T of places in SC ,

ν({T}) =
∏
P∈T

µP (UP )
∏

P∈SC\T

(1− µP (UP )).

Theorem 3.2 ([4], Theorem 2.2). Let f and g be polynomials in OK,S [x1, . . . , xd] that are
relatively prime. For M ≥ 1, let VM be the set of x ∈ ON

K,S such that f(x) ≡ g(x) ≡ 0

(mod πP ) for some P ∈ SC with degree at least M . Then, limM→∞ dS(VM ) = 0.
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In this paper, we consider global densities for elliptic curves over K with coefficients
in OK,S in long Weierstrass form. We see that WS can be considered to be O5

K,S , and

particularly, the global density definitions from above for O5
K,S can be used on WS . Similar

methods are used in [2] for elliptic curves over Q with coefficients in Z. Note that an elliptic
curve must have a nonzero discriminant, meaning that not all curves inWS are elliptic curves.
However, for D ∈ Div(S), the number of curves in WS with discriminant 0 that are elements
of L(D)5, where WS is considered to be O5

K,S , is O(|L(D)|4). Particularly, if proportions
over elliptic curves in WS is considered rather than the proportions over WS , the density is
not changed.

Proposition 3.3 is about the global density of nonminimal elliptic curves. Note that the
lemma is used to prove Theorem 7.2.

Proposition 3.3. For a positive integer M , let VM be the set of elliptic curves E ∈ WS

such that there exists P ∈ SC with degree at least M such that MP (E) ≥ 1. Then,
limM→∞ dS(VM ) = 0.

Proof. We prove this with casework on the characteristic p ofK. Suppose that E is an elliptic
curve in GP with equation E : y2+a1xy+a3y = x3+a2x

2+a4x+a6 for a1, a2, a3, a4, a6 ∈ RP

such that MP (E) ≥ 1.
Assume p ≥ 5. We have that E can be translated to the curve

y2 = x3 +

(
− b22
48

+
b4
2

)
x− b32

864
− b2b4

24
+

b6
4
.

Because MP (E) ≥ 1, using Proposition 2.4, − b22
48 +

b4
2 ≡ 0 (mod πP ) and − b32

864 −
b2b4
24 + b6

4 ≡
0 (mod πP ). Then, Theorem 3.2 with f(x1, x2, x3, x4, x6) = − (x2

1+4x2)
2

48 + x1x3+2x4

2 and

g(x1, x2, x3, x4, x6) = − (x2
1+4x2)

3

864 − (x2
1+4x2)(x1x3+2x4)

24 +
x2
3+4x6

4 proves the lemma for p ≥ 5.
Next, assume p = 3. We have that E can be translated to the curve

y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4

Using Proposition 2.4, b2
4 ≡ 0 (mod πP ) from the coefficient of x2. Additionally, ∆(E) ≡ 0

(mod πP ). Next, Theorem 3.2 with f(x1, x2, x3, x4, x6) = −(x2
1+x2)

2(x2
1x6+x2x6−x1x3x4+

x2x
2
3 − x2

4) + (x1x3 + 2x4)
3 and g(x1, x2, x3, x4, x6) = x2

1 + x2 proves the lemma for p = 3.
Suppose p = 2. Using Proposition 2.4, a1 ≡ 0 (mod πP ) from the coefficient of xy. Also,

∆(E) ≡ 0 (mod πP ). Therefore, Theorem 3.2 with f(x1, x2, x3, x4, x6) = x4
1(x

2
1x6+x1x3x4+

x2x
2
3 + x2

4) + x4
3 + x3

1x
3
3 and g(x1, x2, x3, x4, x6) = x1 proves the lemma for p = 2. ■

4 Local Densities for p ≥ 5

4.1 Setup

Suppose that the characteristic of K is p ≥ 5. Let P be a place of K. We compute the local
densities over KP of Kodaira types r and Tamagawa numbers n for elliptic curves in GP .

Let G
(1)
P be the set of curves

y2 = x3 + a4x+ a6

over KP such that a4, a6 ∈ RP . Note that G
(1)
P can be considered to be R2

P . Define

φ : GP → G
(1)
P as the function such that if E is the curve in GP with equation E : y2 +

a1xy + a3y = x3 + a2x
2 + a4x+ a6, φ(E) is the curve

φ(E) : y2 = x3 +

(
− b22
48

+
b4
2

)
x− b32

864
− b2b4

24
+

b6
4
.

If E is an elliptic curve, φ(E) is an elliptic curve equivalent to E.
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Lemma 4.1. If U is an open subset of G
(1)
P , µP (φ

−1(U)) = µP (U).

Proof. Let V be the set of y2 = x3+a′4x+a′6 with a′4 ∈ r4+πn4

P RP and a′6 ∈ r6+πn6

P RP . It

suffices to prove that µP (φ
−1(V )) = µP (V ) = 1

Qn4+n6
because all open subsets of G

(1)
P can

be written as a disjoint countable union of sets with the form of V . We want to find the set

of a1, a2, a3, a4, a6 ∈ RP such that − b22
48+

b4
2 ∈ r4+πn4

P RP and − b32
864−

b2b4
24 + b6

4 ∈ r6+πn6

P RP .
Let M = max(n4, n6). First, select a1, a2, a3 modulo πM

P . Each has QM
P possible residues.

Afterwards, a4 will have QM−n4

P residues modulo πM
P ; select the residue for a4. Finally, a6

has QM−n6

P residues modulo πM
P . We see that if each of a1, a2, a3, a4, a6 are taken modulo

πM
P , the number of combinations of residues is Q5M−n4−n6

P . Also, because ai is modulo
πM
P for i ∈ {1, 2, 3, 4, 6}, each combination of residues has a Haar measure of 1

Q5M
P

. We are

done. ■

4.2 Multiple Iterations

Let k be a nonnegative integer. Suppose Sk is the set of elliptic curves E ∈ G
(1)
P such that

MP (E) ≥ k.

Suppose E is an elliptic curve in G
(1)
P with equation E : y2 = x3 + a4x + a6. Assume

E ∈ Sk. Then, using Proposition 2.4, l,m, n ∈ RP exist such that(
y +

l

πk
P

x+
m

π3k
P

)2

−
(
x+

n

π2k
P

)3

− a4
π4k
P

(
x+

n

π2k
P

)
− a6

π6k
P

∈ RP [x, y].

The coefficient of xy is 2l
πk
P

, giving that vP (l) ≥ k, and the coefficient of y is 2m
π3k
P

, giving that

vP (m) ≥ 3k. Also, the coefficient of x2 is 3n−l2

π2k
P

, giving that vP (n) ≥ 2k. From this, we have

that vP (a4) ≥ 4k and vP (a6) ≥ 6k.
Define the function ϕk : Sk → S0, y

2 = x3 + a4x+ a6 7→ y2 = x3 + a4

π4k
P

x+ a6

π6k
P

. Note that

Sk ⊂ S0 ⊂ G
(1)
P . From Proposition 2.5 and Lemma 4.1, µP (S0) = 1. Next, we show how we

can use ϕk to compute densities for Sk.

Lemma 4.2. If U is an open subset of G
(1)
P , µP (ϕ

−1
k (U)) = 1

Q10k
P

µP (U).

Proof. Let V be the set of y2 = x3 + a′4x+ a′6 with a′4 ∈ r4 + πn4

P RP and a′6 ∈ r6 + πn6

P RP .
To prove the lemma, it suffices to prove that µP (ϕ

−1
k (V )) = µP (V ) = 1

Qn4+n6+10 . We want

to find a4, a6 such that a4

π4k
P

∈ r4+πn4

P RP and a6

π6k
P

∈ r6+πn6

P RP . However, this is true if and

only if a4 ∈ π4k
P r4 + πn4+4k

P R and a6 ∈ π6k
P r6 + πn6+6k

P R. Moreover, because µP (S0) = 1,

the density of curves y2 = x3 + a4x+ a6 with discriminant 0 such that a4 ∈ π4k
P r4 + πn4+4k

P

and a6 ∈ π6k
P r6 + πn6+6k

P is 0. Because of this, µP (ϕ
−1
k (V )) = 1

Q
n4+n6+10

P

, completing the

proof. ■

4.3 Density Calculations

Given a set A, the density of A means the Haar measure of A. In this subsection, we compute
the density of the set of minimal elliptic curves with a given Kodaira type and Tamagawa

number over G
(1)
P . From Lemma 4.2, the densities can be extended to all elliptic curves

in G
(1)
P . Moreover, from Lemma 4.1, the densities of a given Koidara type and Tamagawa

number over G
(1)
P and over GP are equal.

Suppose the discriminant is not divisible by πP . We compute the density of this by
considering a4 and a6 modulo πP . Suppose a4 ∈ r4 + πPRP and a6 ∈ r6 + πPRP . We find

the number of pairs (r4, r6) in LP,1 such that
(
r4
3

)3
+
(
r6
2

)2 ≡ 0 (mod πP ). If r4 = 0, r6 has
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1 choice, and if − r4
3 is a square modulo πP , r6 has 2 choices. Otherwise, r6 has 0 choices.

We see that the number of pairs (r4, r6) is QP . Therefore, where each pair (r4, r6) has a
density of 1

Q2
P
, the density of the discriminant not being divisible by πP is QP−1

QP
. For this

case, Tate’s algorithm ends in step 1 and we get that δK(I0, 1, 0;P ) = QP−1
QP

.
Next, assume the discriminant is divisible by πP . Furthermore, suppose a4, a6 ̸≡ 0

(mod πP ). Because there are QP − 1 pairs (r4, r6) modulo πP for this case, the total density
is QP−1

Q2
P

. Let α be the element of LP,1 such that a4 ≡ −3α2 (mod πP ) and a6 ≡ 2α3

(mod πP ). The singular point is (α, 0) and in step 2, x is replaced with x+ n where n = α.
Because α ̸≡ 0 (mod πP ), Tate’s algorithm ends in step 2. The quadratic considered in step
2 is T 2 − 3α. We see that for QP−1

2 values of α, this quadratic has roots in RP /πPRP and
c = vP (∆(E)). Otherwise, c = 1 if vP (∆(E)) is odd and c = 2 if vP (∆(E)) is even.

Let N be a positive integer. Suppose a4 ∈ r4 + πN
P RP and a6 ∈ r6 + πN

P RP . We find

the number of pairs (r4, r6) in LP,1 such that
(
r4
3

)3
+
(
r6
2

)2 ≡ 0 (mod πN
P ) and r4, r6 ̸= 0.

Because there are
QN

P −QN−1
P

2 nonzero residues that are squares modulo πM
P , we have that

the number of pairs (r4, r6) is QN
P − QN−1

P . Therefore, the density of vP (∆(E)) ≥ N for

a4, a6 ̸≡ 0 (mod πP ) is
QP−1

QN+1
P

.

Suppose N is a positive integer. The density of vP (∆(E)) = N is QP−1

QN+1
P

− QP−1

QN+2
P

=

(QP−1)2

QN+2
P

.

We therefore have that δK(I1, 1, 0;P ) = (QP−1)2

Q3
P

, δK(I2, 2, 0;P ) = (QP−1)2

Q4
P

, and δK(IN , N, 0;P ) =

δK(IN , 2
⌊
N
2

⌋
−N+2, 0;P ) = (QP−1)2

2QN+2
P

for N ≥ 3. Moreover, we have that c = 1 with density

(QP − 1)2

Q3
P

+

∞∑
l=1

(QP − 1)2

2Q2l+3
P

=
(QP − 1)(2Q2

P − 1)

2Q3
P (QP + 1)

and similarly, c = 2 with density
(QP−1)(2Q2

P−1)

2Q4
P (QP+1)

. For N ≥ 3, c = N with density (QP−1)2

2QN+2
P

.

If vP (a4), vP (a6) ≥ 1, the singular point is (0, 0). The total density for this case is 1
Q2

P
.

If vP (a6) = 1, the algorithm ends in step 3. For this, we get δK(II, 1, 0;P ) = QP−1
Q3

P
.

Assume that vP (a6) ≥ 2. The total density for this is 1
Q3

P
. If vP (a4) = 1, the algorithm

ends in step 4, and we get that δK(III, 2, 0;P ) = QP−1
Q4

P
.

Next, suppose vP (a4) ≥ 2. The total density for this case is 1
Q4

P
. If vP (a6) = 2, the

algorithm ends in step 5. We have that from this, δK(IV, 1, 0;P ) = δK(IV, 3, 0;P ) = QP−1
2Q5

P
.

Suppose vP (a6) ≥ 3. The total density for this case is 1
Q5

P
. In step 6, the polynomial

P (T ) ∈ (RP /πPRP )[T ] has coefficient of T 2 equal to 0. From adding multiples of π2
P

to a4, the choices for the coefficient of T are LP,1. Also, from adding multiples of π3
P

to a6, the choices for the constant term are LP,1. Then, we have that each polynomial
P (T ) ∈ (RP /πPRP )[T ] with coefficient of T 2 equal to 0 corresponds to a density of 1

Q7
P

in

G
(1)
P .
Assume P (T ) has distinct roots. The total number of P (T ) for this case is Q2

P − QP ;
therefore, the total density for this case is QP−1

Q6
P

. We have that Tate’s algorithm ends in

step 6 here. The number of P (T ) with 0, 1, and 3 roots in RP /πPRP are
Q2

P−1
3 ,

Q2
P−QP

2 ,

and
Q2

P−3QP+2
6 , respectively. With this, δK(I∗0 , 1, 0;P ) =

Q2
P−1

3Q7
P

, δK(I∗0 , 2, 0;P ) = QP−1
2Q6

P
, and

δK(I∗0 , 4, 0;P ) =
Q2

P−3QP+2

6Q7
P

.

Next, assume that P (T ) has a double root and a simple root. For this case, the total
number of P (T ) is QP − 1 and the total density is therefore QP−1

Q7
P

. Suppose N is a positive
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integer. We have that δK(I∗N , 2, 0;P ) = δK(I∗N , 4, 0;P ) = (QP−1)2

2QN+7
P

. Moreover, c = 2 and c =

4 both have density QP−1
2Q7

P
. More details about computing local densities for the subprocedure

are included in Section 4.4.
Assume P (T ) has a triple root. For this case, the total number of P (T ) is 1 and the

total density is therefore 1
Q7

P
. Because the coefficient of T 2 in P (T ) is 0, the triple root is 0.

If vP (a6) = 4, the algorithm ends in step 8. For this, δK(IV ∗, 1, 0;P ) = δK(IV ∗, 3, 0;P ) =
QP−1
2Q8

P
.

Next, assume that vP (a6) ≥ 5. The total density for this case is 1
Q8

P
. If vP (a4) = 3, the

algorithm ends in step 9 and δK(III∗, 2, 0;P ) = QP−1
Q9

P
.

Suppose vP (a4) ≥ 4. The total density for this case is 1
Q9

P
. If vP (a6) = 5, the algorithm

ends in step 10 and δK(II∗, 1, 0;P ) = QP−1
Q10

P
.

With density 1
Q10

P
, we have that vP (a4) ≥ 4 and vP (a6) ≥ 6, meaning that the curve is

not minimal. That is, the curve will complete iteration 1 and continue iteration 2. Note that
the density of nonminimal curves calculated from the algorithm matches Lemma 4.2.

4.4 Subprocedure Density Calculations

We compute the subprocedure densities by studying the translation of x in Tate’s algo-
rithm. In the step 7 subprocedure, because initially the coefficient of y is 0, there will be no
translations of y.

Let X be the set of elliptic curves E ∈ G
(1)
P such that MP (E) = 0 and Tate’s algorithm

enters the step 7 subprocedure when used on E. For E ∈ X, let L(E) be the number of
iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used on
E. For a nonnegative integer N , let XN be the set of E ∈ X such that L(E) ≥ N .

Suppose N ≥ 0 is even. Iteration N of the step 7 subprocedure is completed if and only
if n ∈ RP exists such that vP (n) = 1, vP (a4+3n2) ≥ N+6

2 , and vP (n
3+3na4+a6) ≥ N +4.

Suppose n = n1 satisfies this condition. Suppose n = n2 also satisfies this condition. We then

have that n2
1 ≡ n2

2 (mod π
N+6

2

P ). This gives that n1 is equivalent to n2 or −n2 modulo π
N+4

2

P .
However, because n3

1 + n1a4 ≡ n3
2 + n2a4 (mod πN+4

P ), we have that vP (n1 − n2) ≥ N+4
2 .

Moreover, if vP (n1 − n2) ≥ N+4
2 , n = n2 works also.

Next, suppose N ≥ 0 is odd. Iteration N of the subprocedure is completed if and only if
n ∈ RP exists such that vP (n) = 1, vP (a4 + 3n2

1) ≥ N+5
2 , and vP (n

3 + na4 + a6) ≥ N + 4.

Similarly, we have that if n = n1 works, n = n2 works if and only if vP (n1 − n2) ≥ N+3
2 .

Suppose N ≥ 0. Suppose n is an element of LP,⌊N+4
2 ⌋ such that vP (n) = 1. Let Yn,N be

the set of curves x3 +3nx2 + a′4x+ a′6 such that vP (a
′
4) ≥

⌊
N+6
2

⌋
and vP (a

′
6) ≥ N +4. Note

that Yn,N can be considered to be an open subset of R2
P .

For E ∈ XN , let n(E) be the unique value of n ∈ LP,⌊N+4
2 ⌋ such that vP (n) = 1,

vP (a4 +3n2) ≥
⌊
N+6
2

⌋
, and vP (n

3 + na4 + a6) ≥ N +4. Let θN be the function such that if
E : y2 = x3 + a4x+ a6 is an element of XN , θN (E) = (x+ n(E))3 + a4(x+ n(E)) + a6.

Lemma 4.3. Suppose N is a nonnegative integer and n is an element of LP,⌊N+4
2 ⌋. If U is

an open subset of Yn,N , µP (θ
−1
N (U)) = µP (U).

Proof. Let V ⊂ Yn,N be the set of E′ : y2 = x3+3nx2+a′4x+a′6 such that a′4 ∈ r4+πn4

P RP

and a′6 ∈ r6 + πn6

P RP . Note that we have that vP (r4), n4 ≥ ⌊N+4
2 ⌋ and vP (r6), n6 ≥ N + 4.

It suffices to prove that µP (θ
−1
N (V )) = µP (V ). Let M = max(n4, n6). Suppose E : y2 =

x3 + a4x+ a6 is an elliptic curve. We have that θN (E) ∈ V if and only if

a4 + 3n2 ∈ r4 + πn4

P RP , na4 + a6 + n3 ∈ πn6

P RP .
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Modulo πM
P , there are QM−n4

P choices for the residue of a4. After choosing a4 modulo πM
P ,

there are QM−n6

P choices for the residue of a6 modulo πM
P . Each of these combinations of

residues modulo πM
P for a4 and a6 has a density of 1

Q2M
P

in G
(1)
P . Note that the set of curves

in G
(1)
P with discriminant 0 is counted in these combinations, but the Haar measure of this

set is 0. The Haar measure of the Q2M−n4−n6

P combinations is 1

Q
n4+n6
P

, which is µP (V ). ■

Let N be a positive integer. We compute the density of I∗N . Let n be an element of
LP,⌊N+3

2 ⌋ such that vP (n) = 1. We have that the Haar measure of the set of E ∈ Yn,N−1

that do not complete iteration N is QP−1

Q
⌊N+5

2 ⌋+N+4

P

. With Lemma 4.3, because there are

(QP − 1)Q
⌊N−1

2 ⌋
P values of n, the density of I∗N is (QP−1)2

QN+7
P

. From adding multiples of πN+4
P

to a6, c = 2 and c = 4 have equal density. Therefore,

δK(I∗N , 2, 0;P ) = δK(I∗N , 4, 0;P ) =
(QP − 1)2

2QN+7
P

.

5 Local Densities for p = 3

5.1 Setup

Suppose that the characteristic of K is p = 3. Let P be a place of K and G
(2)
P be the set of

curves
y2 = x3 + a2x

2 + a4x+ a6

over KP such that a2, a4, a6 ∈ RP . Note that G
(2)
P can be considered to be R3

P . For a curve
E in GP with equation E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, let φ(E) be the curve
with equation

y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
.

If E is an elliptic curve, φ(E) is an elliptic curve equivalent to E.

Lemma 5.1. If U is an open subset of G
(2)
P , µP (φ

−1(U)) = µP (U).

Proof. This can be proved similarly as Lemma 4.1. ■

5.2 Multiple Iterations

Let k be a nonnegative integer. Suppose Sk is the set of elliptic curves E ∈ G
(2)
P such that

MP (E) ≥ k.
Suppose E ∈ Sk has equation E : y2 = x3 + a2x

2 + a4x + a6. From Proposition 2.4,
l,m, n ∈ RP exist such that(

y +
l

πk
P

x+
m

π3k
P

)2

=

(
x+

n

π2k
P

)3

+
a2
π2k
P

(
x+

n

π2k
P

)2

+
a4
π4k
P

(
x+

n

π2k
P

)
+

a6
π6k
P

has coefficients in RP . From the coefficient of xy, vP (l) ≥ k, and from the coefficient of y,
vP (m) ≥ 3k. Therefore, we have that

y2 =

(
x+

n

π2k
P

)3

+
a2
π2k
P

(
x+

n

π2k
P

)2

+
a4
π4k
P

(
x+

n

π2k
P

)
+

a6
π6k
P

has coefficients in RP . Note that vP (a2) ≥ 2k also.
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For an elliptic curve E ∈ G
(2)
P with equation E : y2 = x3 + a2x

2 + a4x+ a6, let Ak(E) be
the set of n ∈ RP such that

y2 = x3 +
a2
π2k
P

x2 +
2na2 + a4

π4k
P

x+
n2a2 + na4 + a6 + n3

π6k
P

has coefficients in RP . The next proposition is useful for computing local densities for
multiple iterations.

Proposition 5.2. Let E be an elliptic curve in G
(2)
P . E ∈ Sk if and only if a unique element

n ∈ LP,k exists such that n ∈ Ak(E).

Proof. Assume a unique element n ∈ LP,k exists. Then, Ak(E) is nonempty, and using
Proposition 2.4, E ∈ Sk.

Next, assume E ∈ Sk. From Proposition 2.4, we have that Ak(E) is nonempty. Let the
equation of E be E : y2 = x3 + a2x

2 + a4x+ a6 for a2, a4, a6 ∈ RP .
Suppose n ∈ Ak(E). From replacing x with x+n′ for n′ ∈ RP , we have that n+n′π2k

P ∈
Ak(E). Therefore, n ∈ LP,k exists such that n ∈ Ak(E).

Next, we prove uniqueness. Assume n1, n2 ∈ Ak(E) ∩ LP,k. Suppose a2 ̸= 0. Let

F : y2 = x3 +
a2
π2k
P

x2 +
a4
π4k
P

x+
a6
π6k
P

.

For 1 ≤ i ≤ 2, let Fi be F with x replaced by x + ni

π2k
P

. Note that F1, F2 ∈ G
(2)
P . Also,

F1 and F2 are equivalent. Then, using Proposition 2.3, the equation of F2 is the equation
of F1 with x replaced by u2x + n′ and y replaced by y = u3y and dividing by u6 for some
n′, u ∈ RP such that vP (u) = 0. Then, we see that u2 = 1 from the coefficient of x2, and
n1

π2k
P

+ n′ = n2

π2k
P

. Therefore, n1 ≡ n2 (mod π2k
P ) and n1 = n2. Assume a2 = 0. Afterwards,

we have that a4 ≡ 0 (mod π4k
P ) and (n1 − n2)

3 + (n1 − n2)a4 ≡ 0 (mod π6k
P ), giving that

n1 ≡ n2 (mod π2k
P ) and n1 = n2. ■

For E ∈ Sk, let n(E) be the unique n ∈ LP,2k such that the curve y2 = x3 + a2

π2k
P

x2 +

2na2+a4

π4k
P

x + n2a2+na4+a6+n3

π6k
P

has coefficients in RP . Define ϕk : Sk → S0 to be the function

such that if E ∈ Sk has equation E : y2 = x3 + a2x
2 + a4x+ a6, ϕk(E) ∈ S0 have equation

ϕk(E) : y2 = x3 +
a2
π2k
P

x2 +
2n(E)a2 + a4

π4k
P

x+
n(E)2a2 + n(E)a4 + a6 + n(E)3

π6k
P

.

Note that Sk ⊂ S0 ⊂ G
(2)
P . Also, using Proposition 2.5 and Lemma 5.1, µP (S0) = 1. For

n ∈ LP,k, suppose Sk,n is the set of E ∈ Sk such that n(E) = n, and let ϕk,n be ϕk restricted
to Sk,n.

Lemma 5.3. If U is an open subset of G
(2)
P , µP (ϕ

−1
k (U)) = 1

Q10k
P

µP (U).

Proof. Suppose n ∈ LP,k. We prove that for an open subset U of G
(2)
P , µP (ϕ

−1
k,n(U)) =

1
Q12k

P

µP (U). Let V be the set of y2 = x3 + a′2x
2 + a′4x + a′6 such that a′2 ∈ r2 + πn2

P RP ,

a′4 ∈ r4 + πn4

P RP , and a′6 ∈ r6 + πn6

P RP . We compute the Haar measure of the set of

a2, a4, a6 ∈ RP such that a2

π2k
P

∈ r2 + πn2

P RP ,
2na2+a4

π4k
P

∈ r4 + πn4

P RP , and
n2a2+na4+a6+n3

π6k
P

∈
r6 + πn6

P RP . Let M = max(n2 +2k, n4 +4k, n6 +6k). There are QM−n2−2k
P ways to pick a2

modulo πM
P . Afterwards, a4 will have QM−n4−4k

P choices for the residue modulo πM
P ; pick a4

modulo πM
P . Next, a6 has QM−n6−6k

P choices for the residue modulo πM
P . Select the residue

for a6. The number of combinations of residues is Q3M−n2−n4−n6−12k
P and each combination
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of residues has a Haar measure of Q−3M
P . Also, because µP (S0) = 1, the set of curves with

discriminant 0 counted in these combinations of residues has a Haar measure 0. Therefore,
µP (ϕ

−1
k,n(V )) = 1

Q
n2+n4+n6+12k

P

. With this, µP (ϕ
−1
k,n(U)) = 1

Q12k
P

µP (U) for all open subsets U

of G
(2)
P .

Let U be an open subset of G
(2)
P We have that ϕ−1

k (U) = ⊔n∈LP,k
ϕ−1
k,n(U). Then,

µP (ϕ
−1
k (U)) =

∑
n∈LP,k

µP (ϕ
−1
k,n(U)) =

1

Q10k
P

µP (U),

completing the proof. ■

5.3 Density Calculations for vP (a2) = 0

Suppose vP (a2) = 0. The density for this over G
(2)
P is QP−1

QP
. The discriminant is −a32a6 +

a22a
2
4 − a34.
From adding multiples of πP to a6, the set of curves with discriminant not divisible

by πP has density (QP−1)2

Q2
P

. For this case, we have that c = 1. Also, we add (QP−1)2

Q2
P

to

δK(I0, 1, 0;P ).
Assume the discriminant is divisible by πP . The algorithm ends in step 2. Because

vP (a2) = 0, the coefficient of a6 in the discriminant is not divisible by πP . Then, we see

that for N ≥ 0, the density over G
(2)
P of curves such that vP (a2) = 0 and vP (∆(E)) = N

is (QP−1)2

QN+2
P

. If a2 ≡ r2 (mod πP ) for r2 ∈ LP,1 such that r2 ̸= 0, T 2 + a2 is irreducible over

RP /πPRP for QP−1
2 values of r2.

Using step 2 of Tate’s algorithm, we have that δK(I1, 1, 0;P ) = (QP−1)2

Q3
P

, δK(I2, 2, 0;P ) =

(QP−1)2

Q4
P

, and δK(IN , N, 0;P ) = δK(IN , 2
⌊
N
2

⌋
−N+2, 0;P ) = (QP−1)2

2QN+2
P

for N ≥ 3. Moreover,

c = 1 with density
(QP−1)(2Q2

P−1)

2Q3
P (QP+1)

and c = 2 with density
(QP−1)(2Q2

P−1)

2Q4
P (QP+1)

. For N ≥ 3, c = N

with density (QP−1)2

2QN+2
P

.

5.4 Density Calculations for vP (a2) ≥ 1

Next, suppose vP (a2) ≥ 1. The density for this is 1
QP

and modulo πP , the discriminant is

−a34.
Assume the discriminant is not divisible by πP . This occurs if and only if a4 is not

divisible by πP , and the density of this case is QP−1
Q2

P
. Adding this density to δK(I0, 1, 0;P )

gives that δK(I0, 1, 0;P ) = QP−1
QP

.
Next, assume the discriminant is divisible by πP . The total density for these cases will

be 1
Q2

P
. Suppose α1 is an element of LP,1 such that a6 +α3

1 ≡ 0 (mod πP ). A singular point

is (α1, 0). We have that x is replaced with x + n where n = α1. The resulting curve has
equation

y2 = (x+ n)3 + a2(x+ n)2 + a4(x+ n) + a6.

We have that n2a2 + na4 + a6 + n3 is not divisible by π2
P with density QP−1

Q3
P

by adding

multiples of πP to a6. Here, δK(II, 1, 0;P ) = QP−1
Q3

P
.

Assume n2a2 + na4 + a6 + n3 is divisible by π2
P . The total density for this case is 1

Q3
P
.

The density of vP (2na2 + a4) = 1 is QP−1
Q4

P
from replacing a4 with a4 + πP d and a6 with

a6 − α1πP d for d ∈ LP,1. If vP (2na2 + a4) = 1, the algorithm ends in step 4. We then have

that δK(III, 2, 0;P ) = QP−1
Q4

P
.
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Assume 2na2 + a4 is divisible by π2
P . The total density for this case is 1

Q4
P
. We have

that vP (n
2a2 + na4 + a6 + n3) = 2 with density QP−1

Q5
P

from adding multiples of π2
P to a6.

If this is true, the algorithm ends in step 5. Afterwards, we have that δK(IV, 1, 0;P ) =
δK(IV, 3, 0;P ) = QP−1

2Q5
P

.

Suppose vP (n
2a2 + na4 + a6 + n3) ≥ 3. The total density for this case is 1

Q5
P
. In

step 6, there is no translation. Suppose a2 is replaced by a2 + d1πP , a4 is replaced with
a4 − 2α1d1πP , and a6 is replaced with a6 + α2

1d1πP for d1 ∈ LP,1. Note that the previous
parts of the algorithm will not be changed. However, this changes the coefficient of x2 from
a2 to a2 + d1πP , which changes the coefficient of T 2 of P (T ) in step 6. Next, replace a4
with a4 + d2π

2
P and a6 with a6 − α1d2π

2
P for d2 ∈ πP . Similarly, this does not change the

previous parts of the algorithm. However, d2π
2
P will be added to the coefficient of x, which

adds d2 to the coefficient of T of P (T ). Afterwards, replace a6 with a6+ d3π
3
P for d3 ∈ LP,1.

This adds d3 to the constant term P (T ). With this, the choices for P (T ) are the monic
polynomials with degree 3 in (RP /πPRP )[T ]; each choice for P (T ) corresponds to a density
of 1

Q8
P
. Moreover, the number of P (T ) with a double root and triple root are QP (QP − 1)

and QP , respectively.
Assume P (T ) has distinct roots. We have that the algorithm ends in step 6, with

δK(I∗0 , 1, 0;P ) =
Q2

P−1

3Q7
P

, δK(I∗0 , 2, 0;P ) = QP−1
2Q6

P
, and δK(I∗0 , 4, 0;P ) =

Q2
P−3QP+2

6Q7
P

.

Assume P (T ) has a double root. For this case, Tate’s algorithm ends in step 7 and the to-
tal density is QP−1

Q7
P

. For a positive integerN , we have that δK(I∗N , 2, 0;P ) = δK(I∗N , 4, 0;P ) =

(QP−1)2

2QN+7
P

. Also, it can be proven that c = 2 and c = 4 both have density QP−1
2Q7

P
. More details

are in Section 5.5.
Now, assume P (T ) has a triple root. The density for this case is 1

Q7
P
. Let α2 be the

element of LP,1 such that

n2a2 + na4 + a6 + n3 ≡ −π3
Pα

3
2 (mod π4

P ).

Then, for the translation in step 8, we let n = α1+α2πP . Suppose vP (n
2a2+na4+a6+n3) =

4. This occurs with density QP−1
Q8

P
by adding multiples of π4

P to a6. In this case, Tate’s

algorithm ends in step 8, and δK(IV ∗, 1, 0;P ) = δK(IV ∗, 3, 0;P ) = QP−1
2Q8

P
.

Next, assume vP (n
2a2+na4+a6+n3) ≥ 5. The total density for this case is 1

Q8
P
. Consider

replacing a4 with a4 + dπ3
P and a6 with a6 − (α1 + α2πP )dπ

3
P for d ∈ LP,1. This does not

change previous parts of the algorithm but adds dπ3
P to the coefficient of x. Therefore,

vP (2na2 + a4) = 3 with density QP−1
Q9

P
. For this, we have that Tate’s algorithm ends in step

9 and δK(III∗, 2, 0;P ) = QP−1
Q9

P
.

Suppose vP (2na2+a4) ≥ 4. The total density of this case is 1
Q9

P
. From adding multiples of

π6
P to a6, vP (n

3+a2n
2+a4n+a6) = 5 with density QP−1

Q10
P

. Also, if vP (n
3+a2n

2+a4n+a6) = 5,

the algorithm ends in step 10. This gives that δK(II∗, 1, 0;P ) = QP−1
Q10

P
.

5.5 Subprocedure Density Calculations

Let X be the set of elliptic curves E ∈ G
(2)
P such that MP (E) = 0 and Tate’s algorithm

enters the step 7 subprocedure when used on E. For E ∈ X, let L(E) be the number of
iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used on
E. For a nonnegative integer N , let XN be the set of E ∈ X such that L(E) ≥ N .

Assume N ≥ 0 is even. Iteration N of the step 7 subprocedure is completed if and only if
n ∈ RP exists such that vP (a2) = 1, vP (2na2 + a4) ≥ N+6

2 , and vP (n
3 + n2a2 + na4 + a6) ≥

N + 4. Assume n = n1 satisfies the condition. Suppose n = n2 satisfies the condition also.
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Because vP (a2) = 1, vP (n1 − n2) ≥ N+4
2 . Next, assume vP (n1 − n2) ≥ N+4

2 . We show that

n = n2 also satisfies the condition. Clearly, vP (2n2a2 + a4) ≥ N+6
2 . Moreover, we have that

n2
2a2 + n2a4 = n2

1a2 + n1a4 +
1

2
(n2 − n1)((2n1a2 + a4) + (2n2a2 + a4)).

Therefore, vP (n
3
2 + n2

2a2 + n2a4 + a6) ≥ N + 4. We have that n = n2 satisfies the condition
if and only if vP (n1 − n2) ≥ N+4

2 .
Suppose N ≥ 0 is odd. Iteration N of the step 7 subprocedure is completed if and only

if n ∈ RP exists such that vP (n
2a2 + na4 + a6 + n3) ≥ N + 4 and vP (2na2 + a4) ≥ N+5

2 .
Assume n = n1 satisfies the condition. Similarly to when N is even, we have that n = n2

also satisfies the condition if and only if vP (n1 − n2) ≥ N+3
2 .

Suppose N is a nonnegative integer. Let YN be the set of curves y2 = x3+a′2x
2+a′4x+a′6

with vP (a
′
2) = 1, vP (a

′
4) ≥

⌊
N+6
2

⌋
, and vP (a

′
6) ≥ N + 4. For E ∈ XN , let nN (E) be the

unique value of n in LP,⌊N+4
2 ⌋ from above. Suppose θN (E), with θN : XN → YN , is the

curve
θN (E) : y2 = (x+ nN (E))3 + a2(x+ nN (E))2 + a4(x+ nN (E)) + a6.

Lemma 5.4. If U is an open subset of YN , µP (θ
−1
N (U)) = Q

⌊N+4
2 ⌋

P µP (U).

Proof. Suppose n ∈ LP,⌊N+4
2 ⌋. Let XN,n be the set of E ∈ XN with nN (E) = n and θN,n

be θN restricted to XN,n. Note that if E : y2 = x3 + a2x
2 + a4x+ a6 is an element of XN,n,

θN (E) = θN,n(E) is y2 = x3 + a2x
2 + (na2 + a4)x + n2a2 + na4 + a6 + n3. Particularly,

θN,n(E) is invertible. We then have that µP (θ
−1
N,n(U)) = µP (U). Because there are Q

⌊N+4
2 ⌋

P

values of n, the result follows. ■

Suppose N is a positive integer. Using Lemma 5.4, we can compute the density of the
curves E with MP (E) = 0 that have type I∗N and Tamagawa number 2 or 4. The Haar

measure of the curves in YN−1 that end in iteration N is (QP−1)2

Q
N+6+⌊N+5

2 ⌋
P

. With Lemma 4.1, we

have that δK(I∗N , 2, 0;P ) = δK(I∗N , 4, 0;P ) = (QP−1)2

2QN+7
P

.

6 Local Densities for p = 2

6.1 Setup

Suppose that the characteristic of K is p = 2. Let P be a place of K and G
(3)
P be the set of

curves
y2 + a1xy + a3y = x3 + a4x+ a6

over KP such that a1, a3, a4, a6 ∈ RP . Note that G
(3)
P can be considered to be R4

P . For a
curve E ∈ GP with equation E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, let φ(E) be the
curve with equation

φ(E) : y2 + a1xy +
(
a3 −

a1a2
3

)
y = x3 +

(
a4 −

a22
3

)
x+

2a32
27

− a2a4
3

+ a6.

If E is an elliptic curve, φ(E) is an elliptic curve equivalent to E.

Lemma 6.1. If U is an open subset of G
(3)
P , µP (φ

−1(U)) = µP (U).

Proof. This can be proved similarly as Lemma 4.1. ■
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6.2 Multiple Iterations

Let k be a nonnegative integer. Suppose Sk is the set of elliptic curves E ∈ G
(3)
P such that

MP (E) ≥ k.

For an elliptic curve E ∈ G
(3)
P with equation E : y2 + a1xy + a3y = x3 + a4x + a6, let

Ak(E) be the set of (l,m, n) ∈ R3
P such that if X = x+ n

π2k
P

and Y = y + l
πk
P

x+ m
π3k
P

,

Y 2 +
a1
πk
P

XY +
a3
π3k
P

Y −X3 − a4
π4k
P

X − a6
π6k
P

∈ RP [x, y].

Proposition 6.2. Let E be an elliptic curve in G
(3)
P . E ∈ Sk if and only if a unique pair

(l,m) ∈ LP,k × LP,3k exists such that (l,m, l2 + a1l) ∈ Ak(E).

Proof. Suppose a unique pair (l,m) satisfying the conditions exists. Because Ak(E) is
nonempty, E ∈ Sk from Proposition 2.4.

Assume E ∈ Sk. Then, using Proposition 2.4, Ak(E) is nonempty. Let the equation of
E be E : y2 + a1xy + a3y = x3 + a4x+ a6 for a1, a3, a4, a6 ∈ RP .

From replacing y with y + l′x for l′ ∈ RP , if (l,m, n) ∈ Ak(E), (l + l′πk
P ,m, n) ∈ Ak(E).

Therefore, there exist l ∈ LP,k and m,n ∈ RP such that (l,m, n) ∈ Ak(E). Moreover, if

(l,m, n) ∈ Ak(E), l2+a1l+n ≡ 0 (mod π2k
P ). With this, from replacing x with x+ l2+a1l+n

π2k
P

,

if (l,m, n) ∈ Ak(E), (l,m+ l(l2 + a1l+n), l2 + a1l) ∈ Ak(E). Therefore, there exist l ∈ LP,k

and m ∈ RP such that (l,m, l2 + a1l). Next, from replacing y with y + m′ for m′ ∈ RP ,
there exists l ∈ LP,k and m ∈ LP,3k such that (l,m, l2 + a1l) ∈ Ak(E).

Next, we prove that (l,m) is unique. Assume that (l1,m1), (l2,m2) ∈ LP,k × LP,3k and
(l1,m1, l

2
1 + a1l1), (l2,m2, l

2
2 + a1l2) ∈ Ak(E). We prove that (l1,m1) = (l2,m2).

Suppose a1 ̸= 0. Let F be the curve

F : y2 +
a1
πk
P

xy +
a3
π3k
P

= x3 +
a4
πk
P

x+
a6
π6k
P

.

For 1 ≤ i ≤ 2, let Fi be F with x replaced by x+
l2i+a1li
π2k
P

and y replaced by y + li
πk
P

x+ mi

π3k
P

.

Note that F1, F2 ∈ G
(3)
P . Also, F1 and F2 are equivalent. Then, using Proposition 2.3, let

the translation from the equation of F1 to the equation of F2 replace x with u2x+ n′ and y
with u3y+ l′u2x+m′, where u, l′,m′, n′ ∈ RP and vP (u) = 0. The coefficient of xy after this
translation is a1

uπk
P

; therefore, u = 1 and a1 ≡ 0 (mod πk
P ). Afterwards, from the coefficient

of x2, l21 + a1l1 + n′π2k
P = l22 + a1l2. Therefore, l1 ≡ l2 (mod πk

P ) and l1 = l2. Particularly,
n′ = 0. Following this, m2 = m1 +m′π2k

P and m1 = m2.
Assume a1 = 0. We then have that a3 ≡ 0 (mod π3k

P ), and from the coefficient of x,
l41 + a3l1 ≡ l42 + a3l2 (mod π4k

P ). From this, we clearly have that l1 = l2. Afterwards, from
the constant terms, m2

1 + a3m1 ≡ m2
2 + a3m2 (mod π6

P ) and m1 = m2. ■

For E ∈ Sk, let the unique pair (l,m) ∈ LP,k × LP,3k such that (l,m, l2 + a1l) ∈ Ak(E)
be (l(E),m(E)). Define ϕk : Sk → S0 to be the function such that if E ∈ Sk has equation
E : y2 + a1xy + a3y = x3 + a4x+ a6, ϕk(E) has equation

ϕk(E) : Y 2 +
a1
πk
P

XY +
a3
π3k
P

Y = X3 +
a4
π4k
P

X +
a6
π6k
P

,

with X = x + l(E)2+a1l(E)

π2k
P

and Y = y + l(E)

πk
P

x + m(E)

π3k
P

. Note that S0 ⊂ G
(3)
P , and from

Proposition 2.5 and Lemma 6.1, µP (S0) = 1. For l ∈ LP,k and m ∈ LP,3k, let Sk,l,m be the
set of E ∈ Sk such that l(E) = l and m(E) = m. Assume that ϕk,l,m is ϕk restricted to
Sk,l,m.
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Lemma 6.3. If U is an open subset of G
(3)
P , µP (ϕ

−1
k (U)) = 1

Q10k
P

µP (U).

Proof. Note that there are Qk
P values of l and Q3k

P values of m. Similarly, it suffices to prove

that for open subsets U of G
(3)
P , µP (ϕ

−1
k,l,m(U)) = 1

Q14k
P

µP (U). Let V be the set of curves

y2 + a′1xy+ a′3y = x3 + a′4x+ a′6 with a′i ∈ ri + πni

P RP for i ∈ {1, 3, 4, 6}. We find ϕ−1
k,l,m(V ).

Let M = max(n1 + k, n3 +3k, n4 +4k, n6 +6k). Note that a1 ∈ πk
P r1 + πn1+k

P RP , and there

are QM−n1−k
P choices for the residue of a1 modulo πM

P . After choosing the residue of a1,

there are QM−n3−3k
P choices for the residue of a3. Continuing this process for a4 and a6 and

adding over the Q4k
P pairs (l,m) gives the result. Similarly, the set of curves counted in these

combinations of residues with discriminant 0 has a Haar measure of 0. ■

6.3 Density Calculations for vP (a1) = 0

Suppose that vP (a1) = 0. This case has density QP−1
QP

. The discriminant is

a41(a
2
1a6 + a1a3a4 + a24) + a43 + a31a

3
3.

Note that by considering a6 modulo πP , the discriminant is not divisible by πP with

density (QP−1)2

Q2
P

. For this case, the algorithm ends in step 1 and c = 1. Then, we add

(QP−1)2

Q2
P

to δK(I0, 1, 0;P ).

Assume the discriminant is divisible by πP . Let (α1, α2) be the singular point modulo
πP ; it can be proven that α1, α2 ∈ RP . Also, α1 ≡ −a3

a1
(mod πP ). In step 2, replace x by

x+n and y by y+m with n = α1 and m = α2. Afterwards, the coefficient of xy is a1, which
is not divisible by πP . The algorithm then ends in step 2.

We see that the discriminant is linear in a6. Therefore, we have that vP (a1) = 0 and

vP (∆(E)) = N with density (QP−1)2

QN+2
P

for N ≥ 0. Note that the polynomial considered in

step 2 is T 2 + a1T +α1. Suppose a1 ≡ r1 (mod πP ) and a3 ≡ r3 (mod πP ) for r1, r3 ∈ LP,1

such that r1 ̸= 0. Given r1, T
2 + a1T + α1 is irreducible over RP /πPRP for QP

2 values of
r3. Afterwards, using step 2 of Tate’s algorithm, we get that in this case, δK(I1, 1, 0;P ) =
(QP−1)2

Q3
P

, δK(I2, 2, 0;P ) = (QP−1)2

Q4
P

, and δK(IN , N, 0;P ) = δK(IN , 2
⌊
N
2

⌋
− N + 2, 0;P ) =

(QP−1)2

2QN+2
P

for N ≥ 3. Moreover, c = 1 with density
(QP−1)(2Q2

P−1)

2Q3
P (QP+1)

, c = 2 with density

(QP−1)(2Q2
P−1)

2Q4
P (QP+1)

, and for N ≥ 3, c = N with density (QP−1)2

2QN+2
P

.

6.4 Density Calculations for vP (a1) ≥ 1

In this subsection, we assume that vP (a1) ≥ 1. The density for this is 1
QP

, and the discrim-

inant modulo πP is a43.
Suppose vP (a3) = 0. The density for this case is QP−1

Q2
P

. Here, the discriminant is not

divisible by πP . Tate’s algorithm then ends in step 1, and we add QP−1
Q2

P
to δK(I0, 1, 0;P ).

We therefore have that δK(I0, 1, 0;P ) = QP−1
QP

.

Next, assume that vP (a3) ≥ 1. The total density for this is 1
Q2

P
. The singular point

modulo πP is (x, y) = (α1, α2) for α1, α2 ∈ LP,1 such that a4 ≡ α2
1 (mod πP ) and a6 ≡ α2

2

(mod πP ). We replace x with x+n and y with y+m, where n = α1 and m = α2. The curve
is

(y +m)2 + a1(x+ n)(y +m) + a3(y +m) = (x+ n)3 + a4(x+ n) + a6.

If π2
P does not divide mna1+ma3+na4+a6+m2+n3, the algorithm ends in step 3. By

adding multiples of πP to a6, this occurs with density QP−1
Q3

P
. We have that δK(II, 1, 0;P ) =

QP−1
Q3

P
.
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Assume π2
P divides mna1 +ma3 + na4 + a6 +m2 + n3. The total density for this case is

1
Q3

P
. We have that

b8 = n(na1 + a3)
2 + (ma1 + a4 + n2)2.

If b8 is not divisible by π3
P , the algorithm ends in step 4. By adding multiples of πP to a4,

we have that δK(III, 2, 0;P ) = QP−1
Q4

P
.

Assume that b8 is divisible by π3
P . The total density for this case is 1

Q4
P
. If vP (na1+a3) =

1, the algorithm ends in step 5. Assume a4 ≡ 0 (mod πP ). Then, replace a3 with a3 + dπP

and a4 with a4 + βdπP for β, d ∈ LP,1 such that β2 ≡ α1 (mod πP ). This will not affect
previous parts of the algorithm; particularly, this will not change b8 modulo π3

P . However,
na1 + a3 will be increased by dπP . Therefore, we have that vP (na1 + a3) = 1 with density
QP−1
Q5

P
. From this, δK(IV, 1, 0;P ) = δK(IV, 3, 0;P ) = QP−1

2Q5
P

.

Assume vP (na1 + a3) ≥ 2. The total density for this case is 1
Q5

P
. Assume α3 is the

element of LP,1 such that n ≡ α2
3 (mod πP ). Also, let α4 be the element of LP,1 such that

mna1 +ma3 + na4 + a6 +m2 + n3 ≡ α2
4π

2
P (mod π3

P ). After the transformation in step 6,
let the equation of the curve be

(y + lx+m)2 + a1(x+ n)(y + lx+m) + a3(y + lx+m)

= (x+ n)3 + a4(x+ n) + a6.

Here, l = α3 and m = α2 + α4πP . Suppose that in step 6, the polynomial P (T ) ∈
(RP /πPRP )[T ] is P (T ) = T 3 + w2T

2 + w1T + w0.
Suppose a4 ≡ 0 (mod πP ). Because 0 ∈ LP,1, we have that n = l = 0, and w2 = 0. Then,

we can replace a4 with a4 + d1π
2
P for d1 ∈ LP,1, and the previous parts of the algorithm will

not be changed. With this, the choices for w1 modulo πP are the elements of LP,1. Following
this, by replacing a6 with a6 + d2π

3
P for d2 ∈ LP,1, the choices for w0 modulo πP are the

elements of LP,1. We have that the number of P (T ) with a double root and no roots are
QP − 1 and 1, respectively. Moreover, we have that the number of P (T ) with three distinct

roots in RP /πPRP with 0 roots, 1 root, and 3 roots in RP /πPRP are
Q2

P−1
3 ,

Q2
P−QP

2 , and
Q2

P−3QP+2
6 , respectively.

Suppose a4 ̸≡ 0 (mod πP ). Consider the translation of replacing a1 with a1 + d1πP , a3
with a3 + α1d1πP , a4 with a4 + (α2 + α4πP )d1πP , and a6 with a6 + α1(α2 + α4πP )d1πP

for d1 ∈ LP,1. After this, the parts of the algorithm before step 6 do not change. In step
6, w0 and w1 do not change. However, w2 increases by α3d1. Because α3 ̸= 0, the choices
for w2 are the elements of LP,1. Next, replace a6 with a6 + d2π

3
P for d2 ∈ LP,1. With this,

the choices for w0 are also the elements of LP,1. The number of P (T ) with a double root
and no roots are the same as above. Also, the number of P (T ) with three distinct roots in
RP /πPRP with 0 roots, 1 root, and 3 roots in RP /πPRP are the same as above.

Suppose P (T ) has distinct roots. For this case, the total density is QP−1
Q6

P
and Tate’s

algorithm ends in step 6. We see that δK(I∗0 , 1, 0;P ) =
Q2

P−1

3Q7
P

, δK(I∗0 , 2, 0;P ) = QP−1
2Q6

P
, and

δK(I∗0 , 4, 0;P ) =
Q2

P−3QP+2

6Q7
P

.

Assume P (T ) has a double root and a simple root. For this case, the total density is QP−1
Q7

P

and Tate’s algorithm ends in step 7. We have that for positive integers N , δK(I∗N , 2, 0;P ) =

δK(I∗N , 4, 0;P ) = (QP−1)2

2QN+7
P

. More details for calculating these densities are in Section 6.5.

Next, suppose P (T ) has a triple root. For this case, the density is 1
Q7

P
, and the root of

P (T ) is
√
w1 modulo πP . If a4 ≡ 0 (mod πP ), the triple root is 0 modulo πP . Let α5 be an

element of LP,1 such that

(m+ ln)a1 + la3 + a4 + n2 ≡ α2
5π

2
P (mod π3

P ).
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Then, the translation in step 8 sets n to be n = α1 + α5πP .
Suppose a4 ≡ 0 (mod πP ). Replace a3 with a3 + dπ2

P and a6 with a6 + (α2 + α4πP )dπ
2
P

for some d ∈ LP,1. Then, note that the previous parts of the algorithm, including P (T ),
are unchanged. However, the coefficient of y increases by dπ2

P . We have that for one value
of d, the coefficient of y is divisible by π3

P . Next, suppose a4 ̸≡ 0 (mod πP ). Replace a1
with a1 + dπ2

P and a4 with a4 + (α2 + α4πP )dπ
2
P for some d ∈ LP,1. The previous parts

of the algorithm, including P (T ), are unchanged. However, the coefficient of y increases by
(α1+α5πP )dπ

2
P . Similarly, we have that for one value of d, the coefficient of y is divisible by

π3
P . From this, we get that the coefficient of y is not divisible by π3

P and the algorithm ends
in step 8 with density QP−1

Q8
P

. We then have that δK(IV ∗, 1, 0;P ) = δK(IV ∗, 3, 0;P ) = QP−1
2Q8

P
.

Assume the coefficient of y is divisible by π3
P . The total density of this case is 1

Q8
P
. Let

α6 be the element of LP,1 such that

mna1 +ma3 + na4 + a6 +m2 + n3 ≡ α2
6π

4
P (mod π5

P ).

Then, m is set to m = α2 + α4πP + α6π
2
P in step 9. If π4

P does not divide the x coefficient
of this curve, the algorithm ends in step 9. Consider the translation of replacing a4 with
a4+dπ3

P and a6 with a6+(α1+α5πP )dπ
3
P for d ∈ LP,1. The previous parts of the algorithm

do not change, but the coefficient of x is increased by dπ3
P . Therefore, π4

P does not divide
the x coefficient with density QP−1

Q9
P

. We have that δK(III∗, 2, 0;P ) = QP−1
Q9

P

Assume π4
P divides the coefficient of x of the curve. The total density for this case is

1
Q9

P
. If π6

P does not divide mna1 +ma3 + na4 + a6 +m2 + n3, Tate’s algorithm ends in step

10. This occurs with density QP−1
Q10

P
from adding multiples of π6

P to a6. We then have that

δK(II∗, 1, 0;P ) = QP−1
Q10

P
.

6.5 Subprocedure Density Calculations

We calculate the density of Kodaira types r = I∗N for N ≥ 1 and Tamagawa numbers
n = 2, 4. Note that previously, the curve was reduced by removing a2 with a translation on

x to obtain G
(3)
P . However, here the density is calculated in GP without the reduction. That

is, the density is calculated for curves in long Weierstrass form.
Let X be the set of elliptic curves E ∈ GP such that MP (E) = 0 and Tate’s algorithm

enters the step 7 subprocedure when used on E. For E ∈ X, let L(E) be the number of
iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used on
E. For a nonnegative integer N , let XN be the set of E ∈ X such that L(E) ≥ N .

We consider when N ≥ 0 is even. Suppose N = 0. In iteration N = 0, there is a
translation. Note that the double root of P (T ) is the squareroot of w1. Because of this, in
step 7, we add γ0πP to n and lγ0πP to m for some γ0 ∈ LP,1 such that

(m+ ln)a1 + la3 + a4 + n2 ≡ γ2
0π

2
P (mod π3

P )

Next, assume N ≥ 2 is even. If iteration N of the step 7 subprocedure is reached and the
quadratic has a double root,

vP ((m+ ln)a1 + la3 + a4 + n2) ≥ N + 6

2
.

Also, we add γNπ
N+2

2

P to n and lγNπ
N+2

2

P to m for some γN ∈ LP,1 such that

mna1 +ma3 + na4 + a6 +m2 + n3 ≡ (la1 + a2 + n+ l2)γ2
NπN+2

P (mod πN+4
P ).

Note that vP (la1 + a2 + n+ l2) = 1.
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Suppose N ≥ 0 is odd. If iteration N of the step 7 subprocedure is reached and the

quadratic has a double root, vP (na1 + a3) ≥ N+5
2 . Also, γNπ

N+3
2

P is added to m for some
γN ∈ LP,1 such that

mna1 +ma3 + na4 + a6 +m2 + n3 ≡ γ2
NπN+3

P (mod πN+4
P )

Let N be a nonnegative integer. Let YN be the set of curves y2 + a′1xy + a′3y = x3 +
a′2x

2 + a′4x + a′6 with vP (a
′
1) ≥ 1, vP (a

′
2) = 1, vP (a

′
3) ≥ ⌊N+5

2 ⌋, vP (a′4) ≥ ⌊N+6
2 ⌋, and

vP (a
′
6) ≥ N + 4.

Suppose E ∈ XN and that the translations of Tate’s algorithm when it is used on E are
α1, α2, α3, α4, γ0, γ1, . . ., γN . Let T (E) = (α1, α2, α3, α4, γ0, γ1, . . . , γN ). Note that because
the characteristic of K is p = 2, T (E) is well defined. Also, let θN (E) : XN → YN be E with
x replaced by x+ n and y replaced by y + lx+m, where

n = α1 +

⌊N
2 ⌋∑

i=0

γ2iπ
i+1
P , l = α3,m = α2 + α4πP + α3

⌊N
2 ⌋∑

i=0

γ2iπ
i+1
P +

⌊N−1
2 ⌋∑

i=0

γ2i+1π
i+2
P .

Lemma 6.4. If U is an open subset of YN , µP (θ
−1
N (U)) = QN+5

P µP (U).

Proof. Let a = (α1, α2, α3, α4, γ0, γ1, . . . , γN )0≤i≤N . Assume that XN,a is the set of E ∈ XN

such that T (E) = a. Let θN,a be θN restricted to XN,a. From a, we obtain l,m, n. We have
that if E ∈ XN,a, θN,a(E) is E′ : y2 + a′1xy + a′3y = x3 + a′2x

2 + a′4x+ a′6, where

a′1 = a1, a
′
2 = la1 + a2 + n+ l2, a′3 = na1 + a3, a

′
4 = (m+ ln)a1 + la3 + a4 + n2,

a′6 = mna1 +ma3 + na4 + a6 +m2 + n3.

It is clear that θN,a is a bijection.
Let V be the set of E′ ∈ YN such that a′i ∈ ri + πni

P RP for i ∈ {1, 2, 3, 4, 6}. Let
M = maxi∈{1,2,3,4,6} ni. Similarly, we can consider combinations of residues of the ai, i ∈
{1, 2, 3, 4, 6}, modulo πM

P to obtain that µP (θ
−1
N,a(V )) = µP (V ), with the set of curves with

discriminant 0 counted in the combinations of residues having a Haar measure of 0. Because
there are QN+5

P choices of a, the result follows. ■

Suppose N is a positive integer. With Lemma 6.4, we can compute the density for curves
that enter step 7 in the first iteration and have type I∗N . We have that µP (YN−1) =

QP−1

Q2N+10
P

,

and the Haar measure in G
(3)
P of curves that have type I∗N is then (QP−1)2

QN+7
P

. Particularly,

δK(I∗N , 2, 0;P ) = δK(I∗N , 4, 0;P ) = (QP−1)2

2QN+7
P

.

7 Local and Global Density Results

In Section 4, Section 5, and Section 6, we computed the local densities of Koidara types
and Tamagawa numbers for p ≥ 5, p = 3, and p = 2, respectively. The methods we used
involved first removing some terms from the equations of elliptic curves with translations,
and then using translations to compute the local densities. Moreover, the local densities can
be expressed as rational functions. Let r be a Koidara type and n be a positive integer. There
exists a rational function f(x) such that δK(r, n;P ) = f(QP ) for all P ∈ MK . Note that
f(x) is the same for all global function fields K. Additionally, in [3], the rational function
calculated for the local density of r and n for elliptic curves in short Weierstrass form over
Qr for primes r ≥ 5 is f(x). In [1], the rational function calculated for the local density of
r and n for elliptic curves in short Weierstrass form over completions of a number field at
places that lie above a prime r ≥ 5 is also f(x).
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Next, we will discuss some results about local and global density, including a proof of
Theorem 1.2. Particularly, we compute the density of completing at most k ≥ 0 iterations
of Tate’s algorithm.

7.1 Proof of Theorem 1.2

Let U and V be the sets of elliptic curves E ∈ GP with Kodaira type r and Tamagawa number
n such that MP (E) = 0 and MP (E) = k, respectively. We have that U and V are open sets.
Moreover, φ(U) and φ(V ) are open sets. With this, we have that µP (U) = µP (φ(U)) and
µP (V ) = µP (φ(V )) for all characteristics p from Lemma 4.1, Lemma 5.1, and Lemma 6.1.
Therefore, it suffices to prove that

µP (φ(V )) =
1

Q10k
P

µP (φ(U)).

However, observe that φ(U) = ϕk(φ(V )). The result then follows from Lemma 4.2, Lemma 5.3,
and Lemma 6.3.

7.2 Density for Multiple Iterations

Let k be a nonnegative integer. For P ∈ MK , let Uk
P denote the set of elliptic curves E

in GP such that MP (E) ≥ k + 1. The following proposition is important for the proof of
Theorem 7.2.

Proposition 7.1. For a nonnegative integer k and P ∈ MK , µP (U
k
P ) =

1

Q
10(k+1)
P

.

Proof. From Lemma 4.2, Lemma 5.3, and Lemma 6.3 with k+1 as k and GP as U , we have
that

µP (U
k
P ) =

1

Q
10(k+1)
P

µP (GP ) =
1

Q
10(k+1)
P

.

■

Theorem 7.2. Let U be the set of elliptic curves in WS such that MP (E) ≤ k for all
P ∈ SC . Then,

dS(U) =
1

ζK(10(k + 1))
·
∏
P∈S

(
Q

10(k+1)
P

Q
10(k+1)
P − 1

)
.

Proof. For a positive integer M , let VM be the set of elliptic curves E ∈ WS such that there
exists P ∈ SC with degree at least M such that E ∈ Uk

P . From Proposition 3.3, we have
that limM→∞ dS(VM ) = 0. Therefore, we can use Theorem 3.1 with Uk

P as UP for P ∈ SC .
The result follows from Proposition 7.1. ■

Example 7.3. We given an example of Theorem 7.2. Let k be a nonnegative integer. Let
K = Fq(t). Suppose P∞ is the infinite place of Fq(t) and let S = {P∞}. Let U be the set
of elliptic curves in WS such that MP (E) ≤ k for all P ∈ SC . From Theorem 5.9 of [5],

because the genus of K is 0, we have that ζK(10(k+1)) = q20k+19

(q10k+9−1)(q10k+10−1)
. Because P∞

has degree 1, from Theorem 7.2, dS(U) = 1− 1
q10k+9 .
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