Densities for Elliptic Curves over Global Function Fields SPUR Final Paper, Summer 2022

Andrew Yao
Mentor: Hao Peng
Project Suggested By: Zhiyu Zhang

Abstract

Let K be a global function field. Using Haar measures, we compute the densities of the Kodiara types and Tamagawa numbers of elliptic curves over a completion of K. Also, we prove results about the number of iterations of Tate's algorithm that are completed when the algorithm is used on an elliptic curve over a completion of K.

1 Introduction

Let p be a prime and $q=p^{n}$ for a positive integer n. Let K be a finite extension of $\mathbb{F}_{q}(t)$. Define M_{K} as the set of places of K. Suppose $P \in M_{K}$. Let K_{P} be the completion of K at P and R_{P} be the valuation ring of K_{P}. Suppose E is an elliptic curve over K with equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

such that $a_{1}, a_{2}, a_{3}, a_{4}$, and a_{6} are elements of $K . E$ has a long Weierstrass form, and if $a_{1}=a_{2}=a_{3}=0, E$ has a short Weierstrass form. We study densities for elliptic curves over K in long Weierstrass form.

As an elliptic curve over K_{P}, E has a Kodaira type, which describes its geometry. Particularly, E has a Tamagawa number $c_{P}=\left[E\left(K_{P}\right): E_{0}\left(K_{P}\right)\right]$ over K_{P}. A method to determine the Kodaira type and Tamagawa number of an elliptic curve over K_{P} is Tate's algorithm ($[6]$, [7]). The description of the algorithm in [6] is used in this paper to compute local densities. Often, steps from this description of the algorithm are referred to.

The papers $[2]$ and $[3]$ discuss densities of Kodaira types and Tamagawa products for elliptic curves over \mathbb{Q}. In these papers, the densities at the nonarchimedean places of \mathbb{Q} are considered. In $\sqrt[2]{ }$ and 3 , the density is for elliptic curves in long and short Weierstrass forms, respectively. Moreover, [1] discusses densities of Kodaira types and Tamagawa products for elliptic curves over number fields in short Weierstrass form. Note that some of the methods for computing local densities with Tate's algorithm used in Section 4 . Section 5 , and Section 6 of this paper are similar to methods used in [1], 2], and 3].

Local densities over K_{P} can be obtained using the Haar measure. Let N be a positive integer. Note that K_{P}^{N} as an additive group is locally compact, and because of this, Haar's theorem can be used on K_{P}^{N}. Particularly, suppose μ_{P} is the Haar measure on K_{P}^{N} with $\mu_{P}\left(R_{P}^{N}\right)=1$.

Let G_{P} be the set of curves $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ over K_{P} such that $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in R_{P}$. Because the discriminant of an elliptic curve must be nonzero, not all elements of G_{P} are elliptic curves. Also, note that G_{P} can be considered to be R_{P}^{5}. The local densities for G_{P} are obtained from the Haar measure on R_{P}^{5}.

Definition 1.1. For an elliptic curve $E \in G_{P}$, let $M_{P}(E)$ be the number of iterations of Tate's algorithm that are completed when the algorithm is used on E.

Suppose T is the set of Kodaira types. Let \mathfrak{r} be an element of T and n be a positive integer. Define $\delta_{K}(\mathfrak{r}, n ; P)$ to be the Haar measure of the set of elliptic curves E over K_{P} with coefficients in R_{P} such that E has Kodaira type \mathfrak{r} and the Tamagawa number of E is n. For $k \geq 0$, define $\delta_{K}(\mathfrak{r}, n, k ; P)$ to be the Haar measure of the set of elliptic curves E over K_{P} with coefficients in R_{P} such that E has Kodaira type \mathfrak{r}, the Tamagawa number of E is n, and $M_{P}(E)=k$.

In this paper, we often consider the number of iterations that Tate's algorithm completes when the algorithm is used on an elliptic curve over K_{P}. Note that in order to study this topic, Proposition 2.4 is useful. Next, we give an important result of the paper.
Theorem 1.2. For a Kodaira type \mathfrak{r}, positive integer n, and nonnegative integer k,

$$
\delta_{K}(\mathfrak{r}, n, k ; P)=\frac{1}{Q_{P}^{10 k}} \delta_{K}(\mathfrak{r}, n, 0 ; P)
$$

We prove Theorem 1.2 by considering the cases $p \geq 5, p=3$, and $p=2$. Note that the general method used to prove the theorem is to use translations. The proof of this result is given in Section 7.1.

Organization. The paper is organized as follows. In Section 2, we introduce elliptic curves and Tate's algorithm. Next, in Section 3, for a nonempty finite subset S of M_{K} and a positive integer N, we discuss how to obtain global densities for $\mathcal{O}_{K, S}^{N}$. Afterwards, in Section 4. Section 5, and Section 6, we compute the local densities if the characteristic p of K is at least 5 , equal to 2 , and equal to 3 , respectively. Finally, in Section 7 , we prove additional results about local and global densities.

Notation. Suppose P is a place of K. Let the degree of P be $\left[R_{P} / \pi_{P} R_{P}: \mathbb{F}_{q}\right]$. Also, let $Q_{P}=\left|R_{P} / \pi_{P} R_{P}\right|$. Let π_{P} be a uniformizer of P in K. Also, denote v_{P} to be the valuation $v_{\pi_{P}}$ over K_{P}; note that v_{P} is also a valuation over K because $K \subset K_{P}$. Moreover for a nonnegative integer k, let $L_{P, k}$ be a set of representatives of the cosets of $R_{P} / \pi_{P}^{k} R_{P}$ such that $0 \in L_{P, k}$.

Suppose S is a finite nonempty subset of M_{K}. We let $\mathcal{O}_{K, S}$ be the set of $x \in K$ such that if $P \in S^{C}=M_{K} \backslash S, v_{P}(x) \geq 0$. Also, let W_{S} be the set of curves $y^{2}+a_{1} x y+a_{3} y=$ $x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ such that $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathcal{O}_{K, S}$.

For $d \geq 1$, let T_{d} be the number of places of P with degree d. The zeta function of K is

$$
\zeta_{K}(s)=\prod_{d=1}^{\infty}\left(1-\frac{1}{q^{d s}}\right)^{-T_{d}}
$$

Suppose D is a divisor of K. Define $L(D)$ as the set of $x \in K$ such that $x=0$ or $x \neq 0$ and $(x)+D \geq 0$.

Acknowledgements. This research was done in MIT SPUR. The author would like to thank Hao Peng for providing useful guidance. Also, the author would like to thank Zhiyu Zhang for suggesting the problem. Additionally, the author would like to thank David Jerison and Ankur Moitra for giving advice about the project.

2 Elliptic Curves and Global Densities

Suppose P is a place of K. An elliptic curve E over K_{P} has an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

such that $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in K_{P}$. Additionally, using [6], for an elliptic curve E over K_{P}, define

$$
\begin{aligned}
& b_{2}(E)=a_{1}^{2}+4 a_{2}, b_{4}(E)=a_{1} a_{3}+2 a_{4}, b_{6}(E)=a_{3}^{2}+4 a_{6}, \\
& b_{8}(E)=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}
\end{aligned}
$$

Also, the discriminant of E is

$$
\Delta(E)=-b_{2}(E)^{2} b_{8}(E)-8 b_{4}(E)^{3}-27 b_{6}(E)^{2}+9 b_{2}(E) b_{4}(E) b_{6}(E)
$$

Definition 2.1 ($(7])$. Elliptic curves E and F over K_{P} are equivalent if there exists $l, m, n, u \in$ K_{P} such that $u \neq 0$ and the equation for F can be obtained from the equation for E by first replacing x with $u^{2} x+n$ and y with $u^{3} y+l u^{2} x+m$ and then dividing by u^{6}.

Definition $2.2\left([7)\right.$. An elliptic curve E over K_{P} is minimal if the equation for E has coefficients in R_{P} and if there does not exist an elliptic curve F over K_{P} such that the equation for F has coefficients in R_{P}, F is equivalent to E, and $v_{P}(\Delta(F))<v_{P}(\Delta(E))$.

The following proposition generalizes Theorem 3.2 of [7] to nonminimal equivalent elliptic curves. Note that the proposition is used later in the paper to compute local densities.

Proposition 2.3. Let E and F be elliptic curves over K_{P} that have equations with coefficients in R_{P}, are equivalent, and satisfy $v_{P}(\Delta(E))=v_{P}(\Delta(F))$. Then, there exists $l, m, n, u \in R_{P}$ such that $v_{P}(u)=0$ and the equation of F can be obtained from the equation of E by first replacing x with $u^{2} x+n$ and y with $u^{3} y+l u^{2} x+m$ and then dividing by u^{6}.

Proof. The proof of Theorem 3.2 of 77 can be used to prove this proposition.
Proposition 2.4. Let k be a nonnegative integer. The elliptic curve E over K_{P} with coefficients in R_{P} has $M_{P}(E) \geq k$ if and only if $l, m, n \in R_{P}$ exist such that if x is replaced by $x+n$ and y is replaced by $y+l x+m$, the resulting elliptic curve

$$
E^{\prime}: y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}
$$

has $a_{i}^{\prime} \equiv 0\left(\bmod \pi_{P}^{k i}\right)$ for $i \in\{1,2,3,4,6\}$.
Proof. Suppose l, m, n exist. Then, $M_{P}(E) \geq k$ follows from replacing x with $x+n$ and y with $y+l x+m$ to get the curve $E^{\prime}: y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ such that for $i \in\{1,2,3,4,6\}, \pi_{P}^{i k}$ divides a_{i}^{\prime}. From Tate's algorithm, we have that $M_{P}(E)=M_{P}\left(E^{\prime}\right) \geq k$.

Next, we prove that if $M_{P}(E) \geq k, l, m$, and n exist using induction on k. The base case $k=0$ is clear. Let a be a nonnegative integer and assume the result is true for $k=a$. We prove the result is true for $k=a+1$. Assume $M_{P}(E) \geq a+1$. Because $M_{P}(E) \geq a$, l, m, and n exist such that if x is replaced with $x+n$ and y is replaced with $y+l x+m$, the resulting curve $E^{\prime}: y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ has $a_{i}^{\prime} \equiv 0\left(\bmod \pi_{P}^{i a}\right)$ for $i \in\{1,2,3,4,6\}$. Using Tate's on E^{\prime}, E^{\prime} after a iterations will be

$$
F: y^{2}+\frac{a_{1}^{\prime}}{\pi_{P}^{a}} x y+\frac{a_{3}^{\prime}}{\pi_{P}^{3 a}} y=x^{3}+\frac{a_{2}^{\prime}}{\pi_{P}^{2 a}} x^{2}+\frac{a_{4}^{\prime}}{\pi_{P}^{4 a}} x+\frac{a_{6}^{\prime}}{\pi_{P}^{6 a}}
$$

We have that F is E with x replaced with $\pi_{P}^{2 a} x+n$ and y replaced with $\pi_{P}^{3 a} y+l \pi_{P}^{2 a} x+m$ divided by $\pi_{P}^{6 a}$.

Because $M_{P}\left(E^{\prime}\right)=M_{P}(E) \geq k+1, F$ will complete at least one more iteration. During this iteration, suppose x is replaced with $x+n^{\prime}$ and y is replaced with $y+l^{\prime} x+m^{\prime}$. We have that the resulting elliptic curve

$$
F^{\prime}: y^{2}+a_{1}^{\prime \prime} x y+a_{3}^{\prime \prime} y=x^{3}+a_{2}^{\prime \prime} x^{2}+a_{4}^{\prime \prime} x+a_{6}^{\prime \prime}
$$

has $a_{i}^{\prime \prime} \equiv 0\left(\bmod \pi_{P}^{i}\right)$ for $i \in\{1,2,3,4,6\}$. Moreover, F^{\prime} is E with x replaced with $\pi_{P}^{2 a} x+$ $n+\pi_{P}^{2 a} n^{\prime}$ and y replaced with $\pi_{P}^{3 a} y+\left(l+l^{\prime} \pi_{P}^{a}\right) \pi_{P}^{2 a} x+m+m^{\prime} \pi_{P}^{3 a}+l n^{\prime} \pi_{P}^{2 a}$ divided by $\pi_{P}^{6 a}$. Because $a_{i}^{\prime \prime} \equiv 0\left(\bmod \pi_{P}^{i}\right)$ for $i \in\{1,2,3,4,6\}$, we are done.

Note that Tate's algorithm cannot be used on a curve in G_{P} with discriminant 0 . However, this is not considered in the calculations of local densities later in the paper. Suppose $\mathfrak{r} \in T$, n is a positive integer, and k is a nonnegative integer. The set U of elliptic curves $E \in G_{P}$ with Kodaira type \mathfrak{r}, Tamagawa number n, and $M(E)=k$ is an open subset of G_{P}, because if $E \in U$, if multiples of π_{P}^{M} are added to the coefficients of E for sufficiently positive large integers M, the resulting curve will be an element of U. Particularly, the set of elliptic curves is an open subset of G_{P}. In the next proposition, we prove that the Haar measure of this set is 1 ; note that it follows that the Haar measure of the set of curves in G_{P} with discriminant 0 is 0 .

Proposition 2.5. The Haar measure of the set of elliptic curves is 1 .
Proof. For a positive integer M, let E_{M} be the set of subsets of G_{P} of the form $\left(r_{i}+\pi_{P}^{M}\right)^{5}$ for $r_{i} \in L_{P, M}$ that are contained in the set of elliptic curves. For $E: y^{2}+a_{1} x y+a_{3} y=$ $x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$, we see that the number of solutions to $\Delta(E) \equiv 0\left(\bmod \pi_{P}^{M}\right)$ is $O\left(Q_{P}^{4 M}\right)$. Therefore, we have that $\left|E_{M}\right|=Q_{P}^{5 M}-O\left(Q_{P}^{4 M}\right)$. However, the Haar measure of the union of the elements of E_{M} is $\frac{\left|E_{M}\right|}{Q_{P}^{5 M}}=1-O\left(\frac{1}{Q_{P}^{M}}\right)$. The result follows from taking $M \rightarrow \infty$.

3 Global Densities

Next, global densities are established. Definitions and theorems from 4 are used in this section.

Let S be a finite nonempty subset of M_{K}. Also, suppose N is a positive integer. Let $\operatorname{Div}(S)$ be the set of divisors

$$
\sum_{P \in S} n_{P} P
$$

such that for $P \in S, n_{P}$ is a nonnegative integer, and there exists $P \in S$ such that $n_{P}>0$. Suppose $U \subset \mathcal{O}_{K, S}^{N}$. The upper density of U at S is

$$
\bar{d}_{S}(U)=\limsup _{D \in \operatorname{Div}(S)} \frac{\left|U \cap L(D)^{N}\right|}{|L(D)|^{N}}
$$

and the lower density of U at S is

$$
\underline{d}_{S}(U)=\liminf _{D \in \operatorname{Div}(S)} \frac{\left|U \cap L(D)^{N}\right|}{|L(D)|^{N}}
$$

If $\bar{d}_{S}(U)=\underline{d}_{S}(U)$, the density $d_{S}(U)$ of U at S exists, and equals $\bar{d}_{S}(U)=\underline{d}_{S}(U)$.
Theorem 3.1 ([4], Theorem 2.1). For $P \in S^{C}$, let $U_{P} \subset K_{P}^{N}$ be a measurable set such that $\mu_{P}\left(\partial U_{P}\right)=0$. For a positive integer M, let V_{M} be the set of $x \in \mathcal{O}_{K, S}^{N}$ such that $x \in U_{P}$ for some $P \in S^{C}$ with degree at least M. Suppose $\lim _{M \rightarrow \infty} \bar{d}_{S}\left(V_{M}\right)=0$. Let $\mathcal{P}: \mathcal{O}_{K, S}^{N} \rightarrow 2^{S^{C}}, \mathcal{P}(a)=\left\{P \in S^{C}: a \in U_{P}\right\}$. Then:

1. $\sum_{P \in S^{C}} \mu_{P}\left(U_{P}\right)$ is convergent.
2. For $T \subset 2^{S^{C}}, \nu(T):=d_{S}\left(\mathcal{P}^{-1}(T)\right)$ exists. Also, ν defines a measure on $2^{S^{C}}$.
3. ν is concentrated at finite subsets of S^{C}, and for a finite set T of places in S^{C},

$$
\nu(\{T\})=\prod_{P \in T} \mu_{P}\left(U_{P}\right) \prod_{P \in S^{C} \backslash T}\left(1-\mu_{P}\left(U_{P}\right)\right)
$$

Theorem 3.2 ([4], Theorem 2.2). Let f and g be polynomials in $\mathcal{O}_{K, S}\left[x_{1}, \ldots, x_{d}\right]$ that are relatively prime. For $M \geq 1$, let V_{M} be the set of $x \in \mathcal{O}_{K, S}^{N}$ such that $f(x) \equiv g(x) \equiv 0$ $\left(\bmod \pi_{P}\right)$ for some $P \in S^{C}$ with degree at least M. Then, $\lim _{M \rightarrow \infty} \bar{d}_{S}\left(V_{M}\right)=0$.

In this paper, we consider global densities for elliptic curves over K with coefficients in $\mathcal{O}_{K, S}$ in long Weierstrass form. We see that W_{S} can be considered to be $\mathcal{O}_{K, S}^{5}$, and particularly, the global density definitions from above for $\mathcal{O}_{K, S}^{5}$ can be used on W_{S}. Similar methods are used in 2 for elliptic curves over \mathbb{Q} with coefficients in \mathbb{Z}. Note that an elliptic curve must have a nonzero discriminant, meaning that not all curves in W_{S} are elliptic curves. However, for $D \in \operatorname{Div}(S)$, the number of curves in W_{S} with discriminant 0 that are elements of $L(D)^{5}$, where W_{S} is considered to be $\mathcal{O}_{K, S}^{5}$, is $O\left(|L(D)|^{4}\right)$. Particularly, if proportions over elliptic curves in W_{S} is considered rather than the proportions over W_{S}, the density is not changed.

Proposition 3.3 is about the global density of nonminimal elliptic curves. Note that the lemma is used to prove Theorem 7.2 .
Proposition 3.3. For a positive integer M, let V_{M} be the set of elliptic curves $E \in W_{S}$ such that there exists $P \in S^{C}$ with degree at least M such that $M_{P}(E) \geq 1$. Then, $\lim _{M \rightarrow \infty} \bar{d}_{S}\left(V_{M}\right)=0$.

Proof. We prove this with casework on the characteristic p of K. Suppose that E is an elliptic curve in G_{P} with equation $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ for $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in R_{P}$ such that $M_{P}(E) \geq 1$.

Assume $p \geq 5$. We have that E can be translated to the curve

$$
y^{2}=x^{3}+\left(-\frac{b_{2}^{2}}{48}+\frac{b_{4}}{2}\right) x-\frac{b_{2}^{3}}{864}-\frac{b_{2} b_{4}}{24}+\frac{b_{6}}{4} .
$$

Because $M_{P}(E) \geq 1$, using Proposition 2.4. $-\frac{b_{2}^{2}}{48}+\frac{b_{4}}{2} \equiv 0\left(\bmod \pi_{P}\right)$ and $-\frac{b_{2}^{3}}{864}-\frac{b_{2} b_{4}}{24}+\frac{b_{6}}{4} \equiv$ $0\left(\bmod \pi_{P}\right)$. Then, Theorem 3.2 with $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\right)=-\frac{\left(x_{1}^{2}+4 x_{2}\right)^{2}}{48}+\frac{x_{1} x_{3}+2 x_{4}}{2}$ and $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\right)=-\frac{\left(x_{1}^{2}+4 x_{2}\right)^{3}}{864}-\frac{\left(x_{1}^{2}+4 x_{2}\right)\left(x_{1} x_{3}+2 x_{4}\right)}{24}+\frac{x_{3}^{2}+4 x_{6}}{4}$ proves the lemma for $p \geq 5$.

Next, assume $p=3$. We have that E can be translated to the curve

$$
y^{2}=x^{3}+\frac{b_{2}}{4} x^{2}+\frac{b_{4}}{2} x+\frac{b_{6}}{4}
$$

Using Proposition $2.4, \frac{b_{2}}{4} \equiv 0\left(\bmod \pi_{P}\right)$ from the coefficient of x^{2}. Additionally, $\Delta(E) \equiv 0$ $\left(\bmod \pi_{P}\right)$. Next, Theorem 3.2 with $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\right)=-\left(x_{1}^{2}+x_{2}\right)^{2}\left(x_{1}^{2} x_{6}+x_{2} x_{6}-x_{1} x_{3} x_{4}+\right.$ $\left.x_{2} x_{3}^{2}-x_{4}^{2}\right)+\left(x_{1} x_{3}+2 x_{4}\right)^{3}$ and $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\right)=x_{1}^{2}+x_{2}$ proves the lemma for $p=3$.

Suppose $p=2$. Using Proposition $2.4, a_{1} \equiv 0\left(\bmod \pi_{P}\right)$ from the coefficient of $x y$. Also, $\Delta(E) \equiv 0\left(\bmod \pi_{P}\right)$. Therefore, Theorem 3.2 with $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\right)=x_{1}^{4}\left(x_{1}^{2} x_{6}+x_{1} x_{3} x_{4}+\right.$ $\left.x_{2} x_{3}^{2}+x_{4}^{2}\right)+x_{3}^{4}+x_{1}^{3} x_{3}^{3}$ and $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\right)=x_{1}$ proves the lemma for $p=2$.

4 Local Densities for $p \geq 5$

4.1 Setup

Suppose that the characteristic of K is $p \geq 5$. Let P be a place of K. We compute the local densities over K_{P} of Kodaira types \mathfrak{r} and Tamagawa numbers n for elliptic curves in G_{P}. Let $G_{P}^{(1)}$ be the set of curves

$$
y^{2}=x^{3}+a_{4} x+a_{6}
$$

over K_{P} such that $a_{4}, a_{6} \in R_{P}$. Note that $G_{P}^{(1)}$ can be considered to be R_{P}^{2}. Define $\varphi: G_{P} \rightarrow G_{P}^{(1)}$ as the function such that if E is the curve in G_{P} with equation $E: y^{2}+$ $a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \varphi(E)$ is the curve

$$
\varphi(E): y^{2}=x^{3}+\left(-\frac{b_{2}^{2}}{48}+\frac{b_{4}}{2}\right) x-\frac{b_{2}^{3}}{864}-\frac{b_{2} b_{4}}{24}+\frac{b_{6}}{4} .
$$

If E is an elliptic curve, $\varphi(E)$ is an elliptic curve equivalent to E.

Lemma 4.1. If U is an open subset of $G_{P}^{(1)}, \mu_{P}\left(\varphi^{-1}(U)\right)=\mu_{P}(U)$.
Proof. Let V be the set of $y^{2}=x^{3}+a_{4}^{\prime} x+a_{6}^{\prime}$ with $a_{4}^{\prime} \in r_{4}+\pi_{P}^{n_{4}} R_{P}$ and $a_{6}^{\prime} \in r_{6}+\pi_{P}^{n_{6}} R_{P}$. It suffices to prove that $\mu_{P}\left(\varphi^{-1}(V)\right)=\mu_{P}(V)=\frac{1}{Q^{n_{4}+n_{6}}}$ because all open subsets of $G_{P}^{(1)}$ can be written as a disjoint countable union of sets with the form of V. We want to find the set of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in R_{P}$ such that $-\frac{b_{2}^{2}}{48}+\frac{b_{4}}{2} \in r_{4}+\pi_{P}^{n_{4}} R_{P}$ and $-\frac{b_{2}^{3}}{864}-\frac{b_{2} b_{4}}{24}+\frac{b_{6}}{4} \in r_{6}+\pi_{P}^{n_{6}} R_{P}$. Let $M=\max \left(n_{4}, n_{6}\right)$. First, select a_{1}, a_{2}, a_{3} modulo π_{P}^{M}. Each has Q_{P}^{M} possible residues. Afterwards, a_{4} will have $Q_{P}^{M-n_{4}}$ residues modulo π_{P}^{M}; select the residue for a_{4}. Finally, a_{6} has $Q_{P}^{M-n_{6}}$ residues modulo π_{P}^{M}. We see that if each of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ are taken modulo π_{P}^{M}, the number of combinations of residues is $Q_{P}^{5 M-n_{4}-n_{6}}$. Also, because a_{i} is modulo π_{P}^{M} for $i \in\{1,2,3,4,6\}$, each combination of residues has a Haar measure of $\frac{1}{Q_{P}^{5 M}}$. We are done.

4.2 Multiple Iterations

Let k be a nonnegative integer. Suppose S_{k} is the set of elliptic curves $E \in G_{P}^{(1)}$ such that $M_{P}(E) \geq k$.

Suppose E is an elliptic curve in $G_{P}^{(1)}$ with equation $E: y^{2}=x^{3}+a_{4} x+a_{6}$. Assume $E \in S_{k}$. Then, using Proposition 2.4. $l, m, n \in R_{P}$ exist such that

$$
\left(y+\frac{l}{\pi_{P}^{k}} x+\frac{m}{\pi_{P}^{3 k}}\right)^{2}-\left(x+\frac{n}{\pi_{P}^{2 k}}\right)^{3}-\frac{a_{4}}{\pi_{P}^{4 k}}\left(x+\frac{n}{\pi_{P}^{2 k}}\right)-\frac{a_{6}}{\pi_{P}^{6 k}} \in R_{P}[x, y]
$$

The coefficient of $x y$ is $\frac{2 l}{\pi_{P}^{k}}$, giving that $v_{P}(l) \geq k$, and the coefficient of y is $\frac{2 m}{\pi_{P}^{3 k}}$, giving that $v_{P}(m) \geq 3 k$. Also, the coefficient of x^{2} is $\frac{3 n-l^{2}}{\pi_{P}^{2 k}}$, giving that $v_{P}(n) \geq 2 k$. From this, we have that $v_{P}\left(a_{4}\right) \geq 4 k$ and $v_{P}\left(a_{6}\right) \geq 6 k$.

Define the function $\phi_{k}: S_{k} \rightarrow S_{0}, y^{2}=x^{3}+a_{4} x+a_{6} \mapsto y^{2}=x^{3}+\frac{a_{4}}{\pi_{P}^{4 k}} x+\frac{a_{6}}{\pi_{P}^{6 k}}$. Note that $S_{k} \subset S_{0} \subset G_{P}^{(1)}$. From Proposition 2.5 and Lemma 4.1, $\mu_{P}\left(S_{0}\right)=1$. Next, we show how we can use ϕ_{k} to compute densities for S_{k}.

Lemma 4.2. If U is an open subset of $G_{P}^{(1)}, \mu_{P}\left(\phi_{k}^{-1}(U)\right)=\frac{1}{Q_{P}^{10 k}} \mu_{P}(U)$.
Proof. Let V be the set of $y^{2}=x^{3}+a_{4}^{\prime} x+a_{6}^{\prime}$ with $a_{4}^{\prime} \in r_{4}+\pi_{P}^{n_{4}} R_{P}$ and $a_{6}^{\prime} \in r_{6}+\pi_{P}^{n_{6}} R_{P}$. To prove the lemma, it suffices to prove that $\mu_{P}\left(\phi_{k}^{-1}(V)\right)=\mu_{P}(V)=\frac{1}{Q^{n_{4}+n_{6}+10}}$. We want to find a_{4}, a_{6} such that $\frac{a_{4}}{\pi_{P}^{4 k}} \in r_{4}+\pi_{P}^{n_{4}} R_{P}$ and $\frac{a_{6}}{\pi_{P}^{6 k}} \in r_{6}+\pi_{P}^{n_{6}} R_{P}$. However, this is true if and only if $a_{4} \in \pi_{P}^{4 k} r_{4}+\pi_{P}^{n_{4}+4 k} R$ and $a_{6} \in \pi_{P}^{6 k} r_{6}+\pi_{P}^{n_{6}+6 k} R$. Moreover, because $\mu_{P}\left(S_{0}\right)=1$, the density of curves $y^{2}=x^{3}+a_{4} x+a_{6}$ with discriminant 0 such that $a_{4} \in \pi_{P}^{4 k} r_{4}+\pi_{P}^{n_{4}+4 k}$ and $a_{6} \in \pi_{P}^{6 k} r_{6}+\pi_{P}^{n_{6}+6 k}$ is 0 . Because of this, $\mu_{P}\left(\phi_{k}^{-1}(V)\right)=\frac{1}{Q_{P}^{n_{4}+n_{6}+10}}$, completing the proof.

4.3 Density Calculations

Given a set A, the density of A means the Haar measure of A. In this subsection, we compute the density of the set of minimal elliptic curves with a given Kodaira type and Tamagawa number over $G_{P}^{(1)}$. From Lemma 4.2, the densities can be extended to all elliptic curves in $G_{P}^{(1)}$. Moreover, from Lemma 4.1, the densities of a given Koidara type and Tamagawa number over $G_{P}^{(1)}$ and over G_{P} are equal.

Suppose the discriminant is not divisible by π_{P}. We compute the density of this by considering a_{4} and a_{6} modulo π_{P}. Suppose $a_{4} \in r_{4}+\pi_{P} R_{P}$ and $a_{6} \in r_{6}+\pi_{P} R_{P}$. We find the number of pairs $\left(r_{4}, r_{6}\right)$ in $L_{P, 1}$ such that $\left(\frac{r_{4}}{3}\right)^{3}+\left(\frac{r_{6}}{2}\right)^{2} \equiv 0\left(\bmod \pi_{P}\right)$. If $r_{4}=0, r_{6}$ has

1 choice, and if $-\frac{r_{4}}{3}$ is a square modulo π_{P}, r_{6} has 2 choices. Otherwise, r_{6} has 0 choices. We see that the number of pairs $\left(r_{4}, r_{6}\right)$ is Q_{P}. Therefore, where each pair $\left(r_{4}, r_{6}\right)$ has a density of $\frac{1}{Q_{P}^{2}}$, the density of the discriminant not being divisible by π_{P} is $\frac{Q_{P}-1}{Q_{P}}$. For this case, Tate's algorithm ends in step 1 and we get that $\delta_{K}\left(I_{0}, 1,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}}$.

Next, assume the discriminant is divisible by π_{P}. Furthermore, suppose $a_{4}, a_{6} \not \equiv 0$ $\left(\bmod \pi_{P}\right)$. Because there are $Q_{P}-1$ pairs $\left(r_{4}, r_{6}\right)$ modulo π_{P} for this case, the total density is $\frac{Q_{P}-1}{Q_{P}^{2}}$. Let α be the element of $L_{P, 1}$ such that $a_{4} \equiv-3 \alpha^{2}\left(\bmod \pi_{P}\right)$ and $a_{6} \equiv 2 \alpha^{3}$ $\left(\bmod \pi_{P}\right)$. The singular point is $(\alpha, 0)$ and in step $2, x$ is replaced with $x+n$ where $n=\alpha$. Because $\alpha \not \equiv 0\left(\bmod \pi_{P}\right)$, Tate's algorithm ends in step 2. The quadratic considered in step 2 is $T^{2}-3 \alpha$. We see that for $\frac{Q_{P}-1}{2}$ values of α, this quadratic has roots in $R_{P} / \pi_{P} R_{P}$ and $c=v_{P}(\Delta(E))$. Otherwise, $c=1$ if $v_{P}(\Delta(E))$ is odd and $c=2$ if $v_{P}(\Delta(E))$ is even.

Let N be a positive integer. Suppose $a_{4} \in r_{4}+\pi_{P}^{N} R_{P}$ and $a_{6} \in r_{6}+\pi_{P}^{N} R_{P}$. We find the number of pairs $\left(r_{4}, r_{6}\right)$ in $L_{P, 1}$ such that $\left(\frac{r_{4}}{3}\right)^{3}+\left(\frac{r_{6}}{2}\right)^{2} \equiv 0\left(\bmod \pi_{P}^{N}\right)$ and $r_{4}, r_{6} \neq 0$. Because there are $\frac{Q_{P}^{N}-Q_{P}^{N-1}}{2}$ nonzero residues that are squares modulo π_{P}^{M}, we have that the number of pairs $\left(r_{4}, r_{6}\right)$ is $Q_{P}^{N}-Q_{P}^{N-1}$. Therefore, the density of $v_{P}(\Delta(E)) \geq N$ for $a_{4}, a_{6} \not \equiv 0\left(\bmod \pi_{P}\right)$ is $\frac{Q_{P}-1}{Q_{P}^{N+1}}$.

Suppose N is a positive integer. The density of $v_{P}(\Delta(E))=N$ is $\frac{Q_{P}-1}{Q_{P}^{N+1}}-\frac{Q_{P}-1}{Q_{P}^{N+2}}=$ $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{N+2}}$.

We therefore have that $\delta_{K}\left(I_{1}, 1,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{3}}, \delta_{K}\left(I_{2}, 2,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{4}}$, and $\delta_{K}\left(I_{N}, N, 0 ; P\right)=$ $\delta_{K}\left(I_{N}, 2\left\lfloor\frac{N}{2}\right\rfloor-N+2,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+2}}$ for $N \geq 3$. Moreover, we have that $c=1$ with density

$$
\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{3}}+\sum_{l=1}^{\infty} \frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{2 l+3}}=\frac{\left(Q_{P}-1\right)\left(2 Q_{P}^{2}-1\right)}{2 Q_{P}^{3}\left(Q_{P}+1\right)}
$$

and similarly, $c=2$ with density $\frac{\left(Q_{P}-1\right)\left(2 Q_{P}^{2}-1\right)}{2 Q_{P}^{4}\left(Q_{P}+1\right)}$. For $N \geq 3, c=N$ with density $\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+2}}$.
If $v_{P}\left(a_{4}\right), v_{P}\left(a_{6}\right) \geq 1$, the singular point is $(0,0)$. The total density for this case is $\frac{1}{Q_{P}^{2}}$. If $v_{P}\left(a_{6}\right)=1$, the algorithm ends in step 3. For this, we get $\delta_{K}(I I, 1,0 ; P)=\frac{Q_{P}-1}{Q_{P}^{3}}$.

Assume that $v_{P}\left(a_{6}\right) \geq 2$. The total density for this is $\frac{1}{Q_{P}^{3}}$. If $v_{P}\left(a_{4}\right)=1$, the algorithm ends in step 4 , and we get that $\delta_{K}(I I I, 2,0 ; P)=\frac{Q_{P}-1}{Q_{P}^{4}}$.

Next, suppose $v_{P}\left(a_{4}\right) \geq 2$. The total density for this case is $\frac{1}{Q_{P}^{4}}$. If $v_{P}\left(a_{6}\right)=2$, the algorithm ends in step 5 . We have that from this, $\delta_{K}(I V, 1,0 ; P)=\delta_{K}(I V, 3,0 ; P)=\frac{Q_{P}-1}{2 Q_{P}^{5}}$.

Suppose $v_{P}\left(a_{6}\right) \geq 3$. The total density for this case is $\frac{1}{Q_{P}^{5}}$. In step 6 , the polynomial $P(T) \in\left(R_{P} / \pi_{P} R_{P}\right)[T]$ has coefficient of T^{2} equal to 0 . From adding multiples of π_{P}^{2} to a_{4}, the choices for the coefficient of T are $L_{P, 1}$. Also, from adding multiples of π_{P}^{3} to a_{6}, the choices for the constant term are $L_{P, 1}$. Then, we have that each polynomial $P(T) \in\left(R_{P} / \pi_{P} R_{P}\right)[T]$ with coefficient of T^{2} equal to 0 corresponds to a density of $\frac{1}{Q_{P}^{7}}$ in $G_{P}^{(1)}$.

Assume $P(T)$ has distinct roots. The total number of $P(T)$ for this case is $Q_{P}^{2}-Q_{P}$; therefore, the total density for this case is $\frac{Q_{P}-1}{Q_{P}^{6}}$. We have that Tate's algorithm ends in step 6 here. The number of $P(T)$ with 0,1 , and 3 roots in $R_{P} / \pi_{P} R_{P}$ are $\frac{Q_{P}^{2}-1}{3}, \frac{Q_{P}^{2}-Q_{P}}{2}$, and $\frac{Q_{P}^{2}-3 Q_{P}+2}{6}$, respectively. With this, $\delta_{K}\left(I_{0}^{*}, 1,0 ; P\right)=\frac{Q_{P}^{2}-1}{3 Q_{P}^{7}}, \delta_{K}\left(I_{0}^{*}, 2,0 ; P\right)=\frac{Q_{P}-1}{2 Q_{P}^{6}}$, and $\delta_{K}\left(I_{0}^{*}, 4,0 ; P\right)=\frac{Q_{P}^{2}-3 Q_{P}+2}{6 Q_{P}^{7}}$.

Next, assume that $P(T)$ has a double root and a simple root. For this case, the total number of $P(T)$ is $Q_{P}-1$ and the total density is therefore $\frac{Q_{P}-1}{Q_{P}^{7}}$. Suppose N is a positive
integer. We have that $\delta_{K}\left(I_{N}^{*}, 2,0 ; P\right)=\delta_{K}\left(I_{N}^{*}, 4,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+7}}$. Moreover, $c=2$ and $c=$ 4 both have density $\frac{Q_{P}-1}{2 Q_{P}^{7}}$. More details about computing local densities for the subprocedure are included in Section 4.4

Assume $P(T)$ has a triple root. For this case, the total number of $P(T)$ is 1 and the total density is therefore $\frac{1}{Q_{P}^{7}}$. Because the coefficient of T^{2} in $P(T)$ is 0 , the triple root is 0 . If $v_{P}\left(a_{6}\right)=4$, the algorithm ends in step 8. For this, $\delta_{K}\left(I V^{*}, 1,0 ; P\right)=\delta_{K}\left(I V^{*}, 3,0 ; P\right)=$ $\frac{Q_{P}-1}{2 Q_{P}^{8}}$.

Next, assume that $v_{P}\left(a_{6}\right) \geq 5$. The total density for this case is $\frac{1}{Q_{P}^{8}}$. If $v_{P}\left(a_{4}\right)=3$, the algorithm ends in step 9 and $\delta_{K}\left(I I I^{*}, 2,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}^{9}}$.

Suppose $v_{P}\left(a_{4}\right) \geq 4$. The total density for this case is $\frac{1}{Q_{P}^{9}}$. If $v_{P}\left(a_{6}\right)=5$, the algorithm ends in step 10 and $\delta_{K}\left(I I^{*}, 1,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}^{10}}$.

With density $\frac{1}{Q_{P}^{11}}$, we have that $v_{P}\left(a_{4}\right) \geq 4$ and $v_{P}\left(a_{6}\right) \geq 6$, meaning that the curve is not minimal. That is, the curve will complete iteration 1 and continue iteration 2 . Note that the density of nonminimal curves calculated from the algorithm matches Lemma 4.2 .

4.4 Subprocedure Density Calculations

We compute the subprocedure densities by studying the translation of x in Tate's algorithm. In the step 7 subprocedure, because initially the coefficient of y is 0 , there will be no translations of y.

Let X be the set of elliptic curves $E \in G_{P}^{(1)}$ such that $M_{P}(E)=0$ and Tate's algorithm enters the step 7 subprocedure when used on E. For $E \in X$, let $L(E)$ be the number of iterations of the step 7 subprocedure that are completed when Tate's algorithm is used on E. For a nonnegative integer N, let X_{N} be the set of $E \in X$ such that $L(E) \geq N$.

Suppose $N \geq 0$ is even. Iteration N of the step 7 subprocedure is completed if and only if $n \in R_{P}$ exists such that $v_{P}(n)=1, v_{P}\left(a_{4}+3 n^{2}\right) \geq \frac{N+6}{2}$, and $v_{P}\left(n^{3}+3 n a_{4}+a_{6}\right) \geq N+4$. Suppose $n=n_{1}$ satisfies this condition. Suppose $n=n_{2}$ also satisfies this condition. We then have that $n_{1}^{2} \equiv n_{2}^{2}\left(\bmod \pi_{P}^{\frac{N+6}{2}}\right)$. This gives that n_{1} is equivalent to n_{2} or $-n_{2}$ modulo $\pi^{\frac{N+4}{2}}$. However, because $n_{1}^{3}+n_{1} a_{4} \equiv n_{2}^{3}+n_{2} a_{4}\left(\bmod \pi_{P}^{N+4}\right)$, we have that $v_{P}\left(n_{1}-n_{2}\right) \geq \frac{N+4}{2}$. Moreover, if $v_{P}\left(n_{1}-n_{2}\right) \geq \frac{N+4}{2}, n=n_{2}$ works also.

Next, suppose $N \geq 0$ is odd. Iteration N of the subprocedure is completed if and only if $n \in R_{P}$ exists such that $v_{P}(n)=1, v_{P}\left(a_{4}+3 n_{1}^{2}\right) \geq \frac{N+5}{2}$, and $v_{P}\left(n^{3}+n a_{4}+a_{6}\right) \geq N+4$. Similarly, we have that if $n=n_{1}$ works, $n=n_{2}$ works if and only if $v_{P}\left(n_{1}-n_{2}\right) \geq \frac{N+3}{2}$.

Suppose $N \geq 0$. Suppose n is an element of $L_{P,\left\lfloor\frac{N+4}{2}\right\rfloor}$ such that $v_{P}(n)=1$. Let $Y_{n, N}$ be the set of curves $x^{3}+3 n x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ such that $v_{P}\left(a_{4}^{\prime}\right) \geq\left\lfloor\frac{N+6}{2}\right\rfloor$ and $v_{P}\left(a_{6}^{\prime}\right) \geq N+4$. Note that $Y_{n, N}$ can be considered to be an open subset of R_{P}^{2}.

For $E \in X_{N}$, let $n(E)$ be the unique value of $n \in L_{P,\left\lfloor\frac{N+4}{2}\right\rfloor}$ such that $v_{P}(n)=1$, $v_{P}\left(a_{4}+3 n^{2}\right) \geq\left\lfloor\frac{N+6}{2}\right\rfloor$, and $v_{P}\left(n^{3}+n a_{4}+a_{6}\right) \geq N+4$. Let θ_{N} be the function such that if $E: y^{2}=x^{3}+a_{4} x+a_{6}$ is an element of $X_{N}, \theta_{N}(E)=(x+n(E))^{3}+a_{4}(x+n(E))+a_{6}$.

Lemma 4.3. Suppose N is a nonnegative integer and n is an element of $L_{P,\left\lfloor\frac{N+4}{2}\right\rfloor}$. If U is an open subset of $Y_{n, N}, \mu_{P}\left(\theta_{N}^{-1}(U)\right)=\mu_{P}(U)$.

Proof. Let $V \subset Y_{n, N}$ be the set of $E^{\prime}: y^{2}=x^{3}+3 n x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ such that $a_{4}^{\prime} \in r_{4}+\pi_{P}^{n_{4}} R_{P}$ and $a_{6}^{\prime} \in r_{6}+\pi_{P}^{n_{6}} R_{P}$. Note that we have that $v_{P}\left(r_{4}\right), n_{4} \geq\left\lfloor\frac{N+4}{2}\right\rfloor$ and $v_{P}\left(r_{6}\right), n_{6} \geq N+4$. It suffices to prove that $\mu_{P}\left(\theta_{N}^{-1}(V)\right)=\mu_{P}(V)$. Let $M=\max \left(n_{4}, n_{6}\right)$. Suppose $E: y^{2}=$ $x^{3}+a_{4} x+a_{6}$ is an elliptic curve. We have that $\theta_{N}(E) \in V$ if and only if

$$
a_{4}+3 n^{2} \in r_{4}+\pi_{P}^{n_{4}} R_{P}, n a_{4}+a_{6}+n^{3} \in \pi_{P}^{n_{6}} R_{P}
$$

Modulo π_{P}^{M}, there are $Q_{P}^{M-n_{4}}$ choices for the residue of a_{4}. After choosing a_{4} modulo π_{P}^{M}, there are $Q_{P}^{M-n_{6}}$ choices for the residue of a_{6} modulo π_{P}^{M}. Each of these combinations of residues modulo π_{P}^{M} for a_{4} and a_{6} has a density of $\frac{1}{Q_{P}^{2 M}}$ in $G_{P}^{(1)}$. Note that the set of curves in $G_{P}^{(1)}$ with discriminant 0 is counted in these combinations, but the Haar measure of this set is 0 . The Haar measure of the $Q_{P}^{2 M-n_{4}-n_{6}}$ combinations is $\frac{1}{Q_{P}^{n_{4}+n_{6}}}$, which is $\mu_{P}(V)$.

Let N be a positive integer. We compute the density of I_{N}^{*}. Let n be an element of $L_{P,\left\lfloor\frac{N+3}{2}\right\rfloor}$ such that $v_{P}(n)=1$. We have that the Haar measure of the set of $E \in Y_{n, N-1}$ that do not complete iteration N is $\frac{Q_{P}-1}{Q_{P}^{\left\lfloor\frac{N+5}{2}\right\rfloor+N+4}}$. With Lemma 4.3 because there are $\left(Q_{P}-1\right) Q_{P}^{\left\lfloor\frac{N-1}{2}\right\rfloor}$ values of n, the density of I_{N}^{*} is $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{N+7}}$. From adding multiples of π_{P}^{N+4} to $a_{6}, c=2$ and $c=4$ have equal density. Therefore,

$$
\delta_{K}\left(I_{N}^{*}, 2,0 ; P\right)=\delta_{K}\left(I_{N}^{*}, 4,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+7}}
$$

5 Local Densities for $p=3$

5.1 Setup

Suppose that the characteristic of K is $p=3$. Let P be a place of K and $G_{P}^{(2)}$ be the set of curves

$$
y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

over K_{P} such that $a_{2}, a_{4}, a_{6} \in R_{P}$. Note that $G_{P}^{(2)}$ can be considered to be R_{P}^{3}. For a curve E in G_{P} with equation $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$, let $\varphi(E)$ be the curve with equation

$$
y^{2}=x^{3}+\frac{b_{2}}{4} x^{2}+\frac{b_{4}}{2} x+\frac{b_{6}}{4} .
$$

If E is an elliptic curve, $\varphi(E)$ is an elliptic curve equivalent to E.
Lemma 5.1. If U is an open subset of $G_{P}^{(2)}, \mu_{P}\left(\varphi^{-1}(U)\right)=\mu_{P}(U)$.
Proof. This can be proved similarly as Lemma4.1.

5.2 Multiple Iterations

Let k be a nonnegative integer. Suppose S_{k} is the set of elliptic curves $E \in G_{P}^{(2)}$ such that $M_{P}(E) \geq k$.

Suppose $E \in S_{k}$ has equation $E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$. From Proposition 2.4 $l, m, n \in R_{P}$ exist such that

$$
\left(y+\frac{l}{\pi_{P}^{k}} x+\frac{m}{\pi_{P}^{3 k}}\right)^{2}=\left(x+\frac{n}{\pi_{P}^{2 k}}\right)^{3}+\frac{a_{2}}{\pi_{P}^{2 k}}\left(x+\frac{n}{\pi_{P}^{2 k}}\right)^{2}+\frac{a_{4}}{\pi_{P}^{4 k}}\left(x+\frac{n}{\pi_{P}^{2 k}}\right)+\frac{a_{6}}{\pi_{P}^{6 k}}
$$

has coefficients in R_{P}. From the coefficient of $x y, v_{P}(l) \geq k$, and from the coefficient of y, $v_{P}(m) \geq 3 k$. Therefore, we have that

$$
y^{2}=\left(x+\frac{n}{\pi_{P}^{2 k}}\right)^{3}+\frac{a_{2}}{\pi_{P}^{2 k}}\left(x+\frac{n}{\pi_{P}^{2 k}}\right)^{2}+\frac{a_{4}}{\pi_{P}^{4 k}}\left(x+\frac{n}{\pi_{P}^{2 k}}\right)+\frac{a_{6}}{\pi_{P}^{6 k}}
$$

has coefficients in R_{P}. Note that $v_{P}\left(a_{2}\right) \geq 2 k$ also.

For an elliptic curve $E \in G_{P}^{(2)}$ with equation $E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$, let $A_{k}(E)$ be the set of $n \in R_{P}$ such that

$$
y^{2}=x^{3}+\frac{a_{2}}{\pi_{P}^{2 k}} x^{2}+\frac{2 n a_{2}+a_{4}}{\pi_{P}^{4 k}} x+\frac{n^{2} a_{2}+n a_{4}+a_{6}+n^{3}}{\pi_{P}^{6 k}}
$$

has coefficients in R_{P}. The next proposition is useful for computing local densities for multiple iterations.
Proposition 5.2. Let E be an elliptic curve in $G_{P}^{(2)} . E \in S_{k}$ if and only if a unique element $n \in L_{P, k}$ exists such that $n \in A_{k}(E)$.

Proof. Assume a unique element $n \in L_{P, k}$ exists. Then, $A_{k}(E)$ is nonempty, and using Proposition 2.4, $E \in S_{k}$.

Next, assume $E \in S_{k}$. From Proposition 2.4 we have that $A_{k}(E)$ is nonempty. Let the equation of E be $E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ for $a_{2}, a_{4}, a_{6} \in R_{P}$.

Suppose $n \in A_{k}(E)$. From replacing x with $x+n^{\prime}$ for $n^{\prime} \in R_{P}$, we have that $n+n^{\prime} \pi_{P}^{2 k} \in$ $A_{k}(E)$. Therefore, $n \in L_{P, k}$ exists such that $n \in A_{k}(E)$.

Next, we prove uniqueness. Assume $n_{1}, n_{2} \in A_{k}(E) \cap L_{P, k}$. Suppose $a_{2} \neq 0$. Let

$$
F: y^{2}=x^{3}+\frac{a_{2}}{\pi_{P}^{2 k}} x^{2}+\frac{a_{4}}{\pi_{P}^{4 k}} x+\frac{a_{6}}{\pi_{P}^{6 k}}
$$

For $1 \leq i \leq 2$, let F_{i} be F with x replaced by $x+\frac{n_{i}}{\pi_{P}^{2 k}}$. Note that $F_{1}, F_{2} \in G_{P}^{(2)}$. Also, F_{1} and F_{2} are equivalent. Then, using Proposition 2.3, the equation of F_{2} is the equation of F_{1} with x replaced by $u^{2} x+n^{\prime}$ and y replaced by $y=u^{3} y$ and dividing by u^{6} for some $n^{\prime}, u \in R_{P}$ such that $v_{P}(u)=0$. Then, we see that $u^{2}=1$ from the coefficient of x^{2}, and $\frac{n_{1}}{\pi_{P}^{k}}+n^{\prime}=\frac{n_{2}}{\pi_{P}^{2 k}}$. Therefore, $n_{1} \equiv n_{2}\left(\bmod \pi_{P}^{2 k}\right)$ and $n_{1}=n_{2}$. Assume $a_{2}=0$. Afterwards, we have that $a_{4} \equiv 0\left(\bmod \pi_{P}^{4 k}\right)$ and $\left(n_{1}-n_{2}\right)^{3}+\left(n_{1}-n_{2}\right) a_{4} \equiv 0\left(\bmod \pi_{P}^{6 k}\right)$, giving that $n_{1} \equiv n_{2}\left(\bmod \pi_{P}^{2 k}\right)$ and $n_{1}=n_{2}$.

For $E \in S_{k}$, let $n(E)$ be the unique $n \in L_{P, 2 k}$ such that the curve $y^{2}=x^{3}+\frac{a_{2}}{\pi_{P}^{2 k}} x^{2}+$ $\frac{2 n a_{2}+a_{4}}{\pi_{P}^{\pi_{k}}} x+\frac{n^{2} a_{2}+n a_{4}+a_{6}+n^{3}}{\pi_{P}^{6 k}}$ has coefficients in R_{P}. Define $\phi_{k}: S_{k} \rightarrow S_{0}$ to be the function such that if $E \in S_{k}$ has equation $E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \phi_{k}(E) \in S_{0}$ have equation

$$
\phi_{k}(E): y^{2}=x^{3}+\frac{a_{2}}{\pi_{P}^{2 k}} x^{2}+\frac{2 n(E) a_{2}+a_{4}}{\pi_{P}^{4 k}} x+\frac{n(E)^{2} a_{2}+n(E) a_{4}+a_{6}+n(E)^{3}}{\pi_{P}^{6 k}} .
$$

Note that $S_{k} \subset S_{0} \subset G_{P}^{(2)}$. Also, using Proposition 2.5 and Lemma 5.1, $\mu_{P}\left(S_{0}\right)=1$. For $n \in L_{P, k}$, suppose $S_{k, n}$ is the set of $E \in S_{k}$ such that $n(E)=n$, and let $\phi_{k, n}$ be ϕ_{k} restricted to $S_{k, n}$.

Lemma 5.3. If U is an open subset of $G_{P}^{(2)}, \mu_{P}\left(\phi_{k}^{-1}(U)\right)=\frac{1}{Q_{P}^{10 k}} \mu_{P}(U)$.
Proof. Suppose $n \in L_{P, k}$. We prove that for an open subset U of $G_{P}^{(2)}, \mu_{P}\left(\phi_{k, n}^{-1}(U)\right)=$ $\frac{1}{Q_{P}^{12 k}} \mu_{P}(U)$. Let V be the set of $y^{2}=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ such that $a_{2}^{\prime} \in r_{2}+\pi_{P}^{n_{2}} R_{P}$, $a_{4}^{\prime} \in r_{4}+\pi_{P}^{n_{4}} R_{P}$, and $a_{6}^{\prime} \in r_{6}+\pi_{P}^{n_{6}} R_{P}$. We compute the Haar measure of the set of $a_{2}, a_{4}, a_{6} \in R_{P}$ such that $\frac{a_{2}}{\pi_{P}^{2 k}} \in r_{2}+\pi_{P}^{n_{2}} R_{P}, \frac{2 n a_{2}+a_{4}}{\pi_{P}^{4 k}} \in r_{4}+\pi_{P}^{n_{4}} R_{P}$, and $\frac{n^{2} a_{2}+n a_{4}+a_{6}+n^{3}}{\pi_{P}^{6 k}} \in$ $r_{6}+\pi_{P}^{n_{6}} R_{P}$. Let $M=\max \left(n_{2}+2 k, n_{4}+4 k, n_{6}+6 k\right)$. There are $Q_{P}^{M-n_{2}-2 k}$ ways to pick a_{2} modulo π_{P}^{M}. Afterwards, a_{4} will have $Q_{P}^{M-n_{4}-4 k}$ choices for the residue modulo π_{P}^{M}; pick a_{4} modulo π_{P}^{M}. Next, a_{6} has $Q_{P}^{M-n_{6}-6 k}$ choices for the residue modulo π_{P}^{M}. Select the residue for a_{6}. The number of combinations of residues is $Q_{P}^{3 M-n_{2}-n_{4}-n_{6}-12 k}$ and each combination
of residues has a Haar measure of $Q_{P}^{-3 M}$. Also, because $\mu_{P}\left(S_{0}\right)=1$, the set of curves with discriminant 0 counted in these combinations of residues has a Haar measure 0 . Therefore, $\mu_{P}\left(\phi_{k, n}^{-1}(V)\right)=\frac{1}{Q_{P}^{n_{2}+n_{4}+n_{6}+12 k}}$. With this, $\mu_{P}\left(\phi_{k, n}^{-1}(U)\right)=\frac{1}{Q_{P}^{12 k}} \mu_{P}(U)$ for all open subsets U of $G_{P}^{(2)}$.

Let U be an open subset of $G_{P}^{(2)}$ We have that $\phi_{k}^{-1}(U)=\sqcup_{n \in L_{P, k}} \phi_{k, n}^{-1}(U)$. Then,

$$
\mu_{P}\left(\phi_{k}^{-1}(U)\right)=\sum_{n \in L_{P, k}} \mu_{P}\left(\phi_{k, n}^{-1}(U)\right)=\frac{1}{Q_{P}^{10 k}} \mu_{P}(U)
$$

completing the proof.

5.3 Density Calculations for $v_{P}\left(a_{2}\right)=0$

Suppose $v_{P}\left(a_{2}\right)=0$. The density for this over $G_{P}^{(2)}$ is $\frac{Q_{P}-1}{Q_{P}}$. The discriminant is $-a_{2}^{3} a_{6}+$ $a_{2}^{2} a_{4}^{2}-a_{4}^{3}$.

From adding multiples of π_{P} to a_{6}, the set of curves with discriminant not divisible by π_{P} has density $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{2}}$. For this case, we have that $c=1$. Also, we add $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{2}}$ to $\delta_{K}\left(I_{0}, 1,0 ; P\right)$.

Assume the discriminant is divisible by π_{P}. The algorithm ends in step 2. Because $v_{P}\left(a_{2}\right)=0$, the coefficient of a_{6} in the discriminant is not divisible by π_{P}. Then, we see that for $N \geq 0$, the density over $G_{P}^{(2)}$ of curves such that $v_{P}\left(a_{2}\right)=0$ and $v_{P}(\Delta(E))=N$ is $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{N+2}}$. If $a_{2} \equiv r_{2}\left(\bmod \pi_{P}\right)$ for $r_{2} \in L_{P, 1}$ such that $r_{2} \neq 0, T^{2}+a_{2}$ is irreducible over $R_{P} / \pi_{P} R_{P}$ for $\frac{Q_{P}-1}{2}$ values of r_{2}.

Using step 2 of Tate's algorithm, we have that $\delta_{K}\left(I_{1}, 1,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{3}}, \delta_{K}\left(I_{2}, 2,0 ; P\right)=$ $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{4}}$, and $\delta_{K}\left(I_{N}, N, 0 ; P\right)=\delta_{K}\left(I_{N}, 2\left\lfloor\frac{N}{2}\right\rfloor-N+2,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+2}}$ for $N \geq 3$. Moreover, $c=1$ with density $\frac{\left(Q_{P}-1\right)\left(2 Q_{P}^{2}-1\right)}{2 Q_{P}^{3}\left(Q_{P}+1\right)}$ and $c=2$ with density $\frac{\left(Q_{P}-1\right)\left(2 Q_{P}^{2}-1\right)}{2 Q_{P}^{4}\left(Q_{P}+1\right)}$. For $N \geq 3, c=N$ with density $\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+2}}$.

5.4 Density Calculations for $v_{P}\left(a_{2}\right) \geq 1$

Next, suppose $v_{P}\left(a_{2}\right) \geq 1$. The density for this is $\frac{1}{Q_{P}}$ and modulo π_{P}, the discriminant is $-a_{4}^{3}$.

Assume the discriminant is not divisible by π_{P}. This occurs if and only if a_{4} is not divisible by π_{P}, and the density of this case is $\frac{Q_{P}-1}{Q_{P}^{2}}$. Adding this density to $\delta_{K}\left(I_{0}, 1,0 ; P\right)$ gives that $\delta_{K}\left(I_{0}, 1,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}}$.

Next, assume the discriminant is divisible by π_{P}. The total density for these cases will be $\frac{1}{Q_{P}^{2}}$. Suppose α_{1} is an element of $L_{P, 1}$ such that $a_{6}+\alpha_{1}^{3} \equiv 0\left(\bmod \pi_{P}\right)$. A singular point is $\left(\alpha_{1}, 0\right)$. We have that x is replaced with $x+n$ where $n=\alpha_{1}$. The resulting curve has equation

$$
y^{2}=(x+n)^{3}+a_{2}(x+n)^{2}+a_{4}(x+n)+a_{6} .
$$

We have that $n^{2} a_{2}+n a_{4}+a_{6}+n^{3}$ is not divisible by π_{P}^{2} with density $\frac{Q_{P}-1}{Q_{P}^{3}}$ by adding multiples of π_{P} to a_{6}. Here, $\delta_{K}(I I, 1,0 ; P)=\frac{Q_{P}-1}{Q_{P}^{3}}$.

Assume $n^{2} a_{2}+n a_{4}+a_{6}+n^{3}$ is divisible by π_{P}^{2}. The total density for this case is $\frac{1}{Q_{P}^{3}}$. The density of $v_{P}\left(2 n a_{2}+a_{4}\right)=1$ is $\frac{Q_{P}-1}{Q_{P}^{4}}$ from replacing a_{4} with $a_{4}+\pi_{P} d$ and a_{6} with $a_{6}-\alpha_{1} \pi_{P} d$ for $d \in L_{P, 1}$. If $v_{P}\left(2 n a_{2}+a_{4}\right)=1$, the algorithm ends in step 4 . We then have that $\delta_{K}(I I I, 2,0 ; P)=\frac{Q_{P}-1}{Q_{P}^{4}}$.

Assume $2 n a_{2}+a_{4}$ is divisible by π_{P}^{2}. The total density for this case is $\frac{1}{Q_{P}^{4}}$. We have that $v_{P}\left(n^{2} a_{2}+n a_{4}+a_{6}+n^{3}\right)=2$ with density $\frac{Q_{P}-1}{Q_{P}^{5}}$ from adding multiples of π_{P}^{2} to a_{6}. If this is true, the algorithm ends in step 5 . Afterwards, we have that $\delta_{K}(I V, 1,0 ; P)=$ $\delta_{K}(I V, 3,0 ; P)=\frac{Q_{P}-1}{2 Q_{P}^{5}}$.

Suppose $v_{P}\left(n^{2} a_{2}+n a_{4}+a_{6}+n^{3}\right) \geq 3$. The total density for this case is $\frac{1}{Q_{P}^{5}}$. In step 6 , there is no translation. Suppose a_{2} is replaced by $a_{2}+d_{1} \pi_{P}, a_{4}$ is replaced with $a_{4}-2 \alpha_{1} d_{1} \pi_{P}$, and a_{6} is replaced with $a_{6}+\alpha_{1}^{2} d_{1} \pi_{P}$ for $d_{1} \in L_{P, 1}$. Note that the previous parts of the algorithm will not be changed. However, this changes the coefficient of x^{2} from a_{2} to $a_{2}+d_{1} \pi_{P}$, which changes the coefficient of T^{2} of $P(T)$ in step 6 . Next, replace a_{4} with $a_{4}+d_{2} \pi_{P}^{2}$ and a_{6} with $a_{6}-\alpha_{1} d_{2} \pi_{P}^{2}$ for $d_{2} \in \pi_{P}$. Similarly, this does not change the previous parts of the algorithm. However, $d_{2} \pi_{P}^{2}$ will be added to the coefficient of x, which adds d_{2} to the coefficient of T of $P(T)$. Afterwards, replace a_{6} with $a_{6}+d_{3} \pi_{P}^{3}$ for $d_{3} \in L_{P, 1}$. This adds d_{3} to the constant term $P(T)$. With this, the choices for $P(T)$ are the monic polynomials with degree 3 in $\left(R_{P} / \pi_{P} R_{P}\right)[T]$; each choice for $P(T)$ corresponds to a density of $\frac{1}{Q_{P}^{8}}$. Moreover, the number of $P(T)$ with a double root and triple root are $Q_{P}\left(Q_{P}-1\right)$ and Q_{P}, respectively.

Assume $P(T)$ has distinct roots. We have that the algorithm ends in step 6 , with $\delta_{K}\left(I_{0}^{*}, 1,0 ; P\right)=\frac{Q_{P}^{2}-1}{3 Q_{P}^{7}}, \delta_{K}\left(I_{0}^{*}, 2,0 ; P\right)=\frac{Q_{P}-1}{2 Q_{P}^{6}}$, and $\delta_{K}\left(I_{0}^{*}, 4,0 ; P\right)=\frac{Q_{P}^{2}-3 Q_{P}+2}{6 Q_{P}^{7}}$.

Assume $P(T)$ has a double root. For this case, Tate's algorithm ends in step 7 and the total density is $\frac{Q_{P}-1}{Q_{P}^{7}}$. For a positive integer N, we have that $\delta_{K}\left(I_{N}^{*}, 2,0 ; P\right)=\delta_{K}\left(I_{N}^{*}, 4,0 ; P\right)=$ $\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+7}}$. Also, it can be proven that $c=2$ and $c=4$ both have density $\frac{Q_{P}-1}{2 Q_{P}^{7}}$. More details are in Section 5.5.

Now, assume $P(T)$ has a triple root. The density for this case is $\frac{1}{Q_{P}^{7}}$. Let α_{2} be the element of $L_{P, 1}$ such that

$$
n^{2} a_{2}+n a_{4}+a_{6}+n^{3} \equiv-\pi_{P}^{3} \alpha_{2}^{3} \quad\left(\bmod \pi_{P}^{4}\right)
$$

Then, for the translation in step 8 , we let $n=\alpha_{1}+\alpha_{2} \pi_{P}$. Suppose $v_{P}\left(n^{2} a_{2}+n a_{4}+a_{6}+n^{3}\right)=$ 4. This occurs with density $\frac{Q_{P}-1}{Q_{P}^{8}}$ by adding multiples of π_{P}^{4} to a_{6}. In this case, Tate's algorithm ends in step 8 , and $\delta_{K}\left(I V^{*}, 1,0 ; P\right)=\delta_{K}\left(I V^{*}, 3,0 ; P\right)=\frac{Q_{P}-1}{2 Q_{P}^{8}}$.

Next, assume $v_{P}\left(n^{2} a_{2}+n a_{4}+a_{6}+n^{3}\right) \geq 5$. The total density for this case is $\frac{1}{Q_{P}^{8}}$. Consider replacing a_{4} with $a_{4}+d \pi_{P}^{3}$ and a_{6} with $a_{6}-\left(\alpha_{1}+\alpha_{2} \pi_{P}\right) d \pi_{P}^{3}$ for $d \in L_{P, 1}$. This does not change previous parts of the algorithm but adds $d \pi_{P}^{3}$ to the coefficient of x. Therefore, $v_{P}\left(2 n a_{2}+a_{4}\right)=3$ with density $\frac{Q_{P}-1}{Q_{P}^{9}}$. For this, we have that Tate's algorithm ends in step 9 and $\delta_{K}\left(I I I^{*}, 2,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}^{9}}$.

Suppose $v_{P}\left(2 n a_{2}+a_{4}\right) \geq 4$. The total density of this case is $\frac{1}{Q_{P}^{9}}$. From adding multiples of π_{P}^{6} to $a_{6}, v_{P}\left(n^{3}+a_{2} n^{2}+a_{4} n+a_{6}\right)=5$ with density $\frac{Q_{P}-1}{Q_{P}^{10}}$. Also, if $v_{P}\left(n^{3}+a_{2} n^{2}+a_{4} n+a_{6}\right)=5$, the algorithm ends in step 10. This gives that $\delta_{K}\left(I I^{*}, 1,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}^{10}}$.

5.5 Subprocedure Density Calculations

Let X be the set of elliptic curves $E \in G_{P}^{(2)}$ such that $M_{P}(E)=0$ and Tate's algorithm enters the step 7 subprocedure when used on E. For $E \in X$, let $L(E)$ be the number of iterations of the step 7 subprocedure that are completed when Tate's algorithm is used on E. For a nonnegative integer N, let X_{N} be the set of $E \in X$ such that $L(E) \geq N$.

Assume $N \geq 0$ is even. Iteration N of the step 7 subprocedure is completed if and only if $n \in R_{P}$ exists such that $v_{P}\left(a_{2}\right)=1, v_{P}\left(2 n a_{2}+a_{4}\right) \geq \frac{N+6}{2}$, and $v_{P}\left(n^{3}+n^{2} a_{2}+n a_{4}+a_{6}\right) \geq$ $N+4$. Assume $n=n_{1}$ satisfies the condition. Suppose $n=n_{2}$ satisfies the condition also.

Because $v_{P}\left(a_{2}\right)=1, v_{P}\left(n_{1}-n_{2}\right) \geq \frac{N+4}{2}$. Next, assume $v_{P}\left(n_{1}-n_{2}\right) \geq \frac{N+4}{2}$. We show that $n=n_{2}$ also satisfies the condition. Clearly, $v_{P}\left(2 n_{2} a_{2}+a_{4}\right) \geq \frac{N+6}{2}$. Moreover, we have that

$$
n_{2}^{2} a_{2}+n_{2} a_{4}=n_{1}^{2} a_{2}+n_{1} a_{4}+\frac{1}{2}\left(n_{2}-n_{1}\right)\left(\left(2 n_{1} a_{2}+a_{4}\right)+\left(2 n_{2} a_{2}+a_{4}\right)\right)
$$

Therefore, $v_{P}\left(n_{2}^{3}+n_{2}^{2} a_{2}+n_{2} a_{4}+a_{6}\right) \geq N+4$. We have that $n=n_{2}$ satisfies the condition if and only if $v_{P}\left(n_{1}-n_{2}\right) \geq \frac{N+4}{2}$.

Suppose $N \geq 0$ is odd. Iteration N of the step 7 subprocedure is completed if and only if $n \in R_{P}$ exists such that $v_{P}\left(n^{2} a_{2}+n a_{4}+a_{6}+n^{3}\right) \geq N+4$ and $v_{P}\left(2 n a_{2}+a_{4}\right) \geq \frac{N+5}{2}$. Assume $n=n_{1}$ satisfies the condition. Similarly to when N is even, we have that $n=n_{2}$ also satisfies the condition if and only if $v_{P}\left(n_{1}-n_{2}\right) \geq \frac{N+3}{2}$.

Suppose N is a nonnegative integer. Let Y_{N} be the set of curves $y^{2}=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ with $v_{P}\left(a_{2}^{\prime}\right)=1, v_{P}\left(a_{4}^{\prime}\right) \geq\left\lfloor\frac{N+6}{2}\right\rfloor$, and $v_{P}\left(a_{6}^{\prime}\right) \geq N+4$. For $E \in X_{N}$, let $n_{N}(E)$ be the unique value of n in $L_{P,\left\lfloor\frac{N+4}{2}\right\rfloor}$ from above. Suppose $\theta_{N}(E)$, with $\theta_{N}: X_{N} \rightarrow Y_{N}$, is the curve

$$
\theta_{N}(E): y^{2}=\left(x+n_{N}(E)\right)^{3}+a_{2}\left(x+n_{N}(E)\right)^{2}+a_{4}\left(x+n_{N}(E)\right)+a_{6}
$$

Lemma 5.4. If U is an open subset of $Y_{N}, \mu_{P}\left(\theta_{N}^{-1}(U)\right)=Q_{P}^{\left\lfloor\frac{N+4}{2}\right\rfloor} \mu_{P}(U)$.
Proof. Suppose $n \in L_{P,\left\lfloor\frac{N+4}{2}\right\rfloor}$. Let $X_{N, n}$ be the set of $E \in X_{N}$ with $n_{N}(E)=n$ and $\theta_{N, n}$ be θ_{N} restricted to $X_{N, n}$. Note that if $E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ is an element of $X_{N, n}$, $\theta_{N}(E)=\theta_{N, n}(E)$ is $y^{2}=x^{3}+a_{2} x^{2}+\left(n a_{2}+a_{4}\right) x+n^{2} a_{2}+n a_{4}+a_{6}+n^{3}$. Particularly, $\theta_{N, n}(E)$ is invertible. We then have that $\mu_{P}\left(\theta_{N, n}^{-1}(U)\right)=\mu_{P}(U)$. Because there are $Q_{P}^{\left\lfloor\frac{N+4}{2}\right\rfloor}$ values of n, the result follows.

Suppose N is a positive integer. Using Lemma 5.4 , we can compute the density of the curves E with $M_{P}(E)=0$ that have type I_{N}^{*} and Tamagawa number 2 or 4 . The Haar measure of the curves in Y_{N-1} that end in iteration N is $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{N+6+\left\lfloor\frac{N+5}{2}\right\rfloor}}$. With Lemma 4.1, we have that $\delta_{K}\left(I_{N}^{*}, 2,0 ; P\right)=\delta_{K}\left(I_{N}^{*}, 4,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+7}}$.

6 Local Densities for $p=2$

6.1 Setup

Suppose that the characteristic of K is $p=2$. Let P be a place of K and $G_{P}^{(3)}$ be the set of curves

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{4} x+a_{6}
$$

over K_{P} such that $a_{1}, a_{3}, a_{4}, a_{6} \in R_{P}$. Note that $G_{P}^{(3)}$ can be considered to be R_{P}^{4}. For a curve $E \in G_{P}$ with equation $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$, let $\varphi(E)$ be the curve with equation

$$
\varphi(E): y^{2}+a_{1} x y+\left(a_{3}-\frac{a_{1} a_{2}}{3}\right) y=x^{3}+\left(a_{4}-\frac{a_{2}^{2}}{3}\right) x+\frac{2 a_{2}^{3}}{27}-\frac{a_{2} a_{4}}{3}+a_{6}
$$

If E is an elliptic curve, $\varphi(E)$ is an elliptic curve equivalent to E.
Lemma 6.1. If U is an open subset of $G_{P}^{(3)}, \mu_{P}\left(\varphi^{-1}(U)\right)=\mu_{P}(U)$.
Proof. This can be proved similarly as Lemma 4.1

6.2 Multiple Iterations

Let k be a nonnegative integer. Suppose S_{k} is the set of elliptic curves $E \in G_{P}^{(3)}$ such that $M_{P}(E) \geq k$.

For an elliptic curve $E \in G_{P}^{(3)}$ with equation $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{4} x+a_{6}$, let $A_{k}(E)$ be the set of $(l, m, n) \in R_{P}^{3}$ such that if $X=x+\frac{n}{\pi_{P}^{2 k}}$ and $Y=y+\frac{l}{\pi_{P}^{k}} x+\frac{m}{\pi_{P}^{3 k}}$,

$$
Y^{2}+\frac{a_{1}}{\pi_{P}^{k}} X Y+\frac{a_{3}}{\pi_{P}^{3 k}} Y-X^{3}-\frac{a_{4}}{\pi_{P}^{4 k}} X-\frac{a_{6}}{\pi_{P}^{6 k}} \in R_{P}[x, y]
$$

Proposition 6.2. Let E be an elliptic curve in $G_{P}^{(3)} . E \in S_{k}$ if and only if a unique pair $(l, m) \in L_{P, k} \times L_{P, 3 k}$ exists such that $\left(l, m, l^{2}+a_{1} l\right) \in A_{k}(E)$.

Proof. Suppose a unique pair (l, m) satisfying the conditions exists. Because $A_{k}(E)$ is nonempty, $E \in S_{k}$ from Proposition 2.4 .

Assume $E \in S_{k}$. Then, using Proposition 2.4. $A_{k}(E)$ is nonempty. Let the equation of E be $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{4} x+a_{6}$ for $a_{1}, a_{3}, a_{4}, a_{6} \in R_{P}$.

From replacing y with $y+l^{\prime} x$ for $l^{\prime} \in R_{P}$, if $(l, m, n) \in A_{k}(E),\left(l+l^{\prime} \pi_{P}^{k}, m, n\right) \in A_{k}(E)$. Therefore, there exist $l \in L_{P, k}$ and $m, n \in R_{P}$ such that $(l, m, n) \in A_{k}(E)$. Moreover, if $(l, m, n) \in A_{k}(E), l^{2}+a_{1} l+n \equiv 0\left(\bmod \pi_{P}^{2 k}\right)$. With this, from replacing x with $x+\frac{l^{2}+a_{1} l+n}{\pi_{P}^{2 k}}$, if $(l, m, n) \in A_{k}(E),\left(l, m+l\left(l^{2}+a_{1} l+n\right), l^{2}+a_{1} l\right) \in A_{k}(E)$. Therefore, there exist $l \in L_{P, k}$ and $m \in R_{P}$ such that $\left(l, m, l^{2}+a_{1} l\right)$. Next, from replacing y with $y+m^{\prime}$ for $m^{\prime} \in R_{P}$, there exists $l \in L_{P, k}$ and $m \in L_{P, 3 k}$ such that $\left(l, m, l^{2}+a_{1} l\right) \in A_{k}(E)$.

Next, we prove that (l, m) is unique. Assume that $\left(l_{1}, m_{1}\right),\left(l_{2}, m_{2}\right) \in L_{P, k} \times L_{P, 3 k}$ and $\left(l_{1}, m_{1}, l_{1}^{2}+a_{1} l_{1}\right),\left(l_{2}, m_{2}, l_{2}^{2}+a_{1} l_{2}\right) \in A_{k}(E)$. We prove that $\left(l_{1}, m_{1}\right)=\left(l_{2}, m_{2}\right)$.

Suppose $a_{1} \neq 0$. Let F be the curve

$$
F: y^{2}+\frac{a_{1}}{\pi_{P}^{k}} x y+\frac{a_{3}}{\pi_{P}^{3 k}}=x^{3}+\frac{a_{4}}{\pi_{P}^{k}} x+\frac{a_{6}}{\pi_{P}^{6 k}}
$$

For $1 \leq i \leq 2$, let F_{i} be F with x replaced by $x+\frac{l_{i}^{2}+a_{1} l_{i}}{\pi_{P}^{2 k}}$ and y replaced by $y+\frac{l_{i}}{\pi_{P}^{k}} x+\frac{m_{i}}{\pi_{P}^{3 k}}$. Note that $F_{1}, F_{2} \in G_{P}^{(3)}$. Also, F_{1} and F_{2} are equivalent. Then, using Proposition 2.3, let the translation from the equation of F_{1} to the equation of F_{2} replace x with $u^{2} x+n^{\prime}$ and y with $u^{3} y+l^{\prime} u^{2} x+m^{\prime}$, where $u, l^{\prime}, m^{\prime}, n^{\prime} \in R_{P}$ and $v_{P}(u)=0$. The coefficient of $x y$ after this translation is $\frac{a_{1}}{u \pi_{P}^{k}}$; therefore, $u=1$ and $a_{1} \equiv 0\left(\bmod \pi_{P}^{k}\right)$. Afterwards, from the coefficient of $x^{2}, l_{1}^{2}+a_{1} l_{1}+n^{\prime} \pi_{P}^{2 k}=l_{2}^{2}+a_{1} l_{2}$. Therefore, $l_{1} \equiv l_{2}\left(\bmod \pi_{P}^{k}\right)$ and $l_{1}=l_{2}$. Particularly, $n^{\prime}=0$. Following this, $m_{2}=m_{1}+m^{\prime} \pi_{P}^{2 k}$ and $m_{1}=m_{2}$.

Assume $a_{1}=0$. We then have that $a_{3} \equiv 0\left(\bmod \pi_{P}^{3 k}\right)$, and from the coefficient of x, $l_{1}^{4}+a_{3} l_{1} \equiv l_{2}^{4}+a_{3} l_{2}\left(\bmod \pi_{P}^{4 k}\right)$. From this, we clearly have that $l_{1}=l_{2}$. Afterwards, from the constant terms, $m_{1}^{2}+a_{3} m_{1} \equiv m_{2}^{2}+a_{3} m_{2}\left(\bmod \pi_{P}^{6}\right)$ and $m_{1}=m_{2}$.

For $E \in S_{k}$, let the unique pair $(l, m) \in L_{P, k} \times L_{P, 3 k}$ such that $\left(l, m, l^{2}+a_{1} l\right) \in A_{k}(E)$ be $(l(E), m(E))$. Define $\phi_{k}: S_{k} \rightarrow S_{0}$ to be the function such that if $E \in S_{k}$ has equation $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{4} x+a_{6}, \phi_{k}(E)$ has equation

$$
\phi_{k}(E): Y^{2}+\frac{a_{1}}{\pi_{P}^{k}} X Y+\frac{a_{3}}{\pi_{P}^{3 k}} Y=X^{3}+\frac{a_{4}}{\pi_{P}^{4 k}} X+\frac{a_{6}}{\pi_{P}^{6 k}}
$$

with $X=x+\frac{l(E)^{2}+a_{1} l(E)}{\pi_{P}^{2 k}}$ and $Y=y+\frac{l(E)}{\pi_{P}^{k}} x+\frac{m(E)}{\pi_{P}^{3 k}}$. Note that $S_{0} \subset G_{P}^{(3)}$, and from Proposition 2.5 and Lemma 6.1 $\mu_{P}\left(S_{0}\right)=1$. For $l \in L_{P, k}$ and $m \in L_{P, 3 k}$, let $S_{k, l, m}$ be the set of $E \in S_{k}$ such that $l(E)=l$ and $m(E)=m$. Assume that $\phi_{k, l, m}$ is ϕ_{k} restricted to $S_{k, l, m}$.

Lemma 6.3. If U is an open subset of $G_{P}^{(3)}, \mu_{P}\left(\phi_{k}^{-1}(U)\right)=\frac{1}{Q_{P}^{10 k}} \mu_{P}(U)$.
Proof. Note that there are Q_{P}^{k} values of l and $Q_{P}^{3 k}$ values of m. Similarly, it suffices to prove that for open subsets U of $G_{P}^{(3)}, \mu_{P}\left(\phi_{k, l, m}^{-1}(U)\right)=\frac{1}{Q_{P}^{14 k}} \mu_{P}(U)$. Let V be the set of curves $y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=x^{3}+a_{4}^{\prime} x+a_{6}^{\prime}$ with $a_{i}^{\prime} \in r_{i}+\pi_{P}^{n_{i}} R_{P}$ for $i \in\{1,3,4,6\}$. We find $\phi_{k, l, m}^{-1}(V)$. Let $M=\max \left(n_{1}+k, n_{3}+3 k, n_{4}+4 k, n_{6}+6 k\right)$. Note that $a_{1} \in \pi_{P}^{k} r_{1}+\pi_{P}^{n_{1}+k} R_{P}$, and there are $Q_{P}^{M-n_{1}-k}$ choices for the residue of a_{1} modulo π_{P}^{M}. After choosing the residue of a_{1}, there are $Q_{P}^{M-n_{3}-3 k}$ choices for the residue of a_{3}. Continuing this process for a_{4} and a_{6} and adding over the $Q_{P}^{4 k}$ pairs (l, m) gives the result. Similarly, the set of curves counted in these combinations of residues with discriminant 0 has a Haar measure of 0 .

6.3 Density Calculations for $v_{P}\left(a_{1}\right)=0$

Suppose that $v_{P}\left(a_{1}\right)=0$. This case has density $\frac{Q_{P}-1}{Q_{P}}$. The discriminant is

$$
a_{1}^{4}\left(a_{1}^{2} a_{6}+a_{1} a_{3} a_{4}+a_{4}^{2}\right)+a_{3}^{4}+a_{1}^{3} a_{3}^{3}
$$

Note that by considering a_{6} modulo π_{P}, the discriminant is not divisible by π_{P} with density $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{2}}$. For this case, the algorithm ends in step 1 and $c=1$. Then, we add $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{2}}$ to $\delta_{K}\left(I_{0}, 1,0 ; P\right)$.

Assume the discriminant is divisible by π_{P}. Let $\left(\alpha_{1}, \alpha_{2}\right)$ be the singular point modulo π_{P}; it can be proven that $\alpha_{1}, \alpha_{2} \in R_{P}$. Also, $\alpha_{1} \equiv-\frac{a_{3}}{a_{1}}\left(\bmod \pi_{P}\right)$. In step 2 , replace x by $x+n$ and y by $y+m$ with $n=\alpha_{1}$ and $m=\alpha_{2}$. Afterwards, the coefficient of $x y$ is a_{1}, which is not divisible by π_{P}. The algorithm then ends in step 2 .

We see that the discriminant is linear in a_{6}. Therefore, we have that $v_{P}\left(a_{1}\right)=0$ and $v_{P}(\Delta(E))=N$ with density $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{N+2}}$ for $N \geq 0$. Note that the polynomial considered in step 2 is $T^{2}+a_{1} T+\alpha_{1}$. Suppose $a_{1} \equiv r_{1}\left(\bmod \pi_{P}\right)$ and $a_{3} \equiv r_{3}\left(\bmod \pi_{P}\right)$ for $r_{1}, r_{3} \in L_{P, 1}$ such that $r_{1} \neq 0$. Given $r_{1}, T^{2}+a_{1} T+\alpha_{1}$ is irreducible over $R_{P} / \pi_{P} R_{P}$ for $\frac{Q_{P}}{2}$ values of r_{3}. Afterwards, using step 2 of Tate's algorithm, we get that in this case, $\delta_{K}\left(I_{1}, 1,0 ; P\right)=$ $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{3}}, \delta_{K}\left(I_{2}, 2,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{4}}$, and $\delta_{K}\left(I_{N}, N, 0 ; P\right)=\delta_{K}\left(I_{N}, 2\left\lfloor\frac{N}{2}\right\rfloor-N+2,0 ; P\right)=$ $\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+2}}$ for $N \geq 3$. Moreover, $c=1$ with density $\frac{\left(Q_{P}-1\right)\left(2 Q_{P}^{2}-1\right)}{2 Q_{P}^{3}\left(Q_{P}+1\right)}, c=2$ with density $\frac{\left(Q_{P}-1\right)\left(2 Q_{P}^{2}-1\right)}{2 Q_{P}^{4}\left(Q_{P}+1\right)}$, and for $N \geq 3, c=N$ with density $\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+2}}$.

6.4 Density Calculations for $v_{P}\left(a_{1}\right) \geq 1$

In this subsection, we assume that $v_{P}\left(a_{1}\right) \geq 1$. The density for this is $\frac{1}{Q_{P}}$, and the discriminant modulo π_{P} is a_{3}^{4}.

Suppose $v_{P}\left(a_{3}\right)=0$. The density for this case is $\frac{Q_{P}-1}{Q_{P}^{2}}$. Here, the discriminant is not divisible by π_{P}. Tate's algorithm then ends in step 1 , and we add $\frac{Q_{P}-1}{Q_{P}^{2}}$ to $\delta_{K}\left(I_{0}, 1,0 ; P\right)$. We therefore have that $\delta_{K}\left(I_{0}, 1,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}}$.

Next, assume that $v_{P}\left(a_{3}\right) \geq 1$. The total density for this is $\frac{1}{Q_{P}^{2}}$. The singular point modulo π_{P} is $(x, y)=\left(\alpha_{1}, \alpha_{2}\right)$ for $\alpha_{1}, \alpha_{2} \in L_{P, 1}$ such that $a_{4} \equiv \alpha_{1}^{2}\left(\bmod \pi_{P}\right)$ and $a_{6} \equiv \alpha_{2}^{2}$ $\left(\bmod \pi_{P}\right)$. We replace x with $x+n$ and y with $y+m$, where $n=\alpha_{1}$ and $m=\alpha_{2}$. The curve is

$$
(y+m)^{2}+a_{1}(x+n)(y+m)+a_{3}(y+m)=(x+n)^{3}+a_{4}(x+n)+a_{6} .
$$

If π_{P}^{2} does not divide $m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3}$, the algorithm ends in step 3 . By adding multiples of π_{P} to a_{6}, this occurs with density $\frac{Q_{P}-1}{Q_{P}^{3}}$. We have that $\delta_{K}(I I, 1,0 ; P)=$ $\frac{Q_{P}-1}{Q_{P}^{3}}$.

Assume π_{P}^{2} divides $m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3}$. The total density for this case is $\frac{1}{Q_{P}^{3}}$. We have that

$$
b_{8}=n\left(n a_{1}+a_{3}\right)^{2}+\left(m a_{1}+a_{4}+n^{2}\right)^{2}
$$

If b_{8} is not divisible by π_{P}^{3}, the algorithm ends in step 4 . By adding multiples of π_{P} to a_{4}, we have that $\delta_{K}(I I I, 2,0 ; P)=\frac{Q_{P}-1}{Q_{P}^{4}}$.

Assume that b_{8} is divisible by π_{P}^{3}. The total density for this case is $\frac{1}{Q_{P}^{4}}$. If $v_{P}\left(n a_{1}+a_{3}\right)=$ 1 , the algorithm ends in step 5 . Assume $a_{4} \equiv 0\left(\bmod \pi_{P}\right)$. Then, replace a_{3} with $a_{3}+d \pi_{P}$ and a_{4} with $a_{4}+\beta d \pi_{P}$ for $\beta, d \in L_{P, 1}$ such that $\beta^{2} \equiv \alpha_{1}\left(\bmod \pi_{P}\right)$. This will not affect previous parts of the algorithm; particularly, this will not change b_{8} modulo π_{P}^{3}. However, $n a_{1}+a_{3}$ will be increased by $d \pi_{P}$. Therefore, we have that $v_{P}\left(n a_{1}+a_{3}\right)=1$ with density $\frac{Q_{P}-1}{Q_{P}^{5}}$. From this, $\delta_{K}(I V, 1,0 ; P)=\delta_{K}(I V, 3,0 ; P)=\frac{Q_{P}-1}{2 Q_{P}^{5}}$.

Assume $v_{P}\left(n a_{1}+a_{3}\right) \geq 2$. The total density for this case is $\frac{1}{Q_{P}^{5}}$. Assume α_{3} is the element of $L_{P, 1}$ such that $n \equiv \alpha_{3}^{2}\left(\bmod \pi_{P}\right)$. Also, let α_{4} be the element of $L_{P, 1}$ such that $m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3} \equiv \alpha_{4}^{2} \pi_{P}^{2}\left(\bmod \pi_{P}^{3}\right)$. After the transformation in step 6, let the equation of the curve be

$$
\begin{aligned}
& (y+l x+m)^{2}+a_{1}(x+n)(y+l x+m)+a_{3}(y+l x+m) \\
& =(x+n)^{3}+a_{4}(x+n)+a_{6}
\end{aligned}
$$

Here, $l=\alpha_{3}$ and $m=\alpha_{2}+\alpha_{4} \pi_{P}$. Suppose that in step 6 , the polynomial $P(T) \in$ $\left(R_{P} / \pi_{P} R_{P}\right)[T]$ is $P(T)=T^{3}+w_{2} T^{2}+w_{1} T+w_{0}$.

Suppose $a_{4} \equiv 0\left(\bmod \pi_{P}\right)$. Because $0 \in L_{P, 1}$, we have that $n=l=0$, and $w_{2}=0$. Then, we can replace a_{4} with $a_{4}+d_{1} \pi_{P}^{2}$ for $d_{1} \in L_{P, 1}$, and the previous parts of the algorithm will not be changed. With this, the choices for w_{1} modulo π_{P} are the elements of $L_{P, 1}$. Following this, by replacing a_{6} with $a_{6}+d_{2} \pi_{P}^{3}$ for $d_{2} \in L_{P, 1}$, the choices for w_{0} modulo π_{P} are the elements of $L_{P, 1}$. We have that the number of $P(T)$ with a double root and no roots are $Q_{P}-1$ and 1 , respectively. Moreover, we have that the number of $P(T)$ with three distinct roots in $\overline{R_{P} / \pi_{P} R_{P}}$ with 0 roots, 1 root, and 3 roots in $R_{P} / \pi_{P} R_{P}$ are $\frac{Q_{P}^{2}-1}{3}, \frac{Q_{P}^{2}-Q_{P}}{2}$, and $\frac{Q_{P}^{2}-3 Q_{P}+2}{6}$, respectively.

Suppose $a_{4} \not \equiv 0\left(\bmod \pi_{P}\right)$. Consider the translation of replacing a_{1} with $a_{1}+d_{1} \pi_{P}, a_{3}$ with $a_{3}+\alpha_{1} d_{1} \pi_{P}, a_{4}$ with $a_{4}+\left(\alpha_{2}+\alpha_{4} \pi_{P}\right) d_{1} \pi_{P}$, and a_{6} with $a_{6}+\alpha_{1}\left(\alpha_{2}+\alpha_{4} \pi_{P}\right) d_{1} \pi_{P}$ for $d_{1} \in L_{P, 1}$. After this, the parts of the algorithm before step 6 do not change. In step $6, w_{0}$ and w_{1} do not change. However, w_{2} increases by $\alpha_{3} d_{1}$. Because $\alpha_{3} \neq 0$, the choices for w_{2} are the elements of $L_{P, 1}$. Next, replace a_{6} with $a_{6}+d_{2} \pi_{P}^{3}$ for $d_{2} \in L_{P, 1}$. With this, the choices for w_{0} are also the elements of $L_{P, 1}$. The number of $P(T)$ with a double root and no roots are the same as above. Also, the number of $P(T)$ with three distinct roots in $\overline{R_{P} / \pi_{P} R_{P}}$ with 0 roots, 1 root, and 3 roots in $R_{P} / \pi_{P} R_{P}$ are the same as above.

Suppose $P(T)$ has distinct roots. For this case, the total density is $\frac{Q_{P}-1}{Q_{P}^{6}}$ and Tate's algorithm ends in step 6 . We see that $\delta_{K}\left(I_{0}^{*}, 1,0 ; P\right)=\frac{Q_{P}^{2}-1}{3 Q_{P}^{7}}, \delta_{K}\left(I_{0}^{*}, 2,0 ; P\right)=\frac{Q_{P}-1}{2 Q_{P}^{6}}$, and $\delta_{K}\left(I_{0}^{*}, 4,0 ; P\right)=\frac{Q_{P}^{2}-3 Q_{P}+2}{6 Q_{P}^{7}}$.

Assume $P(T)$ has a double root and a simple root. For this case, the total density is $\frac{Q_{P}-1}{Q_{P}^{7}}$ and Tate's algorithm ends in step 7 . We have that for positive integers $N, \delta_{K}\left(I_{N}^{*}, 2,0 ; P\right)=$ $\delta_{K}\left(I_{N}^{*}, 4,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+7}}$. More details for calculating these densities are in Section 6.5.

Next, suppose $P(T)$ has a triple root. For this case, the density is $\frac{1}{Q_{P}^{7}}$, and the root of $P(T)$ is $\sqrt{w_{1}}$ modulo π_{P}. If $a_{4} \equiv 0\left(\bmod \pi_{P}\right)$, the triple root is 0 modulo π_{P}. Let α_{5} be an element of $L_{P, 1}$ such that

$$
(m+l n) a_{1}+l a_{3}+a_{4}+n^{2} \equiv \alpha_{5}^{2} \pi_{P}^{2} \quad\left(\bmod \pi_{P}^{3}\right)
$$

Then, the translation in step 8 sets n to be $n=\alpha_{1}+\alpha_{5} \pi_{P}$.
Suppose $a_{4} \equiv 0\left(\bmod \pi_{P}\right)$. Replace a_{3} with $a_{3}+d \pi_{P}^{2}$ and a_{6} with $a_{6}+\left(\alpha_{2}+\alpha_{4} \pi_{P}\right) d \pi_{P}^{2}$ for some $d \in L_{P, 1}$. Then, note that the previous parts of the algorithm, including $P(T)$, are unchanged. However, the coefficient of y increases by $d \pi_{P}^{2}$. We have that for one value of d, the coefficient of y is divisible by π_{P}^{3}. Next, suppose $a_{4} \not \equiv 0\left(\bmod \pi_{P}\right)$. Replace a_{1} with $a_{1}+d \pi_{P}^{2}$ and a_{4} with $a_{4}+\left(\alpha_{2}+\alpha_{4} \pi_{P}\right) d \pi_{P}^{2}$ for some $d \in L_{P, 1}$. The previous parts of the algorithm, including $P(T)$, are unchanged. However, the coefficient of y increases by $\left(\alpha_{1}+\alpha_{5} \pi_{P}\right) d \pi_{P}^{2}$. Similarly, we have that for one value of d, the coefficient of y is divisible by π_{P}^{3}. From this, we get that the coefficient of y is not divisible by π_{P}^{3} and the algorithm ends in step 8 with density $\frac{Q_{P}-1}{Q_{P}^{8}}$. We then have that $\delta_{K}\left(I V^{*}, 1,0 ; P\right)=\delta_{K}\left(I V^{*}, 3,0 ; P\right)=\frac{Q_{P}-1}{2 Q_{P}^{8}}$.

Assume the coefficient of y is divisible by π_{P}^{3}. The total density of this case is $\frac{1}{Q_{P}^{8}}$. Let α_{6} be the element of $L_{P, 1}$ such that

$$
m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3} \equiv \alpha_{6}^{2} \pi_{P}^{4} \quad\left(\bmod \pi_{P}^{5}\right)
$$

Then, m is set to $m=\alpha_{2}+\alpha_{4} \pi_{P}+\alpha_{6} \pi_{P}^{2}$ in step 9 . If π_{P}^{4} does not divide the x coefficient of this curve, the algorithm ends in step 9 . Consider the translation of replacing a_{4} with $a_{4}+d \pi_{P}^{3}$ and a_{6} with $a_{6}+\left(\alpha_{1}+\alpha_{5} \pi_{P}\right) d \pi_{P}^{3}$ for $d \in L_{P, 1}$. The previous parts of the algorithm do not change, but the coefficient of x is increased by $d \pi_{P}^{3}$. Therefore, π_{P}^{4} does not divide the x coefficient with density $\frac{Q_{P}-1}{Q_{P}^{9}}$. We have that $\delta_{K}\left(I I I^{*}, 2,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}^{9}}$

Assume π_{P}^{4} divides the coefficient of x of the curve. The total density for this case is $\frac{1}{Q_{P}^{9}}$. If π_{P}^{6} does not divide $m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3}$, Tate's algorithm ends in step 10. This occurs with density $\frac{Q_{P}-1}{Q_{P}^{10}}$ from adding multiples of π_{P}^{6} to a_{6}. We then have that $\delta_{K}\left(I I^{*}, 1,0 ; P\right)=\frac{Q_{P}-1}{Q_{P}^{10}}$.

6.5 Subprocedure Density Calculations

We calculate the density of Kodaira types $\mathfrak{r}=I_{N}^{*}$ for $N \geq 1$ and Tamagawa numbers $n=2,4$. Note that previously, the curve was reduced by removing a_{2} with a translation on x to obtain $G_{P}^{(3)}$. However, here the density is calculated in G_{P} without the reduction. That is, the density is calculated for curves in long Weierstrass form.

Let X be the set of elliptic curves $E \in G_{P}$ such that $M_{P}(E)=0$ and Tate's algorithm enters the step 7 subprocedure when used on E. For $E \in X$, let $L(E)$ be the number of iterations of the step 7 subprocedure that are completed when Tate's algorithm is used on E. For a nonnegative integer N, let X_{N} be the set of $E \in X$ such that $L(E) \geq N$.

We consider when $N \geq 0$ is even. Suppose $N=0$. In iteration $N=0$, there is a translation. Note that the double root of $P(T)$ is the squareroot of w_{1}. Because of this, in step 7 , we add $\gamma_{0} \pi_{P}$ to n and $l \gamma_{0} \pi_{P}$ to m for some $\gamma_{0} \in L_{P, 1}$ such that

$$
(m+l n) a_{1}+l a_{3}+a_{4}+n^{2} \equiv \gamma_{0}^{2} \pi_{P}^{2} \quad\left(\bmod \pi_{P}^{3}\right)
$$

Next, assume $N \geq 2$ is even. If iteration N of the step 7 subprocedure is reached and the quadratic has a double root,

$$
v_{P}\left((m+l n) a_{1}+l a_{3}+a_{4}+n^{2}\right) \geq \frac{N+6}{2}
$$

Also, we add $\gamma_{N} \pi_{P}^{\frac{N+2}{2}}$ to n and $l \gamma_{N} \pi_{P}^{\frac{N+2}{2}}$ to m for some $\gamma_{N} \in L_{P, 1}$ such that

$$
m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3} \equiv\left(l a_{1}+a_{2}+n+l^{2}\right) \gamma_{N}^{2} \pi_{P}^{N+2} \quad\left(\bmod \pi_{P}^{N+4}\right)
$$

Note that $v_{P}\left(l a_{1}+a_{2}+n+l^{2}\right)=1$.

Suppose $N \geq 0$ is odd. If iteration N of the step 7 subprocedure is reached and the quadratic has a double root, $v_{P}\left(n a_{1}+a_{3}\right) \geq \frac{N+5}{2}$. Also, $\gamma_{N} \pi_{P}^{\frac{N+3}{2}}$ is added to m for some $\gamma_{N} \in L_{P, 1}$ such that

$$
m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3} \equiv \gamma_{N}^{2} \pi_{P}^{N+3} \quad\left(\bmod \pi_{P}^{N+4}\right)
$$

Let N be a nonnegative integer. Let Y_{N} be the set of curves $y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=x^{3}+$ $a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ with $v_{P}\left(a_{1}^{\prime}\right) \geq 1, v_{P}\left(a_{2}^{\prime}\right)=1, v_{P}\left(a_{3}^{\prime}\right) \geq\left\lfloor\frac{N+5}{2}\right\rfloor, v_{P}\left(a_{4}^{\prime}\right) \geq\left\lfloor\frac{N+6}{2}\right\rfloor$, and $v_{P}\left(a_{6}^{\prime}\right) \geq N+4$.

Suppose $E \in X_{N}$ and that the translations of Tate's algorithm when it is used on E are $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \gamma_{0}, \gamma_{1}, \ldots, \gamma_{N}$. Let $T(E)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \gamma_{0}, \gamma_{1}, \ldots, \gamma_{N}\right)$. Note that because the characteristic of K is $p=2, T(E)$ is well defined. Also, let $\theta_{N}(E): X_{N} \rightarrow Y_{N}$ be E with x replaced by $x+n$ and y replaced by $y+l x+m$, where

$$
n=\alpha_{1}+\sum_{i=0}^{\left\lfloor\frac{N}{2}\right\rfloor} \gamma_{2 i} \pi_{P}^{i+1}, l=\alpha_{3}, m=\alpha_{2}+\alpha_{4} \pi_{P}+\alpha_{3} \sum_{i=0}^{\left\lfloor\frac{N}{2}\right\rfloor} \gamma_{2 i} \pi_{P}^{i+1}+\sum_{i=0}^{\left\lfloor\frac{N-1}{2}\right\rfloor} \gamma_{2 i+1} \pi_{P}^{i+2}
$$

Lemma 6.4. If U is an open subset of $Y_{N}, \mu_{P}\left(\theta_{N}^{-1}(U)\right)=Q_{P}^{N+5} \mu_{P}(U)$.
Proof. Let $a=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \gamma_{0}, \gamma_{1}, \ldots, \gamma_{N}\right)_{0 \leq i \leq N}$. Assume that $X_{N, a}$ is the set of $E \in X_{N}$ such that $T(E)=a$. Let $\theta_{N, a}$ be θ_{N} restricted to $X_{N, a}$. From a, we obtain l, m, n. We have that if $E \in X_{N, a}, \theta_{N, a}(E)$ is $E^{\prime}: y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$, where

$$
\begin{aligned}
& a_{1}^{\prime}=a_{1}, a_{2}^{\prime}=l a_{1}+a_{2}+n+l^{2}, a_{3}^{\prime}=n a_{1}+a_{3}, a_{4}^{\prime}=(m+l n) a_{1}+l a_{3}+a_{4}+n^{2}, \\
& a_{6}^{\prime}=m n a_{1}+m a_{3}+n a_{4}+a_{6}+m^{2}+n^{3}
\end{aligned}
$$

It is clear that $\theta_{N, a}$ is a bijection.
Let V be the set of $E^{\prime} \in Y_{N}$ such that $a_{i}^{\prime} \in r_{i}+\pi_{P}^{n_{i}} R_{P}$ for $i \in\{1,2,3,4,6\}$. Let $M=\max _{i \in\{1,2,3,4,6\}} n_{i}$. Similarly, we can consider combinations of residues of the $a_{i}, i \in$ $\{1,2,3,4,6\}$, modulo π_{P}^{M} to obtain that $\mu_{P}\left(\theta_{N, a}^{-1}(V)\right)=\mu_{P}(V)$, with the set of curves with discriminant 0 counted in the combinations of residues having a Haar measure of 0 . Because there are Q_{P}^{N+5} choices of a, the result follows.

Suppose N is a positive integer. With Lemma 6.4 we can compute the density for curves that enter step 7 in the first iteration and have type I_{N}^{*}. We have that $\mu_{P}\left(Y_{N-1}\right)=\frac{Q_{P}-1}{Q_{P}^{2 N+10}}$, and the Haar measure in $G_{P}^{(3)}$ of curves that have type I_{N}^{*} is then $\frac{\left(Q_{P}-1\right)^{2}}{Q_{P}^{N+7}}$. Particularly, $\delta_{K}\left(I_{N}^{*}, 2,0 ; P\right)=\delta_{K}\left(I_{N}^{*}, 4,0 ; P\right)=\frac{\left(Q_{P}-1\right)^{2}}{2 Q_{P}^{N+7}}$.

7 Local and Global Density Results

In Section 4, Section 5, and Section 6, we computed the local densities of Koidara types and Tamagawa numbers for $p \geq 5, p=3$, and $p=2$, respectively. The methods we used involved first removing some terms from the equations of elliptic curves with translations, and then using translations to compute the local densities. Moreover, the local densities can be expressed as rational functions. Let \mathfrak{r} be a Koidara type and n be a positive integer. There exists a rational function $f(x)$ such that $\delta_{K}(\mathfrak{r}, n ; P)=f\left(Q_{P}\right)$ for all $P \in M_{K}$. Note that $f(x)$ is the same for all global function fields K. Additionally, in [3], the rational function calculated for the local density of \mathfrak{r} and n for elliptic curves in short Weierstrass form over \mathbb{Q}_{r} for primes $r \geq 5$ is $f(x)$. In 1 , the rational function calculated for the local density of \mathfrak{r} and n for elliptic curves in short Weierstrass form over completions of a number field at places that lie above a prime $r \geq 5$ is also $f(x)$.

Next, we will discuss some results about local and global density, including a proof of Theorem 1.2. Particularly, we compute the density of completing at most $k \geq 0$ iterations of Tate's algorithm.

7.1 Proof of Theorem 1.2

Let U and V be the sets of elliptic curves $E \in G_{P}$ with Kodaira type \mathfrak{r} and Tamagawa number n such that $M_{P}(E)=0$ and $M_{P}(E)=k$, respectively. We have that U and V are open sets. Moreover, $\varphi(U)$ and $\varphi(V)$ are open sets. With this, we have that $\mu_{P}(U)=\mu_{P}(\varphi(U))$ and $\mu_{P}(V)=\mu_{P}(\varphi(V))$ for all characteristics p from Lemma 4.1. Lemma 5.1. and Lemma 6.1. Therefore, it suffices to prove that

$$
\mu_{P}(\varphi(V))=\frac{1}{Q_{P}^{10 k}} \mu_{P}(\varphi(U))
$$

However, observe that $\varphi(U)=\phi_{k}(\varphi(V))$. The result then follows from Lemma 4.2, Lemma 5.3 , and Lemma 6.3

7.2 Density for Multiple Iterations

Let k be a nonnegative integer. For $P \in M_{K}$, let U_{P}^{k} denote the set of elliptic curves E in G_{P} such that $M_{P}(E) \geq k+1$. The following proposition is important for the proof of Theorem 7.2.
Proposition 7.1. For a nonnegative integer k and $P \in M_{K}, \mu_{P}\left(U_{P}^{k}\right)=\frac{1}{Q_{P}^{10(k+1)}}$.
Proof. From Lemma 4.2, Lemma 5.3, and Lemma 6.3 with $k+1$ as k and G_{P} as U, we have that

$$
\mu_{P}\left(U_{P}^{k}\right)=\frac{1}{Q_{P}^{10(k+1)}} \mu_{P}\left(G_{P}\right)=\frac{1}{Q_{P}^{10(k+1)}}
$$

Theorem 7.2. Let U be the set of elliptic curves in W_{S} such that $M_{P}(E) \leq k$ for all $P \in S^{C}$. Then,

$$
d_{S}(U)=\frac{1}{\zeta_{K}(10(k+1))} \cdot \prod_{P \in S}\left(\frac{Q_{P}^{10(k+1)}}{Q_{P}^{10(k+1)}-1}\right)
$$

Proof. For a positive integer M, let V_{M} be the set of elliptic curves $E \in W_{S}$ such that there exists $P \in S^{C}$ with degree at least M such that $E \in U_{P}^{k}$. From Proposition 3.3, we have that $\lim _{M \rightarrow \infty} \bar{d}_{S}\left(V_{M}\right)=0$. Therefore, we can use Theorem 3.1 with U_{P}^{k} as U_{P} for $P \in S^{C}$. The result follows from Proposition 7.1.

Example 7.3. We given an example of Theorem 7.2 Let k be a nonnegative integer. Let $K=\mathbb{F}_{q}(t)$. Suppose P_{∞} is the infinite place of $\mathbb{F}_{q}(t)$ and let $S=\left\{P_{\infty}\right\}$. Let U be the set of elliptic curves in W_{S} such that $M_{P}(E) \leq k$ for all $P \in S^{C}$. From Theorem 5.9 of [5], because the genus of K is 0 , we have that $\zeta_{K}(10(k+1))=\frac{q^{20 k+19}}{\left(q^{10 k+9}-1\right)\left(q^{10 k+10}-1\right)}$. Because P_{∞} has degree 1 , from Theorem $7.2, d_{S}(U)=1-\frac{1}{q^{10 k+9}}$.

References

[1] Yunseo Choi, Sean Li, Apoorva Panidapu, and Casia Siegel, Tamagawa products for elliptic curves over number fields, arXiv, 2021.
[2] John Cremona and Mohammad Sadek, Local and global densities for Weierstrass models of elliptic curves, arXiv, 2020.
[3] Michael Griffin, Ken Ono, and Wei-Lun Tsai, Tamagawa products of elliptic curves over \mathbb{Q}, The Quarterly Journal of Mathematics 72 (2021), no. 4, 1517-1543.
[4] Giacomo Micheli, A local to global principle for densities over function fields, arXiv, 2017.
[5] Michael Rosen, Number theory in function fields, 1st ed., Springer, 2002.
[6] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, 1st ed., Springer, 1994.
[7] John Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular Functions of One Variable IV, 1975, pp. 33-52.

