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Abstract

One in three people worldwide live in drylands, which are particu-
larly vulnerable to desertification. In these ecosystems, where natural
resources are limited, vegetation survives by organizing itself into pat-
terns. The ecological factors governing these patterns were captured
by Zelnik and others in a reaction-diffusion model consisting of two
coupled equations for groundwater and biomass. In this paper, we
leverage the strong water-biomass relation suggested by our simula-
tions to derive a groundwater equation in terms of biomass and its
spatial derivatives. Through this procedure we reduce Zelnik’s model
to a single Swift-Hohenberg style biomass equation. Our model dif-
fers from the classical Swift-Hohenberg models in that nonlinear terms
multiply second and higher spatial derivatives of biomass. This fea-
ture reflects that vegetation regulates its own water induced growth.
The model presented shares the pattern forming properties of Swift-
Hohenberg models, making it mathematically tractable while conserv-
ing clear ecological meaning. Hence, our biomass equation allows for
the extensive study of drylands’ resilience to changing climate condi-
tions.
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Figure 1: On the left, cloud streets over the Labrador sea, picture from NASA
Earth Observatory. On the right, zebras’ stripes create an optical illusion
that help them run from predators. (Image from the BBC)

1 Introduction and Background

Far from being random and disorganized, the natural world exhibits a com-
plex structure that outshines the some of the best architectural master pieces.
The most striking examples include cloud streets, animal coatings, and pat-
terns in drylands vegetation.

More importantly, for a wide range of natural systems, patterns are not
only aesthetically appealing but also crucial for their existence. In the atmo-
sphere, cloud streets are significant for the vertical transport of momentum,
heat, moisture, and air pollutants [1]. For animals, patterned coating is es-
sential for survival: zebras’ stripes help them camouflage and cheetahs’ spots
enable them to hunt [2]. In drylands vegetation, self-organization into pat-
terns allows for a more efficient use of the limited natural resources, such as
water and soil nutrients [3].

In the past, vegetation irregularities were attributed to topography and
soil heterogeneities, it was not until the first aerial photographs were avail-
able that regular vegetation patterns such as gaps, spots, stripes, and even
intricate labyrinths were observed [4].

These patterns are ubiquitous in drylands, areas that face great water
scarcity and cover around 40% of earth’s land surface [5]. These areas have
adapted to climatic variability and water stress, but they are still highly vul-
nerable to climate change and damaging human activities such as deforesta-
tion and unsustainable agricultural practices [3]. The extreme environmental
conditions faced by drylands makes them particularly at risk of desertifica-
tion, the process of change in soil properties, vegetation, and climate that
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Figure 2: Different patterns observed in dryland vegetation. (a) Banded
vegetation on a sloped terrain, Australia. (b) Gap pattern, Australia. (c)
Labyrinthine pattern, in Niger. (d) Labyrinthine grass pattern, in Israel.
(e) Spot pattern, in Zambia. Image from [4]

results in the ecosystem permanently losing its capability to sustain life [5].
Given the current climate conditions, ecosystems are threatened more

than ever before. One of the main factors that influences vegetation cover
is precipitation, which will be immediately affected by changes in climate
dynamics[6]. Drylands are disproportionately impacted: over the last 100
years, the largest warming was observed over drylands [7], and accounted for
more than half of the global warming.

When water availability is limited, vegetation patterns become critical
for ecosystems’ survival. A decrease in precipitation might cause an uniform
vegetation cover to cease being stable. Without patterns, this vegetation
cover would be substituted by bare soil, causing the landscape to essen-
tially become a desert. Therefore, by creating patterns vegetation is able
to make a better use of the available resources and increase its resilience to
desertification[8].

In the presence of high temperatures and reduced precipitation, it be-
comes increasingly relevant to understand the factors that lead to ecosystem
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collapse and how it can be prevented. The growing recognition of these pat-
terns as a fundamental phenomenon has lead to the emergence of a research
field that connects ecology, non-linear physics, and applied mathematics.

The stochastic nature of the numerous ecological factors that govern veg-
etation constitutes one of the main challenges to obtain models that are
mathematically tractable and conserve a clear ecological meaning [3]. Pre-
vious work have focused on developing a phenomenological model that cap-
ture the complex water-vegetation dynamics of a water limited ecosystems.
The proposed model by Zelnik et al. [9], embodied into a reaction-diffusion
framework, describes a large amount of ecological effects and successfully
reproduce patterns observed in drylands. However, the large number of pa-
rameters included in the model complicates its mathematical study. On the
other hand, there are already well studied models which are known to create
patterns. In particular, the Swift-Hohenberg equation has been extensively
studied [10] and is known to capture patterns similar to those present in veg-
etation. Nonetheless, as it is not meant to specifically describe vegetation,
its connection with ecology is unclear. Through this work, we start from Zel-
nik et al. [9] model, which consists on two coupled equations describing the
evolution of water and biomass, and derive a Swift-Hohenberg style equation
that allows for mathematical tractability while conserving clear ecological
meaning.

The present work is structured as follows. Section 1.1 introduces reaction-
diffusion equations and the Swift-Hohenberg model, and we describe their
pattern formation properties by doing a linear stability analysis. Then in
section 2 we describe current vegetation pattern formation models and show
the range of patterns we can achieve through simulating Zelnik et al. model.
Next, in section 3 we derive an equation for groundwater in terms of biomass
and its spatial derivatives. Finally, in section 4 we use the derived ground-
water equation to propose a modified Swift-Hohenberg model that describes
vegetation pattern formation.

1.1 Mathematical Modeling of Pattern Formation

Some of the first insightful ideas about mathematical modeling of pattern
formation were presented by Alan Turing in 1952. In his seminal paper “The
chemical basis of morphogenesis” [11], he proposed that diffusion in a chem-
ical reaction can actually destabilize a uniform system driving it to spatially
periodic patterns. For this to occur, the system needs to consists of at least
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two interacting chemicals with very different diffusion rates. Typically, the
diffusion rates differ by a factor of 10 or more [12]. In such a reaction-diffusion
system, there is typically a local activator and a long-range inhibitor. Given
a small perturbation of an equilibrium stat at an specific spot, the activator
will locally enhance the growth of both species. Far from the initial growth
spot, the inhibitor stops the activator’s growth and its own. Thus, the inter-
action of both substances breaks the spatial symmetry of the system, creating
patterns.

These following classical models give a mathematical description of this
effect and the conditions necessary for pattern formation.

1.1.1 Reaction-Diffusion Equations

The general form of the reaction-diffusion model for two chemical concentra-
tion fields, u = u(t, x) and v = v(t, x) studied by Turing has the form:

∂tu = f1(u, v) +D1∂
2
xu, (1a)

∂tv = f2(u, v) +D2∂
2
xv, (1b)

where ∂t indicates the time derivative and ∂x indicates the spatial derivative.
Defining the vector u = (u, v), one can rewrite Eqs. (1) in vector form:

∂tu = f(u) + D∂2
xu, (2)

where D is the 2D matrix: (
D1 0
0 D2

)
(3)

To study the conditions under which a reaction-diffusion system like the one
above create patterns we perform a linear stability analysis, following Cross
and Greenside [12]. We start by finding a uniform steady state, by setting
all the partial derivatives to zero and solving

f(u?) = 0. (4)

In the absence of diffusion, the fixed point u? = (u?, v?) is linearly stable if
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Tr(J) < 0, and (5a)

Det(J) > 0. (5b)

Where J is the Jacobian matrix evaluated at the steady state u?. Consider
a small perturbation up around the steady state u?. It can be shown that an
arbitrary infinitesimal perturbation will evolve according to [12]:

∂tup = Jup + D∂2
xupupupup, (6)

Now, assuming a plane wave form for the perturbation:

up = uqe
σqteiqx, (7)

where uq is a constant vector, σq is the growth rate of the perturbation,
and q is the wave vector defined as 2π/L. Where L = (Lx, Ly) gives the
characteristic wavelength of the perturbation in the x and y directions. The
base state u? of the system of Eqs. (1) remain stable if and only if σq is
negative for all wave numbers q. By linearizing around the base state u? it
can be shown that the growth rate of a mode with wave number q, σq, is a
solution to the eigenvalue problem

(J - Dq2)uq = σquq, (8)

Assuming that u? satisfies Eq. (5), it can be shown that diffusion desta-
bilizes the system if and only if

Det(J− q2D) > 0. (9)

If these conditions hold, so that Eqs. (1) have a base state u? which is stable
without diffusion and becomes unstable with diffusion, the system exhibits
a Turing instability. This type of instability is well known for generat-
ing patterns and it is the base of the pattern formation properties of the
vegetation patterns presented in this paper.

1.1.2 Swift-Hohenberg Model

To achieve instabilities that lead to pattern formation in a single species
model, it is necessary to include not only diffusion but also a 4th order spatial
derivative into the evolution equation. In this sense, the Swift-Hohenberg
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Figure 3: Simulation of an SH model showing the relaxation from disordered
stripes pattern to an ordered stationary striped pattern. Parameters: N(u) =
−u3, r = 0.1. From [13].

(SH) model is the simplest PDE model that captures an instability of a
stationary uniform state to periodic patterns [13]. It can be written as:

∂tu = λu− (1 +∇2)2u+N(u), (10)

where N(u) is some smooth non-linearity and r acts as a bifurcation parame-
ter. It was originally derived to model thermal convection in a shallow liquid
layer [14] but has become a canonical model for pattern formation studies
in general [12]. Fig. 3 shows a simulation of the SH model, revealing the
creation of an ordered stripe pattern [13].

To understand the pattern formation properties of the SH equation, we
follow a linear stability analysis, as suggested by Cross and Greenside [12], of
Eq. (10) with λ as the bifurcation parameter. Similarly to the linear stability
analysis of the reaction-diffusion model, they show that by considering a
perturbation up = uqe

σqteiqx around a stationary solution ub, one can find
how the growth rate σq of a Fourier mode of wave number q depends on the
system parameters.

As an example of the growth rate near an instability of the SH model,
Cross and Greenside find σq for Eq. (10) with N(u) = −u3. Fig. 4 shows
their results. In the Figure, the growth rate σq is plotted versus the wave
number q for the uniform base state ub = 0. It can be observed that for
values of the parameter λ above a critical value of λc = 0, perturbations of
the base state will grow, generating patterns of characteristic length scale
2π/qc, where qc is the critical wave number at which σ = 0.
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Figure 4: Growth rate σq, versus the wave number q for the uniform base
state ub = 0 of the one-dimensional Swift–Hohenberg equation Eq. (10) with
N(u) = −u3. The curves shown correspond, respectively to λ = −0.2 (light
gray), λc = 0 (black), and λ = 0.2 (dark gray). These correspond to a stable,
marginally unstable, and unstable base state. For values slightly above λc a
narrowband of Fourier modes centered on the critical wave number can grow,
resulting in the appearance of a pattern [12]

1.1.3 Vegetation Patterns

Mathematical models of vegetation patterns are based on the interaction be-
tween water and biomass. Because water diffuses faster than plants spread
seeds and reproduce, we can think about vegetation patterns growth as an
activator-inhibitor system. Consider a vegetation spot, the local growth of
vegetation induced by water constitutes the short-range activator, while the
lack of water far from the vegetation spot combined with the long time plants
would take to grow, constitutes the long-range inhibitor. Zelnik’s model,
which we will elaborate on in the following section in the paper, constitutes
a two-species (plant biomass and groundwater) reaction-diffusion model. In-
spired by the simple form of the SH model, in this work we reduce Zelnik’s
model to a single equation model that describes the evolution of the biomass
and includes higher spatial derivatives thereof.
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Figure 5: A positive feedback loop drives vegetation patterns in water-limited
ecosystems. Water accelerates vegetation growth, while denser patches of
vegetation induce water transport towards themselves. From [4].

2 Mathematical Modeling of Vegetation Pat-

terns

In water-limited ecosystems, a positive feedback loop between vegetation
growth and water availability arises [4]. Consider a terrain of uniform veg-
etation with a slightly denser vegetated patch. Figure 5 shows a schematic
of this loop: the localized vegetation induces water transport towards the
denser patch (lower arrow in the loop), while the increase of water availabil-
ity will promote biomass growth, making the vegetated patch even denser
(upper arrow in the loop).

While it is intuitive that water near plants induces growth, it is less
obvious why the presence of plants induces water transport, so implying
the positive feedback. Three key mechanisms that promote water transport
towards denser vegetated areas are depicted in Fig. 6: overland flow, lateral
roots, and soil-water diffusion [4].

Areas depleted from vegetation receive direct sunlight, creating ideal con-
ditions for bacteria to grow and causing the creation of a physical or biolog-
ical crust that limits the infiltration of water. In vegetated areas infiltra-
tion is enhanced by not only the lack of this crust but also the pressure of
roots penetrating the soil, which results in an overland flow of water towards
densely vegetated patches, Fig. 6a. Moreover, when roots extend laterally,
these deplete the surrounding soil from water, enhancing the difference in
biomass between a spot of vegetation and its surroundings, Fig. 6b. Finally,
in systems with laterally confined roots, strong water uptake by deeper roots
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Figure 6: Three forms of water transport promote flow towards regions of
denser vegetation. (a) Overland water flow takes water towards vegetated
areas, which have higher infiltration rate than bare soil. (b) Laterally ex-
tended roots deplete areas surrounding vegetation patches from water. (c)
Soil water diffusion brings water from non-vegetated areas to water-poor soil
vegetated areas. From [4].

depletes the water content of the soil relatively to its surroundings, creat-
ing a gradient in groundwater that causes water to diffuse towards areas of
accelerated vegetation growth, Fig. 6c.

These three feedback mechanisms were described by Gilad et al. 2004 [15].
They proposed a three equations model to describe the evolution of biomass
(B [kg/m2]), groundwater (W [kg/m2]) and a thin height of water above the
surface (H [m]). In its dimensional form this model is:

∂tB = GbλB(1−B/K)−MB +DB∇2b, (11a)

∂tW = IH −N(1−RB)W − λGwW +Dw∇2W, (11b)

∂tH = P − IH +DH∇2(H2) + 2∇H · ∇ζ + 2H∇2ζ, (11c)

In the biomass equation, Eq. (11a), B(1−B/K) describes to the logistic
growth of the biomass, where B = K is the maximum standing biomass.
Logistic growth indicates that the biomass growth is proportional to the
existing biomass and the amount of available resources [16]. This growth is
modulated by the water availability given by Gb, MB corresponds to biomass
mortality, and Db∇2B to diffusion of seeds. In the water equation, Eq. (11b),
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I is the infiltration rate of water into the soil, N(1−RB)W accounts for the
evaporation of water, reduced by a factor of (1 - RB) due to shading from the
biomass, where N is the evaporation rate and R is a shading factor between
0 and 1. The consumption of water by vegetation is given by GwW , and
Dw∇2W is the diffusion of water. The equation for H has been derived
from groundwater theory, P corresponds to precipitation, and ζ gives the
topography.

The infiltration rate depends on the biomass and it is given by:

I = AH
B +QF

B +Q
, (12)

where A, Q and F are constants that quantify the infiltration rate of the soil.
Owing to to the spatial extent of the underground roots, water uptake is
non-local with respect to the above ground biomass. Their non-local relation
is approximated by Gilad et al. through a Gaussian Kernel:

Gb = Λ

∫
Ω

dX’, G(X,X’, T )W (X’, T ), (13a)

Gw = Γ

∫
Ω

dX’G(X,X’, T )B(X’, T ) (13b)

G(X,X’, T ) =
1

2πS2
0

exp

[
− |X−X’|2

2[S0(1 + EB(X, T ))]2

]
, (13c)

where E is the root-to-shoot ratio, which is the ratio of the below-ground
plant (root) to the above-ground plant (shoot), and S0 represents the lateral
extend of the roots. Although this model has clear ecological significance,
the integral terms make it non-local and therefore its mathematical analysis
challenging. In the following, we introduce a simplified version of the model
that was presented by Zelnik et al in [9], who reduced the three non-local
PDEs to two PDEs with only local terms.

By only considering a flat terrain (ζ = 0), the equation for ∂tH reduces
to P − I. Furthermore, if the landscape is highly porous, the infiltration
rate can be assumed to be high everywhere, independently of vegetation.
Therefore, P ' I, which completely eliminates H as a state variable.

If the lateral extent of the roots is small compared to their vertical length
scale, then the biomass growth only depends on the soil water directly be-
neath it. Thus the non-local terms, Gb and Gw can be approximated as
(1 + EB)2W and (1 + EB)2B respectively.
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To non-dimensonalize the equations we re-scale the state variables B, W
and the space and time derivatives as

b =
B

K
, w =

WΛ

KΓ
, t = MT, x = X

√
M/Db, (14)

the simplified model can then be written, in its non-dimensional form as [9]:

∂tb = λbw(1− b)(1 + ηb)2 − b+∇2b, (15a)

∂tw = p− νw(1− ρb)− λbw(1 + ηb)2 + δw∇2w. (15b)

The meaning of the parameters used in the models by Gilad et al. and Zelnik
et al. described above, their typical values and non-dimensionalization can
be found in Tables 1 and 2.

Parameters Meaning Dimensions

B Above Ground Biomass kg/m2

W Soil Water kg/m2

Λ Biomass Growth Rate (kg/m2)/y
K Maximal Standing Biomass kg/m2

E Root-Shoot Ratio m2/kg
DB Seed Dispersal m2/y
M Mortality rate 1/y
P Precipitation rate mm/y
N Evaporation rate 1/y
R Reduction of evaporation due to shading 1
Γ Water uptake coefficient (kg/m2)/y
DW Soil-Water diffusivity m2/y

Table 1: Dimensional Parameters used in the models by Gilad et al. and
Zelnik et al., Eqs. (11).

The patterns obtained from simulating the model with the typical param-
eters values in Table 2 are shown in Fig. 7. We can observe how a variety
of patterns, including gaps, spots, labyrinths and stripes can be obtained
through this model, corresponding to the patterns commonly seen in nature,
Fig. 2.
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Parameters Typical Values for the Zelnik. et al Model

λ = KΓ/M 0.45
η = EK 2.8

p = ΛP/KΓM 0.9 - 2.7
ν = N/M 1.42
ρ = R 0.7

δw = Dw/DB 125

Table 2: Non-Dimensional Parameters in Eqs. (15).

To understand the pattern forming properties of the Zelnik model we
perform a linear stability analysis analogous to that of the reaction-diffusion
equations presented in section 1.1.1. To put our results in ecological context,
we explain the following analysis in terms of the dimensional precipitation
P , whose relation with the non-dimensional parameter p in Eq. (15) can be
found in Table 2. The homogeneous steady states are found by setting the
time and space derivatives of the model to zero and solving:

f1(b, w) = λbw(1− b)(1 + ηb)2 − b = 0, (16a)

f2(b, w) = p− νw(1− ρb)− λbw(1 + ηb)2 = 0. (16b)

This system has three physical solutions, one bare soil state given by
(b, w) = (0, p/ν), and two uniform non-zero steady states, (b1, w1) and (b2, w2).
The trace and determinant of the Jacobian matrix of f1 and f2 allow us
to calculate the linear stability of these three base states by applying the
conditions given by Eqs. 5. Fig. 8 shows the linear stability of these equilibria
in the absence of diffusion: the bare soil is always stable for the precipitation
(P ) values studied, (b1, w1) is unstable up to P ∼ 83 and stable otherwise,
and (b2, w2) is unstable for all the values of P considered.

We now consider a perturbation around the base state (b1, w1) of the form
(bp, wp) = (bq, wq)e

σteiqx, where bq and wq are constants. Subsequently, we
find the precipitation values for which Eq. (6) holds for some wave number
q. This analysis indicates that for precipitation values less than Pc = 91
mm/y, (b1, w1) is unstable to small perturbations. Consequently, between
for 83 < P < 91 (b1, w1) is destabilized by diffusion. This shows that the
model given by Eqs. (15) presents a Turing instability. Near this instability
the model will reproduce patterns.
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Figure 7: Patterns obtained from simulating the Zelnik’s model, given by
Eqs. (15). Dark green indicates vegetation, and white corresponds to bare
soil. On the top row, bare soil gaps on uniform vegetation (left) and vegeta-
tion spots in bare soil (right) are shown. These hexagonal patterns have been
observed in natural systems [17]. On the lower row we observe a labyrinth
pattern (left) and a striped pattern (right). The striped patterns are com-
monly found in hills [18].

It is important to notice that the (1 + ηb)2 term in Eq. (15) is crucial
for the pattern formation properties of the model. Mathematically, if we set
η = 0 the only homogeneous steady state of Eq. (15) along the precipitation
parameters studied is the bare soil. Therefore, a model with η = 0 does not
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Figure 8: Bifurcation diagram of the steady states of Zelnik’s model
(Eqs. (15)), showing the non-dimensional biomass, b, vs. the precipitation
rate, P , in dimensions of mm/y. The steady states include the bare soil
(brown) and the two uniform states (b1, w1)(purple) and (b2, w2) (orange).
Dashed lines indicate linearly unstable states, and full lines indicate linearly
stable states. The bi-stability of two stable states is a characteristic of pat-
tern formation.

have bi-stability of steady states nor presents a Turing instability, both of
which are required for the onset of an instability that leads to patterns.

Physically, η corresponds to the root-to-shoot ratio. Therefore, η → 0 cor-
responds to when the roots of the plant are insignificantly small compared
to the above-ground plant. Recall that in the previous section we discussed
the feedback mechanisms responsible for pattern formation: overland water
flow, laterally extended roots, and groundwater diffusion. Zelnik’s model,
Eqs. (15), assumes that the infiltration rate is independent of biomass and
roots are laterally constrained, hence the dominant water transport mecha-
nism in the terrains studied will be the enhanced soil-water diffusion towards
densely vegetated areas. This mechanism depends on the roots of the plants
being deep enough to deplete the soil beneath the plant from water and create
a gradient. Thus, setting η to zero would imply that there cannot be soil-
water diffusion, and therefore we do not have a water-vegetation feedback
mechanism to promote pattern formation in this case.
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Figure 9: Biomass (top) and water (bottom) fields obtained from simulating
Eqs. (15) for 30yrs, initiating from random noise. It can be observed how
the spatial distribution of water and biomass are closely related throughout
the evolution of the pattern, practically mirroring each other.

3 An equation for groundwater in terms of

biomass

The water-vegetation feedback mechanisms described in the previous section
indicate that the availability of groundwater is closely related to the presence
of a vegetation cover. When the soil is assumed to have uniform infiltration,
groundwater is expected to be concentrated in areas depleted of vegetation,
where water from precipitation infiltrated but it has not been consumed by
the plants. Fig. 9 shows the result of simulating Eqs. (15) from uniform noise
intial conditions to a steady state. Here, it can be observed how the spatial
distribution of vegetation cover and groundwater are closely related.

This relation suggests that groundwater can be modeled as a function of
biomass: w = w(b). To derive this equation, we proceed by solving for w in
terms of b in the original two-equation Zelnik’s model given by Eqs. (15).

Groundwater moves on time scales much faster than the biomass. Evapo-
ration, soil infiltration and diffusion through porous media have a time scale
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of hours, while biomass growth occurs over years or even decades. Therefore,
it can be assumed that w reaches an equilibrium much faster than b. Con-
sidering this simple limit, the time derivative of w is set to zero, obtaining a
local in time but non-local in space relationship between b and w:

(∇2 − k2)w(x) = −ε2p, (17)

where

k2 =
1

δw
[ν(1− ρb) + λbw(1 + ηb)2],

=
1

δ
[ν − b(νρ− λ) + b2(2ηλ) + b3(η2λ)].

For the sake of mathematical tractability, we temporarily assume that
that k is constant, allowing for the change of variables x̃ = x/k. Substituting
into Eq. (17):

(∇̃2 − 1)w(x̃) = − 1

δw

p

k2
. (18)

In the remaining derivation k is no longer constant, and b is again allowed
to vary in time and space. Expanding 1/(δwk

2) around b = 0 yields:

(∇2 − 1)w = −(p/ν + φ1b+ φ2b
2 + · · · ), (19)

where the tildes were dropped for notational simplicity, and the φi’s are
constant coefficients which depend on the environmental parameters ν, λ, ρ,
etc. The solution for w(x) may be readily written in terms of the Green’s
function for the (∇2 − 1) operator. Given this function, G(x − x′), we can
solve for w(x):

w(x) = −
∫
dx′G(x− x′)

(
p

ν
+ φ1b

)
. (20)

In 2D the Green’s function for (∇2 − 1) is

G(x - x’) = − 1

2π
K0(|x - x’|). (21)

Now, we have a non-local equation for groundwater. To obtain an equation
for groundwater that only depends on biomass, we approximate the integral
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in the previous equation in terms of spatial derivatives of biomass. To achieve
this we are going to use the Fourier transform of this Green’s function. To
derive this, we first define a Fourier convention:

f(x) =

∫
dω f̂(ω)e2πix·ω,

f̂(ω) =

∫
dx f(x)e−2πix·ω.

(22)

Subsequently, consider a function G(x− x′) such that:

(∇2 − 1)G(x− x′) = δ(x− x′). (23)

Transforming to Fourier space and multiplying by e2πix′·ω′
:

δ(x− x′)e2πix′·ω′
= −

∫
dω (4π2|ω|2 + 1)Ĝ(ω)e2πix·ωe−2πix·(ω−ω′). (24)

Integrating with respect to x′ and applying properties of the delta function,
we obtain:

e2πix·ω′
= −

∫
dω (4π2|ω|2 + 1)Ĝ(ω)e2πix·ωδ(ω − ω′). (25)

Thus, integrating over ω we obtain the Fourier transform of the Green’s
function for the (∇2 − 1) operator:

Ĝ(ω) = − 1

4π2|ω|2 + 1
. (26)

Now, we can approximate the integral in Eq. (20). Taking the leading
order expansion of 1/(δwk), we can re-write equation Eq. (20) as:

w(x) =

∫
dx’

∫
dω

1

4π2|ω|2 + 1
e2πix·ωe−2πix’·ω(p/ν + φ1b),

=
p

ν

∫
dx’

∫
dω

1

4π2|ω|2 + 1
e2πix·ωe−2πix’·ω

+ φ1

∫
dx’

∫
dω

1

4π2|ω|2 + 1
e2πix·ωe−2πix’·ω b

(27)
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First, we solve the integral in Eq. (27) which does not depend on b:

p

ν

∫
dx’

∫
dω

1

4π2|ω|2 + 1
e2πix·ωe−2πix’·ω, (28a)

=
p

ν

∫
dω

1

4π2|ω|2 + 1
e2πix·ωδ(ω), (28b)

=
p

ν
. (28c)

To go from Eq (28a) to Eq. (28b) we integrated e−2πix’·ω over x′, obtaining a
delta function in ω, and because delta functions satisfy

∫
dxf(x)δ(x) = f(0),

Eq. (28c) follows. Now, following analogous steps, we integrate the part of
Eq. (27) which depends on b. Letting b̂(x) be the Fourier transform of b(x)
we obtain:

φ1

∫
dx′
∫
dω

1

4π2|ω|2 + 1
e2πix·ωe−2πix′·ωb(x′)

= φ1

∫
dx′
∫
dω

∫
dω′

1

4π2|ω|2 + 1
e2πix·ωe−2πix′·ωe2πix·ω′

b̂(ω′),

= φ1

∫
dω

∫
dω′

1

4π2|ω|2 + 1
e2πix·ω b̂(ω′)

∫
dx′e−2πix·(ω−ω′),

= φ1

∫
dω

∫
dω′

1

4π2|ω|2 + 1
e2πix·ω b̂(ω′)δ(ω − ω′),

= φ1

∫
dω

1

4π2|ω|2 + 1
e2πix·ω b̂(ω),

' φ1

∫
dω(1− 4π2|ω|2 + 16π4|ω|4)e2πix·ω b̂(ω),

= φ1[b+∇2b+∇4b].

In the second to last line we expanded 1/(4π2|ω|2 + 1) around zero. This
expansion can be justified by considering the smoothness of b: we do not
expect vegetation to have any shock fronts, implying that b should be a
smooth function. Therefore, its Fourier transform b̂(ω) should decay quickly
as |ω| → ∞, meaning b̂(ω) is peaked near at ω = 0. In the last line of the
derivation we used the Fourier identity,

(∇2)nb(x) =

∫
dω(−4π2|ω|2)nb̂(ω)e2πix·ω. (29)
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Figure 10: (a) The water field, w, resulting from simulating Eqs. (15). (b)
The approximation w = p

ν
+ φ1[b + ∇2b + ∇4b] + φ2[b2 + ∇2(b2) + ∇4(b2)]

obtained by numerically fitting the parameters φi’s to the simulated w in
(a), using the corresponding biomass field, b from the simulation. (c) The
relative error is within 5% for φ1 ' −0.2, and φ2 ' −0.1. The fitting of
parameters was done using least squares.

Substituting these two results into Eq.(27) we obtain an equation for
groundwater in terms of biomass and its spatial derivatives:

w(x) =
p

ν
+ φ1[b+∇2b+∇4b]. (30)

We can do an analogous derivation, including higher powers of b in the
expansion of 1/k2 in equation Eq. 27, to obtain a general equation for ground-
water in terms of biomass of the form:

w(x) =
p

ν
+ φ1[b+∇2b+∇4b] + φ2[b2 +∇2(b2) +∇4(b2)] + · · · (31)

To calculate an example of a w equation of the form of Eq. (31), we use
resulting b and w fields from simulating Eqs. (15) to numerically find the
parameters φ1 and φ2. The water simulation, the resulting approximation,
and the relative error are plotted in Fig. 10. It can be observed that for the
least square fit values of φ1 and φ2 the relative error of approximation of w
given by Eq. (31) is within 5%. These results indicate that for appropriate
choices of the parameters we can get quite accurate approximations for the
w field using Eq. (31).
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4 A Swift-Hohenberg style model for vegeta-

tion patterns

The Swift-Hohenberg model was originally derived as an equation to describe
the temperature and fluid velocity dynamics in thermal convection [14]. This
equation has been interpreted as a model system for pattern formation, and
therefore has been extensively studied in the last decades [10]. Previous
studies have expanded the SH model to include non-local terms, in an effort
to develop a generic model to account for the spatiotemporal dynamics of
spatially extended systems [19].

In this work we present a Swift-Hohenberg-style model that arises from
vegetation pattern modeling. In contrast with the original SH equation given
by Eq. (10), our model includes non-linear terms multiplying the spatial
derivatives of the equation, which is a reflection of the dynamics of our par-
ticular system.

The general form of our vegetation pattern formation model can be ob-
tained by substituting the general form obtained for the groundwater, Eq. (31),
into the biomass equation given in Zelnik’s original model Eq. (15a), giving
an equation for the biomass of the form:

∂tb = f(b) + g(b)∇2b+ bh(b)∇4b, (32)

where f(b), g(b) and h(b) are polynomial functions in b.
To study the pattern formation properties of Eq. (32) we choose a simple

form of Eq. (32) that conserves the water-vegetation dynamics of the system:

∂tb = f(b) + ε(D1 − b)∇2b− ε2D2b∇4b, (33)

where the ε terms come from the scaling of variables, x̃ = x/k we did to
derive the w(b) equation, and D1 and D2 are constants that depend on the
form we choose for w(b).

We know that f(b) = λb(1− b)(1 + ηb)2w1(b), where w1(b) is the part of
w(b) which do not depends on gradients of b. As suggested by the leading
order coefficients of the initial ε2/k2 expansion given by the right hand side of
equation (19), in combination with comparison to our numerical simulations,
we choose

w1(b) =
p

ν
(1− b(pν − λ)). (34)
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Figure 11: Water (solid line) resulting from simulating Eqs. (15), and water
approximation (dashed line) given by Eq. (34). Notice that even though we
are taking a linear approximation in the biomass, it already captures the
general shape of the simulated water field. This line plot is a cross section of
the labyrinths patterns presented in Fig. 9 after 30 years of simulation

It can be observed in Fig. 11 that this approximation successfully cap-
tures the general shape of the simulated water field. Moreover, the feedback
mechanism of soil-water diffusion, which dominates in the system studied
suggests that the spatial distribution of water should mirror that of biomass:
areas of denser vegetation will have low groundwater and vice-versa. Thus,
to leading order, it is reasonable to assume that w(b) = γ0 − bγ1, where γi is
constant for i = 0, 1.
Hence, we explore an equation for biomass of the form:

bt =
pλ

ν
b(1− b)(1 + ηb)2(1− b(ρν − λ)) + ε(D1 − b)∇2b− ε2D2b∇4b. (35)

where ε ∼ 1
k2
∼ δw ∼ 100, and D1 = D2 = 0.1. To study the pattern forma-

tion characteristics of this equation we perform a linear stability analysis of
the system. To find homogeneous steady states we solve:

0 =
pλ

ν
b(1− b)(1 + ηb)2(1− b(ρν − λ)). (36)

The steady states as a function of precipitation P can be observed in Fig. 12.
Similarly to the 2 equations model, we observe bi-stability of steady states,
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Figure 12: Bifurcation diagram of the steady states of the reduced biomass
model, showing the non-dimensional biomass (b) vs. the precipitation rate in
dimensions of mm/y. The full (dashed) lines correspond to stable (unstable)
equilibria. Similarly to the original two-equation model we observe the bi-
stability of stable states.

which indicates the existence of spatially patterned states as different regions
approach different stable equilibria as set by their local initial conditions.

We now study the growth of a perturbation of the uniformly stable steady
state u?. We consider a small perturbation of the form bp = Aeσt+ix·q, and
study how the growth rate, σ depends on the precipitation P and the wave
number q. The perturbation bp evolves according to the equation

∂tbp = N [b? − bp]−N [b?], (37)

where N is defined as

N [b] =
pλ

ν
b(1−b)(1+ηb)2(1−b(ρν−λ))−b+ε(D1−b)∇2b−ε2D2∇4b. (38)

Letting

f(b) =
pλ

ν
b(1− b)(1 + ηb)2(1− b(ρν − λ)), (39)
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we find that the perturbation bp follows the evolution equation:

∂tbp =

(
∂f

∂b

∣∣∣∣∣
b?

+ ε(D1 − b?)∇2 −∇2b? − ε2D2b?∇4 − ε2D2∇4b?

)
bp, (40a)

=

(
∂f

∂b

∣∣∣∣∣
b?

+ ε(D1 − b?)∇2 − ε2D2b?∇4

)
bp, (40b)

where one may proceed from Eq. (40a) to Eq. (40b) by noticing the gradients
of b? vanish because we assumed b? to be an homogeneous steady state.
Substituting bp = Aeσt+ix·q into the equation above, we obtain an equation
for the growth rate of a mode with wave number q:

σq =
∂f

∂b

∣∣∣∣∣
b?

− ε(D1 − b?)q2 − ε2D2b?q
2 (41)

Figure 13: Growth rate σq vs. the wave number q for the non-zero uni-
form stable state of equation (15a) for different values of the precipitation
parameter P . The marginally stable state (black line) occurs at Pc ' 99:
below this precipitation value, instabilities will grow, creating patterns with
characteristic wavelength qc ∼ 0.2.

Fig. 13 shows the growth rate σ versus the wave number q for different
values of the precipitation parameter P . This plot reveals that the uniform
steady state b? becomes unstable in the presence of diffusion for precipitation
values below Pc = 99. The maximum growth rate occurs at a finite wave-
length, indicating the presence of a non-uniform instability. Therefore, we
expect Eq. (35) to give rise to patterned states.
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Our simulation results are shown in Fig. 14, where the variety of patterned
states that emerge from Eq. (35) are apparent. It is also important to notice
that the characteristic length scale of the patterns is comparable to that of
the original model, which indicates that our equation satisfactorily describes
the emergent vegetation patterns.

The equation derived in this paper, Eq. (35), differs from the original SH
model given by Eq. (10) in that it includes polynomial functions of b multi-
plying its spatial derivatives. In the context of vegetation, these terms reflect
that biomass regulates its own water dependent biomass growth. If more wa-
ter is added through the system, biomass will selectively grow in the places
where vegetation is already denser. Moreover, although biomass consumes
water, it also reduces its evaporation. These intricate water-biomass dy-
namics differentiate vegetation patterning from classical activator-inhibitor
systems and therefore we obtain a modified SH model where biomass regu-
lates its own diffusion and higher order spatial derivatives.

5 Conclusions

The present work has introduced a Swift-Hohenberg style model to describe
pattern formation of dryland vegetation. Our model consists of a single equa-
tion describing the evolution of biomass. It has the novelty of introducing
polynomial functions of biomass multiplying spatial second and fourth deriva-
tives, which takes into account the water-vegetation dynamics of the system
studied. By performing a linear stability analysis of our new, one equation
model, we find the coexistence of two stable states under a wide range of
precipitation values. This bi-stability constitutes a meaningful property of
systems that exhibit pattern formation and it is also present for the original
Zelnik et al. [9] model. The linear stability analysis also reveals a range of
precipitation values for which perturbations around the uniform vegetation
stable state of the system will grow. This instability occurs at non-zero wave
number, indicating the appearance of spatially periodic patterns. Moreover,
the wave lengths of these unstable modes, which dictate the scale of the pat-
tern formed, are consistent with the length scales observed for vegetation
patterns.

We performed numerical simulations of this new model and observed a
wide range of patterns, including spots, hexagonal patterns and labyrinths.
These initial results suggest that our reduced model successfully captures the
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Figure 14: Patterns resulting from modeling Eq. (35). The first was simulated
with a precipitation value of P = 90, while the second and third rows were
simulated with a precipitation value P = 100. All of our simulations were
started from random noise. The second row reveals a labyrinth pattern, while
the first and third rows show hexagonal patterns of vegetation spots and gaps
respectively. Dark green indicates vegetation and white corresponds to bare
soil.

dynamics of the evolution of biomass in a water limited ecosystem. Given
the form of equation 15a, our model is easily mathematically tractable, and
can be used to study drivers of ecosystem collapse. This work showed that
for precipitation values below 90mm/y an uniform vegetation cover becomes

26



SPUR Final Paper, Summer 2021

unstable, thus in the absence of pattern formation these conditions would
drive the system to desertification. We suggest further work to study the
stability of the different periodic patterns to gain a better understanding
of the conditions under which the system would not be able to sustain any
vegetation. Moreover, given the clear ecological meaning of the coefficients in
our model, one can study the dynamics of the system under different values of
the ecological factors. For instance, by considering how the dynamics of the
system change when we vary evaporation, we could account for the current
changes in temperatures of ecosystems.

Moreover, we propose a generalization, Eq. (35) of the original Swift-
Hohenberg model to include polynomial functions multiplying spatial deriva-
tives terms. In this work we showed an application of this model to ecology,
however the richness of Eq. (35) suggests that it might be able to describe
the dynamics of other physical and biological systems. Previous work has
suggested other generalizations of the SH model, such as the the inclusion
of non-local nonlinearities [20]. Therefore, the dynamics of more general SH
style models such as the one we propose in this work appears as an interesting
area of study.
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