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Abstract

Deuring proved that each CM elliptic curve has a corresponding Hecke character
with the same L-function, hence showing that the L-functions of CM elliptic curves have
analytic continuation in C. In this paper, we explicitly construct the Hecke character
for a particular elliptic curve whose endomorphism ring is an order of Q(

√
−7), with

views towards generalizing this result to classes of CM elliptic curves.
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1 Introduction

Certain classes of elliptic curves were first studied by Diophantus in the third century, but

elliptic curves as a whole were not studied systematically until the nineteenth century, when

Jacobi and Weierstrass connected the geometric ideas of Newton and algebraic formulas of

Bachet and Fermat with elliptic integrals and elliptic functions. In 1901, Poincaré unified

and generalized these ideas to the theory of algebraic curves [BM02]. Elliptic curves are

defined as curves E over a perfect field K of genus one having a specified base point; each

elliptic curve can be represented by as the set of solutions to a Weierstrass equation, a

cubic of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, ..., a6 ∈ K, together with a point at infinity. Further, if char(K)6= 2, 3, then

E takes the form y2 = x3 + Ax + B with the appropriate change of variables. An elliptic

curve is said to have complex multiplication if its endomorphism ring is larger than Z.

The prototype for L-functions is the Riemann zeta function, and the first appearance

of the L-function was with Dirichlet in 1837, who defined it as a series based on the Dirich-

let character and used it to show that there are infinitely many primes in any primitive

arithmetic progression. Then, in 1877, Dedekind generalized this notion of an L-function

to number fields; Hecke later named the Dedekind zeta-function after him [LMF21a].

Then, in the early 20th century Hecke looked for a generalization for the Dirichlet L-

function and the Dedekind zeta function. He introduced the notion of a Hecke character,

which is the character of ideals of a number field, and established a number of important

properties, including the following theorem.

Theorem 1.1. (Hecke) Let χ be an algebraic Hecke character and Lχ(s) the corresponding

L−function. If χ(A) is not equal to 1 for some ideal A, then Lχ(s) can be analytically

continued to a function defined on C.

In 1955 Hasse introduced the Hasse-Weil zeta function, which is the zeta function

associated with a curve. The L-function of an elliptic curve E over K is a function based

on the number of points on E in the reductions modulo a prime p, and we can express

the Hasse-Weil zeta function in terms of the Riemann zeta function and the L-function of

the curve. With this, one might wonder whether the L function of elliptic curves can be

analytically continued. The following theorem relates L-functions of elliptic curves with
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complex multiplication to Hecke L-functions, and hence demonstrating that the L-functions

of CM elliptic curves can be analytic continuted to a function on C.

Theorem 1.2. (Deuring) Let E be an elliptic curve defined over Q having complex mul-

tiplication when it is considered as a curve over C. Then there exists an algebraic Hecke

character χ on a number field K such that:

LE(s) = Lχ(s).

This theorem gives us the existence of such a Hecke character, but the explicit con-

struction of it is nontrivial. Our work is concerned with exactly this – to find an associated

algebraic Hecke character to a particular elliptic curve.

In 2015, [Tam14] does the construction for curves of the form y2 = x3 + D and y2 =

x3 −Dx. We attempt a similar construction in our work.

In this paper, we begin by considering the curve

E : y2 = x3 − 35x+ 98

to find its associated algebraic Hecke character χ. Note that E has complex multiplication

and its endomorphism ring is an order of Q(
√
−7) [LMF21b]. We will do this in three

steps:

1. compute Np, the number of points on E in the reduction modulo p, in order to write

down its L-function LE

2. define χ and show that it is an algebraic Hecke character

3. prove that its L-function coincides with LE

We provide necessary definitions in [§ 2], and we accomplish step 1 in [§ 3] and steps 2 and

3 in [§ 4]. Finally, in [§ 5], we provide some possible generalizations and future directions.

2 Preliminaries

In this section, we provide the necessary definitions for our work. We begin by defining

the L-function of an ellptic curve defined over Q.
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Definition 2.1. Let E be an elliptic curve defined over Q with discriminant ∆. The

L-function of E is

LE(s) =
∏
p|∆

(1− app−s)−1 ·
∏
p-∆

(1− app−s + p1−2s)−1,

where if p is a prime of good reduction, ap = p+ 1−Np; if E has bad split multiplicative,

bad non-split multiplicative, or bad additive reduction at p, ap is 1,-1,0 respectively. Np is

the number of points on E in the reduction modulo p.

Now, we provide our definition of an algebraic Hecke character from [Tam14].

Definition 2.2. Let K be a CM field which is also a Galois extension of Q. Let O be the

ring of integers of K and M a fixed ideal of O. An algebraic Hecke character modulo M

is a function χ : {I : I ⊆ O ideal} → C that satisfies the following properties:

1. χ(O) = 1

2. χ(A) 6= 0 if and only if (A,M) = (1)

3. χ(AB) = χ(A)χ(B)

4. There is an element θ =
∑

σ nσσ ∈ Z[G] such that if α ∈ O, α ≡ 1 mod M , then

χ((α)) = αθ

5. There is an integer m > 0, called the weight of χ, such that nσ + njσ = m∀σ ∈ G.

Finally, we define the L-function of a Hecke character.

Definition 2.3. Let χ be an algebraic Hecke character on a CM field K with ring of

algebraic integers O. The Hecke L-function associated to χ is

Lχ(s) =
∑
A

χ(A)N(A)−s =
∏
P

(1− χ(P )N(P )−s)−1

where the sum is over all nonzero ideals of O, the product over all maximal ideals of O.

3 Counting points modulo p

In this section, we will count the number of points on the reduction of E modulo primes p,

in order to find the L-function for E. We will do this in two cases: when p is a non-square
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modulo 7, and when it is a square modulo 7. We will make use of the following fact: If

K = Q(
√
d) for d squarefree and p is an odd prime, then

• p is ramified if p|d,

• p splits if
(
d
p

)
= 1,

• p is inert if
(
d
p

)
= −1

where
(
d
p

)
is the Legendre symbol.

3.1 Non-squares modulo 7

The following theorem tells us that in this case, the reduced curve is supersingular.

Theorem 3.1. [Lan87] Let A be an elliptic curve over a number field, with End(A) ≈ b,

where b is an order in an imaginary quadratic field k. Let B be a place of aQ (algebraic

closure of Q in C) over a prime number p, where A has non-degenerate reduction Ã. The

curve is supersingular if and only if p has only one prime of k above it (p ramifies or

remains prime in k).

Hence, in this case, E is supersingular over p. When p = 3, we can check that Np = 4.

The following result tells us that Np = p+1 for all odd primes that are non-square modulo

7.

Theorem 3.2. [Sil09] Suppose that p ≥ 5 is prime. Then, E is supersingular if and only

if Np = p+ 1.

3.2 Squares modulo 7

We will use the following theorem from [Sta96].

Theorem 3.3. (Stark) Suppose D is the discriminant of a complex quadratic field k and

that (D, 6) = 1. Suppose that

π =
u+ v

√
D

2

and that (π) is a ideal in k of norm p (with p prime) where (p, 6D) = 1. Let B be a

prime ideal of H (the Hilbert class field of k) above (π). Let also a be any nonzero number

of H+ (the real subfield of H) whose numerator and denominator are relatively prime to
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B. Further, let γ2 = γ2(θ) and γ3 = γ3(θ) with θ = −3+
√
D

2 and γ2(z) and γ3(z) are the

classical modular functions. Then the curve

Ea : y2 = 4x3 − a2D
γ2

12
x+ a3D

γ3

√
D

216

with coefficients in H+ reduces mod B to a curve Ēa defined over Fp with

p+ 1−


(
a
B

)(
2u
|D|

)
u if D ≡ 1 mod 8(

−a
B

)(
2u
|D|

)
u if D ≡ 5 mod 8

points.

The author of [Sta96] provided several examples of this; in particular, when D = −7,

the curve y2 = 4x3 − 5 · 7a2x/4− 72a3/8 has p+ 1−
(
a
u

)(
u
7

)
u when reduced mod p. From

this theorem, for a = −4 and D = −7, the curve

E′ : y2 = 4x3 − 140x+ 392

has p+ 1−
(
−4
p

)(
π+π̄

7

)
(π + π̄) points when reduced mod p. Note that since 4 is a square

modulo p, Np for E′ is the same as E. Note that
(
−4
p

)
=
(

7
p

)
since

(
−4
p

)(
7
p

)
=
(
−7
p

)
=(

−1
p

)(
7
p

)
= (−1)(p−1)/2(−1)(p−1)/2 = 1. Hence, in this case, we can write Np = p + 1 −(

7
p

)(
π+π̄

7

)
(π + π̄).

4 Hecke Character and L-function

In this section, we first define the associated Hecke character, then we’ll demonstrate that

it has the same L− function as E.

4.1 Hecke Character

Let K = Q(
√

7) and let O = Z[1+
√

7
2 ] be its ring of integer. We find a Hecke character in

O. We define it by specifying the value of χ on prime ideals (P ) of O. Similar to [Tam14],

we define χ in the following manner:

1. If P |14, χ(P ) = 0.
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2. If P - 14 and N(P ) = p, then p is a square mod 7 and (P ) = (π) for some π ∈ O
such that ππ̄ = p. Then χ(P ) =

(
7
p

)(
π+π̄

7

)
· π. Denote the prime ideals of this type

by P1.

3. If P - 14 and N(P ) = p2 then p is a nonsquare mod 7 and (P ) = (p). Then

χ(P ) = −p. Denote the prime ideals of this type by P2.

We must show that this is indeed a Hecke character. Following the definition in [§ 2],

we will show for θ = 1 and M = (28), the axioms are satisfied. It is sufficient to show that

for α ∈ O, if α = 1 mod M , then χ((α)) = α. For this, we’ll need the following lemma.

Lemma 4.1. Let α = a
√
−7 + b ∈ O. Then, α is a square mod 7 if and only if b is a

square mod 7.

Proof. First, suppose α is a square modulo 7 and α ≡ β2 mod 7 where β = c
√
−7 + d; we

can choose a β where c, d are integers. Let β2 = c′
√
−7 + d′. Then, d′ = d2 − 7c2 ≡ d2

mod 7. Further, since d′ and b are both integers, since α ≡ β2 mod 7, d′ ≡ b mod 7,

so b is a square mod 7. Now suppose b is a square mod 7, and let b ≡ d2 mod 7. If

d = 0, b is a power of 7, then α2 ≡ 0 mod 7 in this case. Now, d 6= 0, let c = 2−1d−1x,

so b ≡ d2 − 7c2 mod 7 and a ≡ 2cd mod 7. Then letting a′ = 2cd and b′ = d2 − 7c2,

we have a′
√
−7 + b′ = (c

√
−7 + d)2. Note that if a ≡ a′ mod 7 and b ≡ b′ mod 7 then

a
√
−7 + b ≡ a′

√
−7 + b′ mod 7. Hence, α is a square mod 7.

This means that for π = a
√
−7+b ∈ O,

(
π+π̄

7

)
=
(

2b
7

)
=
(
b
7

)
=
(
π
7

)
. Here we generalize

the Legendre symbol over the ring of integers based on whether π is a square modulo the

ideal generated by 7.

We now show that for α = a
√
−7 + b ∈ O, if α ≡ 1 mod (28), then χ((α)) = α. First,

notice that if, for a non-splitting prime p ∈ Z where p - 14, χ((p)) = −p =
(
p2

7

)(
p
7

)
p.

Hence, if α factors as α = π1...πm · πm+1πm+2...πk−1πk · pk+1...pn, where if i ≤ k −m is

even, πm+i = π̄m+i−1 and πm+iπm+i−1 are split integer primes and pi are non-split integer

primes, we have

χ((α)) =

k∏
i=1

(
7

pi

)(
πi + π̄i

7

)
· πi

n∏
j=k+1

(
p2
j

7

)(
pj
7

)
· pj .
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This means that

χ((α)) = α ·
(
α

7

)
·
k∏
i=1

(
7

pi

) n∏
j=k+1

(
p2
j

7

)
.

So by quadratic reciprocity,

χ((α)) = α ·
(
α

7

)
·
(
αᾱ

7

)
·
m∏
i=1

(−1)(pi−1)/2.

Now note that α ≡ 1 mod 7 so it is a square mod 7, and hence ᾱ is also a square mod 7

by Lemma 4.1, so we have

χ((α)) = α ·
m∏
i=1

(−1)(pi−1)/2.

Now, note that since α ≡ 1 mod 4, q = π1...πm is either 1 or 3 mod 4. Let q = aq
√
−7 +

bq. In either case, aq must be even and bq must be odd; this means that since qq̄ =

(π1...πm)(π1...πm) = 7a2
q + b2q ≡ b2q − a2

q mod 4 = (bq + aq)(bq − aq) mod 4, and bq + aq ≡
bq − aq mod 4, so p1...pm = qq̄ = b2q − a2

q ≡ 1 mod 4. Hence, there are an even number of

pi that are 3 mod 4, so χ((α)) = α, as desired.

4.2 L-function

Now, we demonstrate that the L−function of E is the same as the L−function of the Hecke

character we defined.

Let E be the curve whose affine equation is y2 = x3 − 35x+ 98, so ∆ = −21273, so the

places of bad reduction are p = 2 and p = 7. Let c4 = b22 − 24b4, where b2 = a2
1 + 5a2 and

b4 = a1a3 +2a4 and a1, ..., a6 are the Weierstrass coefficients. We can use the value of c4 to

determine the type of bad reduction. We can calculate c4 in these two situations; in both

cases, c4 ≡ 0, so the reduction of E has a cusp, and hence, ap is defined to be 0 in these

cases. Hence, the L−function for E is

LE(s) =
∏
p-14

(1− app−s + p1−2s)−1,

where ap = p + 1 − Np and Np is the number of points on E in the reduction modulo p,
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which we found in [§ 3]. Then, we would have

LE(s) =
∏

p-14,p=3,5,6 mod 7

(1− app−s + p1−2s)−1
∏

p-14,p=1,2,4 mod 7

(1− app−s + p1−2s)−1,

substituting in our values for ap, we have

LE =
∏

p-14,p=3,5,6 mod 7

(1+p1−2s)−1
∏

p-14,p=1,2,4 mod 7

(1+

(
7

p

)(
π + π̄

7

)
πp−s)−1(1+

(
7

p

)(
π + π̄

7

)̄
πp−s)−1

=
∏

(P )∈P2

(1− χ(P )N(P )−s)−1
∏

(P )∈P1

(1− χ(P )N(P )−s)−1 = Lχ(s),

as desired: we have now found a χ with the same L−function as our elliptic curve.

5 Generalization and Future Work

Theorem 3.3 allows for the generalization of this result to certain classes of functions. In

particular, suppose a is a negative even square and D is still −7, and consider the curves

that are isomorphic to

E : y2 = x3 − 5 · 7a2x/16− 72a3/32.

Then, its discriminant −343a2 has factors of 7 and 2. Suppose it factors as ∆ = pn1
1 ...pnk

k ,

and let d = p1...pk.

Counting points modulo p: When p is a non-square mod 7, Np = p+ 1, and when

p is a square mod 7, Np = p + 1 −
(
a
p

)(
π+π̄

7

)
(π + π̄). Note that

(
a
p

)(
7
p

)
=
(
−7
p

)
= 1, so

Np = p+ 1−
(

7
p

)(
π+π̄

7

)
(π + π̄).

Hecke Character: We find a Hecke character in the endomorphism ring of E by defining

its value on the prime ideals P , with M = (28):

1. If P |d, χ(P ) = 0.

2. If P - d and N(P ) = p, then p is a square mod 7, so P = (π) and ππ̄ = p. Then

χ(P ) =
(

7
p

)(
π+π̄

7

)
· π.

3. If P - d and N(P ) = p2 then is a nonsquare mod 7, so P = (p). Then χ(P ) = −p.
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The proof that this is an algebraic Hecke character is the same as in [§ 4].

L-function: Note that c4 = 105a2, so in the bad reductions mod pi, since pi is ei-

ther 2, 7, or a factor of a, c4 ≡ 0 mod pi, so there is a cusp, and ap = 0 in these cases.

Hence the L-function is

LE(s) =
∏
p-d

(1− app−s + p1−2s)−1.

The proof that this is the same L-function as that of the Hecke character is the same as in

[§ 4].

There are other generalizations that are immediately possible based on the other cases

of theorem 3.3. In addition, the generalization of the construction to other elliptic curves

is also a topic of interest.
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