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Abstract. Quiver coefficients come from the study of a general kind of degeneracy lo-
cus associated to an oriented quiver of type A. They can be obtained by expanding the
Schubert polynomials into the split-Schur polynomials, and possess very rich combinato-
rial structures. In this paper, we investigate the problem of determining which Schubert
polynomials are split-multiplicity-free by looking at two meaningful special cases: the
flagged Schur polynomials, which are Schubert polynomials of vexillary permutations,
and the Stanley symmetric polynomials, which are stable limits of Schubert polynomials.
Specifically, we present a necessary and sufficient condition on a shape λ for the flagged
Schur polynomials sbλ to be split-multiplicity-free, given a generic flag. We also discuss
progress on the Stanley symmetric polynomials via Rothe diagram.
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1. Introduction

The study of multiplicity-freeness of various polynomials in algebraic combinatorics has
received a lot of attention in recent years, with meaningful implications to algebraic geome-
try and representation theory. We say that a polynomial f is multiplicity-free with respect
to a basis B, if the coefficients of the expansion of f into B all belong to {0, 1}. Knowing
that a polynomial is multiplicity-free, together with the information of its support, which
is typically a saturated lattice polytope, one can uniquely recover this polynomial. There-
fore, multiplicity-freeness provides us with a great handle on various families of polynomials
arising from combinatorics and geometry.

Fink, Mészáros and St. Dizier [5] characterized the permutations w, for which the
corresponding Schubert polynomial Sw is multiplicity-free with respect to the monomial
basis, via pattern avoidance. As a consequence, in this case, Sw is the integer point
transform of a generalized permutahedron. Hodges and Yong [8, 9] characterized which
key polynomials are multiplicity-free with respect to the monomial basis in the context
of spherical geometry. With further consideration into the split-Schur basis, Gao, Hodges
and Yong [7] characterized which Schubert varieties are Levi-spherical. Another classical
problem in the study of multiplicity-freeness involves Littlewood-Richardson coefficients.
A result dates back to Stembridge [14] provides necessary and sufficient condition for the
product of two Schur functions sλsµ to be multiplicity-free with respect to the Schur basis.
This result was later refined by Thomas and Yong [15] with consideration to Grassmannian,
and further refined by Gao, Hodges and Orelowitz [6] to Schur polynomials.

The main question considered by this paper includes many of the aforementioned work as
important special cases. We explain the necessary background and notations in Section 2.
Let w ∈ Sn be a permutation with descents Des(w) = {b1, . . . , bk−1} and let bk = n. Then
its corresponding Schubert polynomial Sw lives in the split-symmetric ring Λb, which has
the split-Schur polynomials as a natural basis. The coefficients cλ(w) in the expansion

Sw(x1, . . . , xn) =
∑

λ=(λ1,...,λk)

cλ(w) · sλ1(x1, . . . , xb1)⊗ · · · ⊗ sλk(xbk−1+1, . . . , xbk)

are called quiver coefficients, which arise from the study of degeneracy locus of the quiver
varieties of the oriented quiver of type A [3]. There are combinatorial formula for quiver
coefficients [2]. Here is the main question of interest.

Question 1.1. For which permutation w is the Schubert polynomial Sw multiplicity-free
with respect to the split-Schur basis?

While Question 1.1 seems intractable at the moment, its special cases are already of
interest and are rich in its combinatorial nature.

If w is vexillary, i.e. w avoids the pattern 2143, then its corresponding Schubert poly-
nomial Sw is a flagged Schur polynomial (see for example [11]). Our main theorem (The-
orem 3.2) provides a necessary and sufficient condition for a flagged Schur polynomial to
be multiplicity-free with respect to the split-Schur basis, when the flag is generic. We also



SPLIT-MULTIPLICITY-FREE FLAGGED SCHUR POLYNOMIALS 3

discuss necessary conditions when the flag b is not generic. The content related to flagged
Schur polynomials will be in Section 3.

Another special case of Question 1.1 involves the Stanley symmetric polynomials Fw,
labeled by permutations w, as they are the stable limits of Schubert polynomials. Specifi-
cally,

Fw(x) = lim
n→∞

Sidn⊕w(x).

Here, Question 1.1 is asking when is Fw multiplicity-free with respect to the Schur ba-
sis. Expanding Stanley symmetric polynomials into Schur polynomials gives rise to the
Edelman-Greene coefficients [4]. By Theorem 4.4 of [1], this question is known to be gov-
erned by pattern avoidance. However, the list of patterns is too large to be meaningful.
Thus, we propose another viewpoint to this question by investigating the Rothe diagram
of a permutation, in Section 4.

2. Preliminaries

Let Sn be the symmetric group on n elements. For a permutation w ∈ Sn, its (right)
descent set is defined as Des(w) := {i |w(i) > w(i+ 1)}. Let `(w) be the standard Coxeter
length of w, which equals the number of inversions of w.

2.1. Schubert polynomials and the ring of split-symmetric polynomials. To define
Schubert polynomials, we first define the divided difference operator ∂i, for i = 1, . . . , n−1,
acting on the polynomial ring Z[x1, . . . , xn], as follows:

∂if =
f − sif
xi − xi+1

where si acts by swapping the variable xi with xi+1. It is easy to check that ∂2
i = 0,

∂i∂j = ∂j∂i if |i− j| ≥ 2 and ∂i∂i+1∂i = ∂i+1∂i∂i+1.

Definition 2.1. The Schubert polynomials {Sw |w ∈ Sn} are defined recursively as follows:

Sw :=

{
xn−1

1 xn−2
2 · · ·x2

n−2xn−1 if w = n n−1 · · · 1,

∂iSwsi if `(w) = `(wsi)− 1.

The theory of symmetric functions has been developed thoroughly in the past, with
direct connections to the representation theory of Sn and GLn and the geometry of Grass-
mannians. Readers are referred to [10, 13] for detailed expositions.

The ring of symmetric polynomials ΛZ[x1, . . . , xn] is a subring of the polynomial ring
Z[x1, . . . , xn] that consists of all the polynomials that are invariant under the natural action
of Sn. We omit writing the base ring Z when it is clear in its context. As a graded vector
space, Λ[x1, . . . , xn] has a few notable basis. We focus on the Schur polynomials sλ’s,
indexed by a partition λ.

Definition 2.2. A partition of an integer m is a sequence of weakly decreasing positive
integers λ = (λ1, λ2, ..., λk) such that λ1 + λ2 + · · · + λk = m. We write |λ| = m and
`(λ) = k. And a Young diagram of such shape λ, is a collection of m left-justified boxes in
k rows such that there are λi boxes in row i.
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Definition 2.3. Let µ and λ be partitions, and suppose the Young diagram of µ is entirely
contained in λ. A skew shape λ \ µ is the set of boxes contained in λ and not in µ.

Definition 2.4. A (skew) semi-standard Young tableau (or SSYT) T of shape λ \ µ and
order n, is a filling of the Young diagram of skew shape λ \ µ with {1, 2, . . . , n} such that
the entries are weakly increasing along the rows and strictly increasing down the columns.
We say that T is a skew semi-standard Young tableau when µ 6= ∅, and a non-skew semi-
standard Young tableau or simply a semi-standard Young tableau when µ = ∅. When we
refer to an SSYT that may or may not be skew, we say a (skew) semi-standard Young
tableau.

3 3 4 5 6

4 5 6 6

5 6

7

2 4 5

3 5

1 1 4

2 3

Figure 1. A non-skew SSYT (to the left) and a skew SSYT (to the right).

Given a (skew) SSYT T , let T (i, j) be the entry in row i and column j. Then the weight
of T is defined as

wt(T ) :=
∏

(i,j)∈λ\µ

xT (i,j)

where the product is taken over all the boxes (i, j) in the skew shape λ \ µ.

Definition 2.5. The (skew) Schur polynomial sλ\µ(x1, . . . , xn) of shape λ \ µ and order
n is defined as sλ\µ(x1, . . . , xn) =

∑
T wt(T ), where T ranges over all (skew) SSYT of

shape λ \ µ and order n. We say that sλ\µ(x1, . . . , xn) is a skew Schur polynomial when
µ 6= ∅, and a non-skew Schur polynomial or simply a Schur polynomial if µ = ∅. When
sλ\µ(x1, . . . , xn) is not skew, we write sλ(x1, . . . , xn). When we refer to a Schur polynomial
which may or may not be skew, we say a (skew) Schur polynomial.

It is well-known that the Schur polynomials {sλ(x1, . . . , xn) | `(λ) ≤ n} form a basis of
Λ[x1, . . . , xn].

Let b = (b1, . . . , bk) be a weakly increasing sequence of positive integers. Define

Λb := Λ[x1, . . . , xb1 ]⊗ Λ[xb1+1, . . . , xb2 ]⊗ · · · ⊗ Λ[xbk−1+1, . . . , xbk ]

to be the ring of split-symmetric polynomials. It is a subring of Z[x1, . . . , xbk ], consisting of
polynomials that are symmetric in each of the blocks xbi−1+1, . . . , xbi , i.e. the polynomials

invariant under the Young’s subgroup Sb1×Sb2−b1×· · ·×Sbk−bk−1
. The ring Λb has a basis

{sλ=(λ1,...,λk) := sλ1(x1, . . . , xb1)⊗ · · · ⊗ sλk(xbk−1+1, . . . , xbk) | `(λi) ≤ bi − bi−1}
called the split-Schur polynomials, where λ is a tuple of partitions.
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Definition 2.6. A polynomial f ∈ Λb is split-multiplicity-free if f is multiplicity-free with
respect to the basis of split-Schur polynomials.

We note that the Schubert polynomials live in the ring of split-symmetric polynomi-
als in the sense of Lemma 2.7, which is classical and simple. We include the proof for
completeness.

Lemma 2.7. Let w ∈ Sn and let Des(w) = (b1, . . . , bk−1). Let bk = n and write b =
(b1, . . . , bk). Then Sw ∈ Λb.

Proof. It suffices to show that Sw is invariant under si, if i /∈ Des(w). Since i /∈ Des(w), we
have Sw = ∂iSwsi by definition. Then ∂iSw = ∂2

iSwsi = 0, meaning that siSw = Sw. �

2.2. Flagged Schur polynomials.

Definition 2.8. Let b = (b1 ≤ b2 ≤ . . . ≤ bk) be a sequence of weakly increasing positive
integers. We call b a flag, and we call b a generic flag if bi − bi−1 ≥ 3 ∀i ∈ {1, 2, ..., k − 1}.
We take b0 = 0 by convention. Then, we say a (skew) SSYT T of shape λ \ µ respects the
flag b if T (i, j) < bi ∀(i, j) ∈ λ \ µ.

Definition 2.9. A flagged (skew) Schur polynomial of shape λ \µ and flag b = (b1 ≤ b2 ≤
. . . ≤ b`(λ)) is defined as sbλ\µ =

∑
T wt(T ), where T ranges over all (skew) SSYT of shape

λ \ µ that respects the flag b.

Definition 2.10. The Rothe diagram of a permutation w ∈ Sn is defined as the set of tuples
D(w) = {(i, j) | 1 ≤ i, j ≤ n,w(i) > j,w−1(j) > i}. Graphically, D(w) can be seen as the
complement of the hooks (i, w(i)), ∀i ∈ {1, 2, . . . , n}. Let ci be #{(x, y) ∈ D(w) | x = i}.
Then, c = (c1, c2, . . . , cn) is called the Lehmer code of w. If we order the ci to be weakly
decreasing, the partition we get is called the shape of w, which we denote λ(w). For all
ci > 0, let ei be the greatest integer j ≥ i such that cj(w) ≥ ci(w). The sequence of ei
ordered to be weakly increasing is called the flag of w, which we denote b(w).

Definition 2.11. The essential set of a Rothe diagram D(w) is the collection of elements
(i, j) such that (i, j) ∈ D(w), and (i+ 1, j), (i, j + 1), (i+ 1, j + 1) /∈ D(w).

In Figure 2, the essential set is given by {(2, 2), (4, 2)}.

Definition 2.12. A permutation w is called 2143-avoiding, or vexillary, if there does not
exist a sequence of positive integers i < j < k < l such that w(j) < w(i) < w(l) < w(k).

Lemma 2.13. (Manivel [11]) Let w be a vexillary permutation. Then, Sw = s
b(w)
λ(w).

Definition 2.14. A sequence of positive integers a1, a2, ..., an is a lattice permutation if
for any left factor, that is, for any sequence a1, a2, ..., am, m ∈ {1, ..., n}, the number of is
is greater than or equal to the number of i+ 1s.

Definition 2.15. The reverse reading of a (skew) SSYT T is the sequence of entries of T ,
read from right to left and then from top to bottom.
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Figure 2. The Rothe diagram of the permutation 34152. We can observe
that c = (2, 2, 0, 1, 0, ...), λ(w) = (2, 2, 1), and b(w) = (2, 2, 4).

1 1 3 5

2 2 3 4

1 3

Figure 3. A skew SSYT whose reverse reading is 5311432231.

Definition 2.16. The type of a (skew) SSYT T of order n and weight wt(T ) =
∏n
i=1 x

αi
i

is the sequence of positive integers α1, α2, ..., αn.

Lemma 2.17. (Littlewood-Richardson) Let λ, µ be partitions, with λ containing µ. Then,
sλ\µ =

∑
ν c

λ
µ,νsν , where the coefficient cλµ,ν is the number of (skew) SSYTs of shape λ \ µ

and type ν such that its reverse reading is a lattice permutation.

An immediate consequence of the Littlewood-Richardson rule motivates our approach
in expressing flagged Schur polynomials in the split-Schur basis. Firstly, since each cλµ,ν
is a non-negative integer, we can say that the skew Schur polynomials are Schur-positive,
that is, when expressed in the Schur basis as sλ\µ =

∑
ν kνsν , each kν ≥ 0. This allows

us to easily spot multiplicity by first expressing a flagged Schur polynomial sλb as a sum
of tensor products of skew Schur polynomials. Because the skew Schur polynomials are
Schur-positive, multiplicity in sλb can only occur in two ways: as multiplicity in the skew-
Schur basis of one of the summands, or if two summands share some basis element in the
skew-Schur basis.

Lemma 2.18. If T is a (skew) SSYT of shape λ \ µ whose reverse reading is a lattice
permutation, Tij ≤ i.
Proof. We prove this assertion by induction. The entry furthest to the right in the first row
must be 1, since the reverse reading of T is a lattice permutation. Then, since the entries
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of a row of T weakly increase, all entries in the first row must be 1, so the statement holds.
Now, suppose the entries in row k are less than or equal to k. Then, in order for the reverse
reading of T to be a lattice permutation, the entry furthest to the right in the k+ 1th row
must be k+1. Again, as the entries of the rows of T weakly increase, this means all entries
of row k + 1 must be less than or equal to k + 1. This proves the assertion. �

2.3. Stanley symmetric polynomials. The Stanley symmetric polynomials Fw, indexed
by permutations w, are introduced by Stanley [12], to study the number of reduced words of
permutations. It is a symmetric polynomial with the crucial property that the coefficient of
x1x2 · · ·x` in Fw equals the number of reduced words of w, where ` = `(w) is the Coxeter
length of w. The Stanley symmetric polynomials are also the stable limits of Schubert
polynomials. Moreover, they expand positively into the Schur basis, Fw =

∑
ν j

w
ν sν , with

coefficients jwν called the Edelman-Greene coefficients [4]. For the sake of this report, we
will not go into details of how Fw’s are defined and how the Edelman-Greene coefficients
are computed.

The Stanley symmetric polynomials are symmetric functions which are the stable limits
of Schubert polynomials. Hence, we can examine how these polynomials expand into the
Schur basis. We see that the Stanley symmetric polynomials are indeed Schur-positive, and
we can characterize the coefficients jwν in Fw =

∑
ν j

w
ν sν as the Edelman-Greene coefficients.

Moreover, a result of Billey and Pawlowski implies that if w is not multiplicity-free, and a
permutation v contains w as a pattern, then v too is not multiplicity-free.

Lemma 2.19. (Edelman-Greene [4]) Let Fw(x) = limn→∞Sw(x). Then, we know that
Fw(x) =

∑
ν j

w
ν sν , where each jwν is a non-negative integer, i.e., the Stanley symmetric

polynomials are Schur-positive. Moreover, we call jwν the Edelman-Greene coefficient of w
at ν.

Definition 2.20. Suppose we have two permutations v ∈ Sm, w ∈ Sn, with m ≥ n. Then,
we say that v contains w as a pattern if there is a subsequence of v that is order-isomorphic
to w. In other words, when we consider v, w as sequences v1, v2, ..., vm and w1, w2, ..., wn,
there exists a subsequence of v, vs1 , vs2 , ...vsm such that wi < wk ⇐⇒ vsi < vsk .

Lemma 2.21. (Billey-Pawlowski [1]) Suppose v ∈ Sm and w ∈ Sn with m ≥ n. If w is
not multiplicity-free and v contains w as a pattern, then v is also not multiplicity-free.

In order to use the Rothe diagram to examine a permutation, we must introduce some
graph theoretic terms. We construct the NW-SE graph of a permutation in order to pass
from permutations to an environment where we can make use of our graph theoretic tools.

Definition 2.22. Let G be a graph. Let v be a vertex of G. Then, the degree of v is given
by the number of edges of G that contain v. We write the degree of v as d(v).

Definition 2.23. The complete graph on n vertices, Kn, is the graph with n vertices such
that any two vertices are connected by an edge. Moreover, the complete bipartite graph
Km,n is the graph with vertex set V = A ∪ B, where #A = m, #B = n, and A ∩ B = ∅,
and edge set {(v, w) | v ∈ A,w ∈ B.}.
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Motivated by the idea of pattern avoidance, we make use of the NW-SE graph of the
Rothe diagram of a permutation to examine the multiplicity-freeness of Stanley symmetric
polynomials. Properties of the NW-SE graph like containment of subgraphs may charac-
terize collections of permutations which contain patterns that generate these properties of
the NW-SE graph.

Definition 2.24. The NW-SE graph of a permutation w is the graph whose vertices are
the essential set of D(w), and two vertices (i, j), (k, l) are adjacent if i < k and j < l, or
i > k and j > l.

Figure 4. The Rothe diagram of the permutation 35128764, with elements
of the essential set labelled with empty circles. The graph connecting ele-
ments of the essential set is the NW-SE graph of the permutation.

3. Split-multiplicity-free flagged Schur polynomials

Lemma 3.1. Let λ = (λ1, λ2, ..., λk) be a partition, and b = (b1, b2, ..., bk) be a flag. Then,

(1) sbλ =
∑

µ(1)⊆µ(2)⊆···⊆µ(k)=λ

sµ(1) ⊗ sµ(2)\µ(1) ⊗ · · · ⊗ sµ(k)\µ(k−1)

where each µ(i) contains the first i rows of λ and has at most bi rows.
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Proof. Recall that sbλ =
∑

T x
T , where T ranges over the SSYT of shape λ whose entries

in the ith row are less than or equal to bi. Then,

sbλ =
∑
T

xT
′ ⊗ xT\T ′ ,

where T ′ is the SSYT contained in T whose entries are all less than or equal to bi. We
say that T ′ has shape µ(i). Any SSYT T can be broken into a tensor product of the SSYT
T ′ as defined above and a skew SSYT T \ T ′. Moreover, any T ′ that contains the first i
rows of λ, has at most bi rows, and whose entries in row i are less than or equal to bi,
along with any skew SSYT of shape T \ T ′ whose entries are all in {bi + 1, ..., bk} can be
multiplied to get an SSYT of shape λ that respects the flag. This establishes a bijection
between SSYTs of shape λ that respect the flag and pairs (T ′, T \ T ′), where T ′ satisfies
the conditions above and T \ T ′ is a skew SSYT whose entries are in {bi + 1, ..., bk} Hence,

(2) sbλ =
∑

µ(i)⊆µ(k)=λ

sb
µ(i)
⊗ sb

µ(k)\µ(i) ∈ Λ[x1, ..., xbi ]⊗ Λ[xbi+1, ..., xbk ]

where µ(i) contains the first i rows of λ, respects the flag b, and has bk or fewer rows. We
can set i = k − 1 to get

(3) sbλ =
∑

µ(k−1)⊆µ(k)=λ

sb
µ(k−1) ⊗ sµ(k)\µ(k−1) .

Because equation 2 implies that sµ(k)\µ(k−1) ∈ Λ[xbk−1+1, ..., xbk ], sµ(k)\µ(k−1) = sb
µ(k)\µ(k−1) ,

i.e., the Schur polynomial already respects the flag b. Since each µ(i) contains the first i
rows of λ, we can iterate the process by repeatedly expanding the flagged schur in equation
3 as follows.

(4) sbλ =
∑

µ(1)⊆···⊆µ(k)=λ

sµ(1) ⊗ sµ(2)\µ(1) ⊗ · · · ⊗ sµ(k)\µ(k−1)

where µ(i) contains the first i rows of λ, and has at most bi rows. Equation 2 implies that
sµ(1) ∈ Λ[x1, ..., xb1 ], so sb

µ(1)
= sµ(1) , which proves the assertion. �

Theorem 3.2. Let λ = (λ1, λ2, ..., λk) be a partition and let b be a generic flag. Then, sbλ
is split-multiplicity-free if and only if λ contains (2, 2, 2, 1).

Proof. We begin by showing that if λ contains (2, 2, 2, 1), sbλ has multiplicity. We know by
the Littlewood-Richardson rule that the skew Schur polynomials are Schur-positive. Hence,
if we can find µ = (µ(1) ⊆ µ(2) ⊆ · · · ⊆ µ(k) = λ) and µ′ = (µ′(1) ⊆ µ′(2) ⊆ · · · ⊆ µ′(k) = λ)
which share a term sξ1 ⊗ sξ2 ⊗ · · · ⊗ sξk when expanded into the split-Schur basis, we can
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guarantee that sbλ has multiplicity at that term. I construct such a term as follows. Let

µ(1) = µ′(1) = (λ1, λ2, 1)

µ(2) = (λ1, λ2, 2)

µ′(2) = (λ1, λ2, 1, 1)

µ(3) = µ′(3) = (λ1, λ2, λ3, 1)

µ(n) = µ′(n) = (λ1, ..., λn) ∀n ≥ 4.

Then, we have two elements of the skew Schur expansion:

(5) sµ(1) ⊗ sµ(2)\µ(1) ⊗ sµ(3)\µ(2) ⊗ sµ(4)\µ(3) ⊗ sµ(5)\µ(4) ⊗ · · · ⊗ sµ(k)\µ(k−1) =

s(λ1,λ2,1) ⊗ s1 ⊗ s(λ3−2,1) ⊗ sλ4−1 ⊗ sλ5 ⊗ · · · ⊗ sλk

(6) sµ′(1) ⊗ sµ′(2)\µ′(1) ⊗ sµ′(3)\µ′(2) ⊗ sµ′(4)\µ′(3) ⊗ sµ′(5)\µ′(4) ⊗ · · · ⊗ sµ′(k)\µ′(k−1) =

s(λ1,λ2,1) ⊗ s1 ⊗ sλ3−1 ⊗ sλ4−1 ⊗ sλ5 ⊗ · · · ⊗ sλk
In equation 6, we see that each factor is indeed a non-skew Schur polynomial, so its ex-
pansion into the split-Schur basis is simply itself. In equation 5, we see that each factor
except for s(λ3−2,1) is a non-skew Schur polynomial. Hence, we can expand this into the
Schur basis as

(7) s(λ1,λ2,1) ⊗ s1 ⊗ s(λ3−2,1) ⊗ sλ4−1 ⊗ sλ5 ⊗ · · · ⊗ sλk =∑
ν

cµ
(3)

µ(2),ν
s(λ1,λ2,1) ⊗ s1 ⊗ sν ⊗ sλ4−1 ⊗ sλ5 ⊗ · · · ⊗ sλk

It is now sufficient to show that cµ
(3)

µ(2),λ3−1
> 0. By the Littlewood-Richardson rule, it is

sufficient to show that a tableau of shape µ(3) \ µ(2) is an SSYT whose reverse reading is a
lattice permutation. Since such a reverse reading contains only ones, it must be a lattice
permutation. Moreover, since no column contains more than one entry, such a tableau is
an SSYT of type (λ3 − 1, 0, ...). Since any other SSYT will have fewer ones, this is the

only SSYT of shape µ(3) \ µ(2) whose reverse reading is a lattice permutation. Hence,

cµ
(3)

µ(2),λ3−1
= 1. Hence, sλb has multiplicity, as the coefficient on the term in equation 6 will

be at least 2.

Conversely, we show that if λ does not contain (2, 2, 2, 1), sbλ does not have multiplicity.
This will only occur in four cases:

(1) λ has one row.
(2) λ has two rows.
(3) λ has three rows.
(4) λ is of the form (λ1, λ2, 1, ..., 1).
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In case 1, since λ has only one row, sbλ = sλ(x1, ..., xb1). Hence, it does not have multiplicity.
In case 2, we make use of corollary 3.1 to see that

sbλ =

λ2∑
i=0

s(λ1,i) ⊗ sλ2−i.

Since both s(λ1,i) and sλ2−i are both non-skew Schur polynomials, this is precisely the

split-Schur expansion and we see that sbλ does not contain multiplicity.

In case 3, we use corollary 3.1 again to see that

(8) sbλ =
∑

µ(1)⊆µ(2)⊆µ(3)=λ

sµ(1) ⊗ sµ(2)\µ(1) ⊗ sµ(3)\µ(2)

where µ(i) contains the first i rows of λ. Both sµ(1) and sµ(3)\µ(2) are non-skew Schur

polynomials. I claim that for µ = (µ(1) ⊆ µ(2) ⊆ µ(3)) and µ′ = (µ′(1) ⊆ µ′(2) ⊆ µ′(3)),
sµ(1)⊗sµ(2)\µ(1)⊗sµ(3)\µ(2) and sµ′(1)⊗sµ′(2)\µ′(1)⊗sµ′(3)\µ′(2) cannot share a term. We already

know that µ(3) = µ′(3) = λ. Moreover, if they share a term, since µ(1) is a non-skew Schur
polynomial, µ(1) = µ′(1). Similarly, since sµ(3)\µ(2) is also a non-skew Schur polynomial,

µ(3) \ µ(2) = µ′(3) \ µ′(2). Hence, µ(2) = µ′(2) as well and we have a contradiction. Now, it
is enough to show that each summand of 8, when expanded in the split-Schur basis, does
not have multiplicity. Since all terms are non-skew Schur polynomials except sµ(2)\µ(1) ,

(9) sµ(1) ⊗ sµ(2)\µ(1) ⊗ sµ(3)\µ(2) =
∑
ν

cµ
(2)

µ(1),ν
sµ(1) ⊗ sν ⊗ sµ(3)\µ(2) .

It is now sufficient to show that each cµ
(2)

µ(1),ν
≤ 1. By the Littlewood-Richardson rule, it

is sufficient to show that any SSYT of shape µ(2) \ µ(1) whose reverse reading is a lattice

permutation has a unique type. µ(2) \ µ(1) contains at most two rows. Moreover, since
the reverse readings must be lattice permutations, all entries in the first row must be 1,
and the last entry in the second row must be either a two or a one. If it is a one, then
the only SSYT that is possible is filled with all ones. Such a case only occurs when no
column of µ(2) \ µ(1) has more than one entry. This is the only SSYT of shape µ(2) \ µ(1)

with its type, as no other SSYT will contain only ones. Now, suppose the second row
ends in a two. By the weakly increasing condition on rows of SSYTs, any two distinct
SSYTs satisfying this must have distinct types. This is because the only way to fill an
SSYT of this shape with ones and twos such that the first row is ones and the second row
ends with a two is by placing some number of twos in the second row, such that the sec-

ond row is of the form (1, ..., 1, 2, ..., 2). Hence, each cµ
(2)

µ(1),ν
≤ 1 and so sbλ is multiplicity-free.

In case 4, we use corollary 3.1 again to expand sλb into the split-Schur basis.

(10) sbλ =
∑

µ(1)⊆···⊆µ(2)
sµ(1) ⊗ sµ(2)\µ(1) ⊗ sµ(3)\µ(2) ⊗ · · · sµ(k)\µ(k−1)
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µ(1) is certainly a non-skew Schur polynomial, as are sµ(n)\µ(n−1) for n ≥ 3, as µ(n) \µ(n−1)

has only one column. Because of this, two summands µ = (µ(1) ⊆ µ(2) ⊆ · · ·µ(k) =

λ) and µ′ = (µ′(1) ⊆ µ′(2) ⊆ · · ·µ′(k) = λ) can share a term only if µ(1) = µ′(1), and

µ(n) \ µ(n−1) = µ′(n) \ µ′(n−1) for all n ∈ {3, ..., k}. But since µ(k) = µ′(k), this means that

µ(n) = µ′(n) ∀n ∈ {1, 2, ...k}. Therefore, no two summands of 10 share a term. Moreover,
since

(11) sµ(1) ⊗ sµ(2)\µ(1) ⊗ sµ(3)\µ(2) ⊗ · · · sµ(k)\µ(k−1) =∑
ν

cµ
(2)

µ(1),ν
sµ(1) ⊗ sν ⊗ sµ(3)\µ(2) ⊗ · · · sµ(k)\µ(k−1) ,

it is sufficient to show that each c
µ(2)

µ(1),ν
≤ 1. Suppose µ(1) = λ1. Then this is certainly true

because sµ(2)\µ(1) would be a non-skew Schur polynomial. Otherwise, µ(2) \µ(1) is made up

of two disconnected pieces, one vertical piece in the first column and below the second row,
and one horizonal piece in the second row and to the right of the first column. The only
way to fill a tableau of such a shape such that it is an SSYT and its reverse reading is a
lattice permutation is to fill the horizontal piece with ones, and then fill the vertical piece
with either (1, 2, ...,m) or (2, 3, ...,m + 1), where the vertical piece has m entries. Since
these two SSYTs do not share the same number of ones, they do not share a type, so each

c
µ(2)

µ(1),ν
≤ 1 and hence sbλ has no multiplicity. Therefore, our assertion that sbλ where b is a

generic flag has multiplicity in the split-Schur basis if and only if λ contains (2, 2, 2, 1). �

The general approach of Theorem 3.2 in the necessary direction is to show that if λ
contains (2, 2, 2, 1), we can find a specific example of multiplicity using lemma 3.1. We will
expand this approach to find a more generic example of multiplicity in some flagged Schur
polynomial, and then characterize the flags which still give rise to this multiplicity.

Theorem 3.3. Let λ = (λ1, λ2, . . . , λk) be a shape that contains (2, 2, 2, 1). Then, sbλ has
multiplicity if bα ≥ α ∀α ∈ {1, 2, ..., k} and there exists some n ∈ {1, 2, ..., k − 3} such that
∃i < j ≤ n+ 1 such that bi ≥ n+ 1, bj ≥ n+ 3.

Proof. By lemma 3.1, we can choose µ = (µ(1) ⊆ µ(2) ⊆ · · · ⊆ µ(k) = λ) and µ′ = (µ′(1) ⊆
µ′(2) ⊆ · · · ⊆ µ′(k) = λ) as follows.

µ(i) = · · · = µ(j−1) = µ′(i) = · · · = µ(j−1) = (λ1, ..., λn, 1)

µ(j) = · · · = µ(n+1) = (λ1, ..., λn+1, 2)

µ′(j) = · · · = µ′(n+1) = (λ1, ..., λn+1, 1, 1)

µ(n+2) = µ′(n+2) = (λ1, ..., λn+2, 1)

µ(x) = µ′(x) ∀x /∈ {j, j + 1, ..., n+ 1}.
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Then, the expansion of sbλ in the skew Schur basis contains two elements of the form:

sµ(1) ⊗ sµ(2)\µ(1) ⊗ · · · ⊗ sµ(i)\µ(i−1) ⊗ s∅ ⊗ · · ·⊗
s∅ ⊗ sµ(j)\µ(j−1) ⊗ s∅ ⊗ · · · ⊗ s∅ ⊗ sµ(n+2)\µ(n+1) ⊗ sµ(n+3)\µ(n+2) ⊗ · · ·

sµ′(1) ⊗ sµ′(2)\µ′(1) ⊗ · · · ⊗ sµ′(i)\µ′(i−1) ⊗ s∅ ⊗ · · ·⊗
s∅ ⊗ sµ′(j)\µ′(j−1) ⊗ s∅ ⊗ · · · ⊗ s∅ ⊗ sµ′(n+2)\µ′(n+1) ⊗ sµ′(n+3)\µ′(n+2) ⊗ · · ·

Which agree everywhere except for at sµ(j)\µ(j−1) 6= sµ′(j)\µ′(j−1) and sµ(n+2)\µ(n+1) 6= sµ′(n+2)\µ′(n+1) .

It is sufficient to show that each of these pairs share a term. The shapes µ(j) \ µ(j−1) and

µ′(j) \ µ′(j−1) are of the form (λn, λn+1, 2) \ (λn, 1) and (λn, λn+1, 1, 1) \ (λn, 1). Both of
these shapes share a term in their Schur basis expansion, as both shapes admit a skew
SSYT of the same type whose reverse reading is a lattice permutation. Specifically, both
skew SSYTs have type (λn+1, 1). An example of this pair of SSYTs is given in Figure 5.

1 1 1 1

1 2

1 1 1 1

1

2

Figure 5. Skew SSYTs of shape µ(j)\µ(j−1) (left) and µ′(j)\µ′(j−1) (right)
whose reverse readings are lattice permutations and share a type.

The shapes of µ(n+2)\µ(n+1) and µ′(n+2)\µ′(n+1) are of the form (λn+1, λn+2, 1)\(λn+1, 2)
and (λn+1, λn+2, 1) \ (λn+1, 1, 1) respectively. Both of these shapes can be filled with all
ones as in Figure 6, and so they both admit (skew) SSYTs of the same type whose reverse
reading is a lattice permutation. Hence, the two elements of the skew Schur basis expansion
we considered share a term in the split-Schur basis, and so sbλ has multiplicity.

1 1 1

1

1 1 1 1

Figure 6. Skew SSYTs of shape µ(n+2) \ µ(n+1) (left) and µ′(n+2) \ µ′(n+1)

(right) whose reverse readings are lattice permutations and share a type.

�
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4. multiplicity-free Stanley symmetric polynomials

Via the method described in [11], section 2.7.4, we developed a program in SAGE that
expresses a Stanley symmetric polynomial Fw in the Schur basis. We ran this program to
generate a list of patterns that cause multiplicity to occur, and provide the list of these
patterns along with some observations thereof, and a conjecture regarding the NW-SE
diagram of a permutation w where Fw is not multiplicity-free.

Fact 4.1. The complete list of permutations v ∈ Sn, n ≤ 9 such that w including v as a
pattern causes Fw to have multiplicity is given by:

214365 321654 2413765
2416375 2417365 3142765
3152746 3152764 3215746
3216475 3251746 4216375
24136857 24137586 31426857
31427586 34128765 34172865
34182765 35128746 35128764
35172846 35172864 35182746
35182764 35217846 35271846
35281746 43172856 43217856
43271856 53172846 53172864
53217846 53271846 246138957
254138967 264138957 341269857
341279586 341279658 341279685
341285976 341286957 341286975
341287596 341296857 341297586
341728596 341826957 341827596
341926857 341927586 351279468
351279648 351279684 351286947
351286974 351428967 351482967
352148967 352418967 352481967
361428957 415283967 415328967
415382967 425138967 425318967
425381967 431528967 524138967
531428967 624138957 631428957

Upon generating this list of patterns, we generated their Rothe diagrams and NW-SE
graphs. The following fact can be verified by reproducing these diagrams.

Fact 4.2. Suppose v is a pattern in the list from Fact 4.1. Then, its NW-SE graph
contains either K3,K2,2, or there exists some vertex (i, j) such that (i − 1, j − 1) ∈ D(w)
and d((i, j)) ≤ 3.

One can easily generate examples of multiplicity-free Stanley symmetric polynomials
whose permutations contain K2,2 or satisfy the degree condition.
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Proposition 4.3. There exist permutations v, w such that the NW-SE graph of v contains
K2,2 and the NW-SE graph of w contains a vertex (i, j) such that (i−1, j−1) ∈ D(w) and
d((i, j)) ≥ 3.

Proof. Let v = 2417653 and w = 5327164. The Rothe diagrams (with NW-SE graphs
indicated) of v and w are given as follows.

Figure 7. The Rothe diagram and NW-SE graph of v.

We observe that the NW-SE graph of v contains a copy ofK2,2 with vertices {(1, 2), (3, 2), (5, 5), (6, 4)}.
Moreover, the NW-SE graph contains the vertex (2, 2). We observe that (1, 1) ∈ D(w), and
d((2, 2)) ≥ 3. However, we see that both Fv and Fw are multiplicity free when we expand
them.

Fv = s(4,2,1,1) + s(3,3,1,1) + s(3,2,2,1) + s(3,2,1,1,1)

Fw = s(4,3,2,2) + s(4,4,1,1,1) + s(5,3,2,1) + s(5,2,2,1,1) + s(5,3,1,1,1)+

s(4,3,3,1) + s(4,3,2,1,1) + s(4,4,2,1) + s(5,2,2,2)

Our choices of v, w satisfy the proposition and our assertion is proven. �

Despite Proposition 4.3, we were unable to generate an example of a permutation w such
that Fw is multiplicity-free and the NW-SE diagram contains a copy of K3. This leads us
to our conjecture about the multiplicity of Stanley symmetric polynomials.

Conjecture 4.4. If w is multiplicity-free, the NW-SE graph of w does not contain a copy
of K3.
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Figure 8. The Rothe diagram and NW-SE graph of w.
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