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Abstract

We study the problem of sparse linear regression over the rationals
from the perspective of fine-grained complexity. More precisely, we con-
sider the noiseless/realizable setting where Y = 〈X,w〉, w is a k-sparse
vector, X ∼ N(0,Σ) and the goal of the algorithm is to exactly reconstruct
w given access to a sampling oracle generating iid copies of (X,Y ). Un-
der the Exponential Time Hypothesis, we show that solving this problem
requires time nΩ(k), give more precise bounds under stronger hypotheses,
and also prove a nontrivial upper bound of the form nk−1 beating the
trivial brute force approach.

1 Introduction
In this paper, we study the the fine-grained complexity of solving k-sparse linear
regression without noise. This is a fundamental problem in machine learning,
statistics, and signal processing which has seen intensive study in the past few
decades. In general, this problem can be formulated in terms of matrices as

y = Ax+ ξ

where ξ is some kind of noise vector, x is a k-sparse vector and A : m × n is
the so-called design matrix and the goal is with high probability, to reconstruct
x accurately given A and Y . (We explain the connection to the formulation in
the abstract later.)

Both the settings with and without noise have been intensely studied; for
simplicity, in this paper we focus on the case where there is no noise, in which
case the goal is to reconstruct the sparse vector x (possibly up to some identi-
fiability considerations). When x is not required to be sparse, this problem is
simply the standard “fixed design regression” setup for Ordinary Least Squares,
whose study dates back at least to Gauss. The motivation for considering the
case where x is sparse is that it allows for reconstruction even in the “under-
determined” situation where the number of observations m is small compared
to the number of parameters n. A particularly important special case of this
problem is the compressed sensing problem, where the matrix A corresponds to
some kind of physical measurement device, e.g. an MRI machine, in which case
the goal is to minimize the total number of measurements (i.e. time the machine
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is on) while still getting an accurate scan of the patient. See e.g. [6, 12, 15] for
an overview of compressed sensing and its mathematical analysis.

In the case of compressed sensing, the measurement matrix A is partially
under the control of the designer who builds the machine. Therefore, A can
be chosen to have particularly nice mathematical properties which allow for
the problem to be solved computationally quickly with essentially optimal sta-
tistical guarantees. In this paper, we focus on the general setting where the
measurement matrix A is arbitrary. The motivation for this is that in many
other settings of interest, we are not in control of the design matrix A: for
example, in a typical application of regression in data science, each row of A
may be a list of features corresponding to an individual person, and the entries
of y correspond to a property of this person we are attempting to predict with
a sparse x. In this case, the columns of A could be highly correlated (if two
features of a person are highly correlated, e.g. age and education level) and this
makes the situation quite different from compressed sensing, where we usually
choose the columns of A to be incoherent (i.e. at almost right angles to each
other).

Because of the great interest of this problem to different applications, the
NP-hardness of this problem when A is general was established in the early work
of Natarajan [13]. Some extensions of this work can be found, for example,
in the works of Zhang et al [19, 20] where they studied how this hardness
result relates to the guarantees for the famous LASSO algorithm (based on
`1-constrained minimization) and also constructed counterexamples to a wide
array of approaches based on regularized least squares, and another line of
related work (see e.g. [1, 16]) studied the closely related problem of certifying
the Restricted Invertibility Property (RIP) used in compressed sensing. On the
other hand, in recent years there has also been a lot of interest in algorithms
for solving this NP-hard problem and success solving instances in practice using
integer programming techniques (see e.g. [2]), especially for small values of k.
The existing hardness results establish that this problem is NP-hard but leave
open the runtime of the fastest algorithms for this problem — in particular, the
result of [13] leaves open the possibility that there exist algorithms which run in
time poly(2k, n) so that the problem is Fixed-Parameter Tractable — informally,
quickly solvable for all small values of k.

This problem has two essentially equivalent formulations: in the random
design formulation, which is more learning-theoretic, we have that Y = 〈X,w〉,
w is a k-sparse vector, X ∼ N(0,Σ) and the goal of the algorithm is to exactly
reconstruct w from m samples (Xi, Yi)

m
i=1. In the other, so-called fixed design

formulation, we have that y = Ax where x is k-sparse and the algorithm seeks
to recover x given A, y. The equivalence of these two formulations is slightly
nontrivial and is described in Section 5: in one direction it is given by taking
the rows of A to be the samples X1, . . . , Xm and taking x = w. In the Gaussian
case, if we take Σ = I then this is a well-studied setting in compressed sensing
and it is known that we can solve this problem with nearly the optimal statistical
efficiency (i.e. up to constant factors in the sample complexity) in polynomial
time for a general range of values of k. However, as we show in this work the
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problem becomes quite different when we allow an arbitrary covariance matrix
Σ.

1.1 Our Results
We find upper and lower bounds for the fine-grained complexity of k-sparse
linear regression over the reals, as well as over finite fields. Here, a k-sparse
solution to a linear regression problem is defined to be a n × 1 solution vector
with k non-zero entries. It’s possible to reduce to the case m = O(k log n) using
a dimension reduction argument (see Section 5) so we focus on the runtime in
terms of parameters n and k.

The k-Sparse Linear Regression problem is as follows:

Definition 1. k-Sparse Linear Regression (k-SLR) The k-SLR problem is
to determine if there exists a k-sparse solution x to the equation Ax = y where
A is an m× n matrix. We write k-SLRF to specify that we are considering the
problem over the field F.

We formulate a special case of k-SLR in terms of the Kruskal rank of a
matrix, the maximum number r such that every set of r columns is linearly
independent.

Definition 2. k-Kruskal Rank Estimation (k-KRE) Given a m×n matrix
A, the k-KRE problem is to determine if A has Kruskal rank at most k − 1.
Equivalently, the problem is to determine if there exists a k-sparse solution
x 6= 0 to Ax = 0. We write k-KREF to specify that we are considering the
problem over the field F.

For k ≥ 2, we find that k-SLR and k-KRE over the reals require nΩ(k) time
under the Exponential Time Hypothesis, and require nΩ(dk/2e) under the k-sum
Conjecture. We also show an upper bound of O(nk−1 log n) for both problems.
These bounds hold whether we are promised that y = Ax has a unique solution
or not.

We also adapt these results from the reals to finite fields. We modify a reduc-
tion from Independent Set to Perfect Code to find that k-SLR requires
nΩ(
√
k) for small finite fields under ETH. We also find O(ndk/2e · qdk/2e) upper

bounds for k-KRE and k-SLR over finite fields Fq where q is a prime power.

2 Lower Bounds
In this section, we show that k-KRE and k-SLR each require nΩ(k) under the
Exponential Time Hypothesis, and Ω(ndk/2e) under the k-sum Conjecture. We
also show that the unique versions of these problems, in which we are promised
a unique k-sparse solution, are as hard as the general versions.
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2.1 Preliminaries
We first present the known results that we later use to obtain lower bounds for
our problem. For completeness, we provide proofs because they are short, and
to show that they preserve uniqueness.

In theoretical computer science, the k-SAT and subset sum problems are NP
hard.

Definition 3 (k-SAT). The k-SAT problem is to determine whether a k-CNF
Boolean formula is satisfiable.

Definition 4 (k-sum). Given a set of n numbers, the k-sum problem is to
determine whether there exists a subset of k numbers that sum to zero.

The subset sum problem is equivalent to k-sum for arbitrary k. Given a set
of n numbers, the subset sum problem is to determine whether there exists any
subset of those numbers that sum to zero.

Throughout this paper, we use two computational hardness assumptions
based on k-SAT: the Exponential Time Hypothesis and the Strong Exponential
Time Hypothesis.

Definition 5 (ETH). The Exponential Time Hypothesis states that 3-SAT
cannot be solved in subexponential time in the worst case. [8]

Definition 6 (SETH). The Strong Exponential Time Hypothesis states that
for every ε there is a k such that k-SAT cannot be solved in O(2(1−ε)n). [4]

2.1.1 Khachiyan’s subset sum reduction

[11] gives a reduction from k-subset sum to k-KRE. For context, the connection
of the work of [11] with NP hardness of Kruskal rank and SLR has been observed
in [12] and for the closely related problem of RIP certification, previously in [1].

Theorem 1. [11] Given any instance A of k-subset sum on n real numbers,
there exists an k-KRE problem such that A has an k-subset sum iff the Kruskal
rank of a set of k vectors is at most k − 1.

Proof. In the following proof, we use the weird moment curve for the real num-
bers αi:

Γ′(αi) = [1, αi, α
2
i , ..., α

k−2
i , αki ].

Given a subset I of the distinct real numbers α1, α2, ..., αn, we have that∑
i∈I αi = 0 iff the vectors {Γ′(αi)}i∈I are linearly dependent. This is because

the determinant of the matrix with columns {Γ′(αi)}i∈I is(∑
i∈I

αi

) ∏
i,j∈I,i<j

(αi − αj),

which is zero if and only if
∑
i∈I αi = 0.
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If there is a subset I such that |I| = k and
∑
i∈I αi = 0, the vectors

{Γ′(αi)}i∈I are linearly dependent, so the Kruskal rank of {Γ′(αi)}i∈I is at
most k − 1. Otherwise, the Kruskal rank of {Γ′(αi)}i∈I is k. Thus, deciding
whether the Kruskal rank is k or at most k − 1 is NP-hard.

Corollary 1. If k-KRE is in time O(nf(k)), then k-sum is in O(nf(k)).

2.1.2 Known results from fine-grained complexity

We present a known lower bound for k-sum from [14].

Theorem 2. [14] ETH implies k-sum requires nΩ(k) time.

Proof. Let F be the 3-CNF instance of 3-SAT, with n variables and m clauses.
By the Sparsification Lemma [9], we can assume thatm = O(n). We first reduce
to an instance F ′ of 1-in-3-SAT (in which exactly one literal in each clause needs
to be true for the formula to be satisfied). For each clause (x ∨ y ∨ z) in F ,
construct the clauses (x ∨ a ∨ d) ∧ (y ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (c ∨ d ∨ f) ∧ (z ∨ c)
in F ′. It can be checked that this reduction preserves uniqueness.

F ′ has 6 new variables per clause and 5 clauses per clause, so F ′ has O(m)
variables and clauses. We partition the variables into k groups of size n/k size:
V1, . . . , Vk and consider all possible 2n/k partial assignments for each group. For
each partial assignment φ for each group, we assign a number in base (k + 1).

Each number has a group section of k digits and a clause section of 5m
digits. In the group section for a partial assignment φ of group Vi, the ith digit
is 1 and all other digits are 0. The target t has 1 for each digit corresponding
to a group. This forces the solution to the k-Sum problem to pick one partial
assignment from each group.

In the clause section, the ith digit records the number of literals that φ sets to
true. If there are more than one true literals in any clause, omit φ. The target
t has 1 for each digit corresponding to a clause. This forces the assignment
to satisfy exactly one variable in each clause. This reduction also preserves
uniqueness of solution.

By this reduction, we get that if k-sum onN = k·2n/k numbers ofO(k log k logN)
bits can be solved in O(Nδk) = O(2δn · kO(k)) time for all δ > 0, then ETH is
false.

Next, we present a known upper bound for k-sum from [18].

Lemma 1. 2-sum on n numbers is in O(n) (randomized) time.

Proof. Given a list L = {ai}, we create a new list L′ = {−ai | ai inL} and
check if L ∩ L′ is empty or not. This can be done in linear time with the help
of a hash table.

Lemma 2. [18] k-sum on n numbers (on k parts) reduces to 2-sum on 2 parts
with ndk/2e numbers each.
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Proof. We enumerate the sums of all possible triples from the first bk/2c parts
and from the last dk/2e parts to obtain two lists L,L′. We now want to check
for every li ∈ L, if −li ∈ L′. From above, this can be done in linear time in the
size of the lists.

Corollary 2. k-sum is in O(ndk/2e) time.

Conjecture 1 (k-Sum Conjecture). It is conjectured that k-sum cannot be
solved in O(ndk/2e−ε) time for any k ≥ 2 and ε > 0.

2.2 New Results
We combine Khachiyan’s subset sum reduction with the known reduction from
3-SAT to k-sum to find a new lower bound for k-KRE.

Theorem 3. ETH implies that k-KRE requires nΩ(k).

Proof. Combining Corollary 1 and Theorem 2, ETH implies that k-KRE re-
quires time nΩ(f(k) where f(k) ≥ k.

We find another lower bound for k-KRE under the k-sum conjecture.

Theorem 4. The k-sum conjecture implies that k-KRE requires Ω(ndk/2e).

Proof. Corollary 1 implies that under the k-sum conjecture, k-SLR requires
time Ω(nf(k)) where f(k) ≥ dk/2e.

Next, we show that k-SLR is as hard as k-KRE. [12] gives a reduction from
k-KRE to (k − 1)-SLR, but we find a more efficient reduction that preserves k.

Lemma 3. There exists a randomized reduction from k-KRE to k-SLR.

Proof. Given an instance of k-KRE in the form 0 = Ax, we construct an instance
of k-SLR. We add a row of random numbers to A to get the (m+ 1)×n matrix
B. Then 0 6= Bx with probability 1. If we rescale B and set y equal to a vector
of all zeros with 1 for the last entry, then y = Bx with probability 1.

Therefore, the same lower bounds hold for k-KRE and k-SLR.

Theorem 5. ETH implies that k-SLR requires nΩ(k). The k-sum conjecture
implies that k-SLR requires Ω(ndk/2e).

2.2.1 Uniqueness of solution

Finally, we show that the reductions from k-SAT to the k-SLR problem preserve
uniqueness. That is, k-SLR is hard even when we are guaranteed a unique
solution.

Definition 7 (Unique k-SLR). Given a k-SLR problem with the guarantee that
y = Ax has at most one k-sparse solution x, the Unique k-SLR problem is to
determine whether there exists a k-sparse solution.
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We define the Unique k-SAT and Unique k-sum problems as follows.

Definition 8 (Unique k-SAT). Given a k-SAT problem that is known to have
either 0 or 1 satisfying assignments, the Unique k-SAT problem is to determine
the number of satisfying assignments.

Definition 9 (Unique k-sum). Given a set S of n integers, the Unique k-sum
problem is to determine whether a unique subset of k integers sum to 0.

[3] finds that if ETH holds for general 3-SAT, then it holds for Unique 3-SAT.

Theorem 6. [3] ETH implies that Unique 3-SAT cannot be solved in O(2δn)
for every δ > 0.

The reduction from Theorem 2 preserves uniqueness, so we can apply it to
the Unique k-sum case. Theorem 2 allows us to reduce from Unique 3-SAT to
Unique 1-in-3-SAT, then to Unique k-sum, to get the following result.

Theorem 7. ETH implies Unique k-sum requires nΩ(k) time.

These results, combined with Khachiyan’s subset sum reduction, imply that
Unique k-SLR is as hard as general k-SLR, under ETH.

3 Upper Bound
In this section, we present algorithms to solve the k-SLRR and k-KRER problems
in O(nk−1 log n) time, beating the trivial brute force approach that takes O(nk)
time (Theorems 9, 10). These algorithms build off of the algorithms we present
for the 2-sparse case. When k = 2, 3, these algorithms are optimal and meet the
lower bound of Ω(ndk/2e) presented in Section 2, up to a log n factor. We then
provide some evidence that the lower bound is not tight for general k, through
a reduction to the Intersecting Subspaces problem, for which we prove a
SETH-based lower bound.

The naive brute force algorithm is to search over all possible O(nk) supports
of size k, consider only the corresponding columns of A and solve the resulting
linear system. This would take O(nk) time. As stated before, the key insight
for improving this algorithm occurs in the case k = 2 where one-dimensional
subspaces play an important role; the following definition is key.

Definition 10. For each non zero vector u ∈ R, we can choose a unique rep-
resentative element rep[u] of the one-dimensional subspace U = {au | a ∈ R}
spanned by u as

rep[u] =
1

ui1
· u

where ui1 is the first non zero entry in the vector u.
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In the following algorithm and for the rest of this section, we use the following
notation. If A is a m× n matrix, S = {i1, . . . , ik} ⊆ n and x is a n-dimensional
vector, we define AS , xS as follows:

AS = [Ai1 , Ai2 , . . . , Aik ]

xS = (xi1 , xi2 , . . . , xik)

To ensure this notation is unique, we require that ij < ik whenever j < k. We
define xS as the vector of entries of x not in xS .

Algorithm 1: Solve-2-KRER

input : A ∈ Rm×n
output: 2-sparse non zero solution x to Ax = 0

for i← 1 to n do
B[i]← rep[Ai];

Sort columns in B in lexicographic order. Let σ be s.t.
B[i] = rep[Aσ(i)];
for i← 2 to n do

if B[i] = B[i− 1] then
S ← {σ(i), σ(i− 1)};
Solve for xS : ASxS = 0;
xS ← 0;
return x

return No Solution

Lemma 4. Solve-2-KRER solves 2-KRER in time O(mn log n).

Proof. A solution to 2-KRER for A ∈ Rm×n exists if and only if A has two lin-
early dependent column vectors. Two vectors u, v ∈ R are linearly dependent if
and only if rep[u] = rep[v]. If two column vectors Ai, Aj are linearly dependent,
then rep[Ai], rep[Aj ] will appear consecutively after sorting.

Definition 11. Given a m × n matrix A, a set M ⊆ [n] is called a maximal
pairwise independent support if

1. for all i, j ∈M , Ai, Aj are linearly independent, and

2. for all i ∈ [n] \ M , there exists j ∈ M such that Ai, Aj are linearly
dependent.
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Algorithm 2: Find-MPIS
input : A ∈ Rm×n
output: The maximal pairwise independent support M of A

for i← 1 to n do
B[i]← rep[Ai];

Sort columns in B in lexicographic order. Let σ be st.
B[i] = rep[Aσ(i)];
Initialize M ← {σ(1)};
for i← 2 to n do

if B[i] 6= B[i− 1] then
M ←M ∪ {σ(i)}

return M

Lemma 5. Find-MPIS finds the maximal pairwise independent support of a
matrix A ∈ Rm×n in time O(mn log n).

Proof. Two vectors u, v ∈ R are linearly dependent if and only if rep[u] = rep[v].
If two column vectors Ai, Aj are linearly dependent, then rep[Ai], rep[Aj ] will
appear consecutively after sorting.

Algorithm 3: Solve-2-SLRR

input : A ∈ Rm×n, y ∈ Rm
output: 2-sparse solution x to Ax = y

Check that no 1-sparse solution exists;
M ← Find-MPIS(A);
Solve for 2-sparse x′M : Py⊥AMx

′
M = 0 using Solve-2-KRER;

x′
M
← 0;

if solution x′ exists then
V ← supp(x′);
Solve for xV : AV xV = y;
xV ← 0;
return x

return No Solution

Theorem 8. Solve-2-SLRR solves 2-SLRR in O(mn log n) time.

Proof. Assume that no 1-sparse solution exists. Let Py⊥ be the projection
matrix onto the orthogonal complement of y.

Claim 1. Then a solution x with support {i, j} to 2-SLRR exists if and only if
Ai, Aj are linearly independent and Py⊥Ai, Py⊥Aj are linearly dependent.
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Proof. Suppose xiAi + xjAj = y. Since there is no 1-sparse solution, Ai, Aj
have to be linearly independent. Further,

Py⊥xiAi + Py⊥xjAj = Py⊥y = 0

Thus Py⊥Ai, Py⊥Aj are linearly dependent.
Conversely, suppose that Ai, Aj are linearly independent and Py⊥Ai, Py⊥Aj

are linearly dependent. WritingAi in terms of its components, Ai = aiy+Py⊥Ai,
we get that there exist x̃i, x̃j

x̃i(Ai − aiy) + x̃j(Aj − ajy) = 0

Since Ai, Aj are linearly independent, we get that

x̃iAi + x̃jAj = (x̃iai + x̃jaj)y 6= 0

Therefore a 2-sparse solution to Ax = y with support {i, j} exists.

Computing the maximal pairwise independent support M of A ensures that
we consider only pairwise independent columns. By Claim 1 the support of
solution x′ to Py⊥Ax′ = 0 is also the support to the solution of Ax = y if it
exists.

Algorithm 4: Solve-k-SLRR

input : A ∈ Rm×n, y ∈ Rm, k ∈ N
output: k-sparse solution x such that Ax = y

foreach T ⊆ [n] st. |T | = k − 2, ker(AT ) = {0} do
U ← span(AT );
Solve for 2-sparse x′

T
: PU⊥ATx

′
T

= PU⊥y using Solve-2-SLRR;
x′T ← 0;
if solution x′ exists then

Solve xS : ASxS = y where S = U ∪ supp(x′);
xS ← 0;
return x

return No Solution

Lemma 6. Suppose x is a k-sparse vector and T ⊆ supp(x), |T | = k − 2. Let
U = span(AT ). Then x solves Ax = y if and only if

PU⊥AUx
′
U

= PU⊥y

has a 2-sparse solution, where x′U = 0.

Proof. Suppose x is a k-sparse solution with support {i1, . . . , ik} and suppose
T = {i1, . . . , ik−2}. Then

k∑
j=1

xijAij = y
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Since U = span(AT ) by definition, PU⊥Ai = 0 for i ∈ T . Therefore

k∑
j=1

PU⊥xijAij = xik−1
PU⊥Aik−1

+ xikPU⊥Aik = PU⊥y

Therefore PU⊥AUx
′
U

= PU⊥y has a 2-sparse solution with support {ik−1, ik}.
Now we show the converse. Suppose that PU⊥AUx

′
U

= PU⊥y has a 2-sparse
solution with support {ik−1, jk}.

xik−1
PU⊥Aik−1

+ xikPU⊥Aik = PU⊥y (1)

Since yU − xik−1
(Aik−1

)U − xik(Aik)U ∈ U , there exist real numbers xij , for
j = 1, . . . , k − 2 such that

k−2∑
j=1

xijAij = yU − xik−1
(Aik−1

)U − xik(Aik)U (2)

Adding equations 1 and 2, we get a k-sparse solution to Ax = y.

k∑
j=1

xijAij = y

Theorem 9. Solve-k-SLRR solves k-SLRR in O(mnk−1 log n) time, for k ≥ 2.

Proof. Solve-k-SLRR loops over all the O(nk−2) subsets T ⊆ [n] of size k −
2 and checks if PU⊥ATx

′
T

= PU⊥y has a 2-sparse solution. Computing an
orthogonal basis for each subspace U using the Gram-Schmidt process takes
O(mk2) time. Projecting the remaining O(n) column vectors onto U⊥ takes
O(mkn) time. By Lemma 4 and Theorem 8, finding a 2-sparse solution can
be done in O(mn log n) time. The correctness of this algorithm follows from
Lemma 6.

Theorem 10. k-KRER can be solved in O(nk−1 log n) time, for k ≥ 2.

Proof. Ax = 0 has a k-sparse solution if and only if A[n]\{i}x
′
[n]\{i} = Ai has a

(k− 1)-sparse solution for some i ∈ supp(x). We use brute force over all i ∈ [n]
entries of x to find an index in the support of x. For each index i, the problem
then reduces to the (k − 1)-SLR problem, which is solvable in O(mnk−2 log n)
time. Thus, 0 = Ax with k-sparse x can be solved in O(mnk−1 log n) time.

Remark 1. Given n vectors in Qm we can check if there are two linearly
dependent vectors in O(n) time. We can do this by re-scaling the vectors to
make the first non-zero entry 1 and use hashing to search for duplicates.
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Algorithm 5: Solve-k-KRER

input : A ∈ Rm×n, k ∈ N
output: k-sparse solution x such that Ax = 0

foreach i ∈ [n] do
Solve for (k − 1)-sparse x′[n]\{i} : A[n]\{i}x

′
[n]\{i} = Ai using

Solve-(k − 1)-SLRR;
x′i ← 0;
if solution x′ exists then

S ← {i} ∪ supp(x′);
Solve for xS : ASxS = 0;
xS ← 0;
return x

return No Solution

3.1 Connections to Intersecting Subspaces
Is there a natural way to improve the algorithmic upper bound to ndk/2e, match-
ing the lower bound? Motivated by this question, we define the Intersecting
Subspaces problem. A natural way to come up with a faster algorithm to solve
k-KRE would be to reduce to the Intersecting Subspaces problem, taking
inspiration from the optimal algorithm for k-Sum [18]. The randomized re-
duction we present from k-KRE creates an Intersecting Subspaces instance
with O(ndk/2e) subspaces. If Intersecting Subspaces can be solved in O(nc)
time where c < 2, then this reduction would give us a O(nc

′k) time algorithm
for even k and a O(nc

′(k+1)) time algorithm for k-KRER for odd k, where c′ < 1.
We show that for large dimensions, Intersecting Subspaces cannot be solved
in subquadratic time if SETH is true.

Definition 12. Intersecting Subspaces Suppose we are given two sets S1, S2

each of size n. Suppose S1 contains k1-dimensional subspaces of Rd and S2 con-
tains k2-dimensional subspaces of Rd. The problem is to determine if there exist
two subspaces U ∈ S1, V ∈ S2 such that they have a non-trivial intersection.

We note that this problem can be solved over the reals in O(n log n) time
when k1 = k2 = 1, with an algorithm similar to 2-KRER. However, when either
k1 or k2 is larger than 1, we can prove a SETH-based quadratic lower bound.

Lemma 7. If Intersecting Subspaces on O(n) subspaces can be solved in
time f(n), then k-KRE can be solved in time f(ndk/2e).

Proof. We randomly assign the column vectors ofA to one of two bucketsA1, A2,
with equal probability. If there exists a k-sparse x such that Ax = 0, then the
probability that bk/2c of the vectors in the support of x are assigned to A1 and
dk/2e of them are assigned to A2 is 1/2k. After O(1) repeated trials, we can
assume that this is true.
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We then construct set S1 of all O(nbk/2c) subspaces spanned by sets of bk/2c
vectors from A1. These subspaces have dimension at most bk/2c. Similarly we
construct set S2 of all O(ndk/2e) subspaces spanned by sets of dk/2e vectors from
A1. These subspaces have dimension at most dk/2e. There exists a k-sparse
solution to Ax = 0 if and only if there exist subspaces U ∈ S1, V ∈ S2 with
non-trivial intersection.

Definition 13 (Orthogonal Vectors). Suppose we are given a set S con-
taining n vectors. The problem is to determine if there exist two vectors u, v ∈ S
such that 〈u, v〉 = 0.

Lemma 8. [Lemma A.1 of [17]] Suppose there is a δ > 0 and an algorithm
A such that for all c ≥ 1, A solves Orthogonal Vectors on n vectors in
{0, 1}c logn over the integers, in O(n2−δ) time. Then the Strong Exponential
Time Hypothesis is false.

Corollary 3. Suppose Intersecting Subspaces over Rd with 2 < k1 + k2 ≤
d, d = Ω(log n) can be solved in O(n2−ε) time for some ε > 0. Then the Strong
Exponential Time Hypothesis is false.

Proof. We provide a padding argument that reduces from Intersecting Sub-
spaces with k1, k2, d to Intersecting Subspaces with k′1 ≥ k1, k

′
2 ≥ k2, d

′ ≥
max {k′1 + k′2, d}. We add d′ − d more coordinates so the ambient space is Rd′ .

We then replace each subspace U ∈ S1 with the subspace spanned by
basis(U) ∪

{
ed+1, . . . , ed+k′1−k1

}
. We replace each subspaces V ∈ S2 with the

subspaces spanned by basis(V ) ∪
{
ed+k′1−k1+1, . . . , ed+k′1−k1+k′2−k2

}
.

Lemma 9. Suppose Intersecting Subspaces over Rd with 2 < k1 + k2 ≤
d, d = Ω(log n) can be solved in O(n2−ε) time for some ε > 0. Then the Strong
Exponential Time Hypothesis is false.

Proof. We provide a reduction from Orthogonal Vectors to Intersecting
Subspaces. We are given a set S of n vectors in Rd as the Orthogonal Vec-
tors instance. Let S1 = S and S2 =

{
u⊥ | u ∈ S

}
where u⊥ is the orthogonal

complement of vector u.
Then there exist two orthogonal vectors u, v ∈ S if and only if there is a non-

trivial intersection between u ∈ S1 and v⊥ ∈ S2. By Lemma 8 and Lemma 3,
SETH implies that Intersecting Subspaces over Rd with 2 < k1 +k2 cannot
be solved in O(n2−ε) time for any ε > 0.

4 Finite Fields
We consider the k-KREF and k-SLRF problems where the finite field F = Fq for
a prime power q = p`. We provide an algorithm for Intersecting Subspaces
over Fq that takes O(n · qmax{k1,k2}) time. This gives us algorithms for k-SLRF
and k-KREF that run in time O(ndk/2e · qdk/2e) time. This is a significant
speed up when q = o(n). For finite fields with large characteristic, however,
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the optimal algorithm would be a version similar to that presented in Section 3.
Theorem 1.7 of [17] (presented here as Theorem 11) gives us a lower bound on
Intersecting Subspaces over finite fields. In Subsection 4.3 we provide a
lower bound of nΩ(

√
k) to the k-SLRF problem.

4.1 Intersecting Subspaces
Definition 14. For each non zero vector u ∈ Fm, we can choose a unique rep-
resentative element rep[u] to be the first vector in the one-dimensional subspace
U = {au | a ∈ F} spanned by u, when all the vectors are sorted in lexicographic
order.

Lemma 10. 2-KREF can be solved in time O(n).

Proof. For each column Ai of A, we compute rep[Ai]. By hashing, we can
determine if there exist i, j ∈ [n] such that rep[Ai] = rep[Aj ].

The correctness of the algorithm follows from the fact that two vectors u, v ∈
Fm are linearly dependent if and only if rep[u] = rep[v].

Lemma 11. Intersecting subspaces with |S1| = |S2| = n in Fm can be
solved in time O(n · qmax{k1,k2}).

Proof. We enumerate all the n ·qk1 vectors in S1 to get list L1, and all the n ·qk2
vectors in S2 to get list L2. There exist subspaces U ∈ S1, V ∈ S2 if and only
iff there are non zero u ∈ L1, v ∈ L2 that are linearly dependent. This can be
checked by a method very similar to that in Lemma 10 in time linear in the
size of the lists L1, L2. Thus Intersecting SubspacesF can be solved in time
O(n · qmax{k1,k2}).

The following theorem by [17] when combined with the reduction in Lemma 9
gives us a lower bound on the runtime of Intersecting Subspaces over finite
fields (Corollary 4).

Theorem 11. [Theorem 1.7 of [17]] Suppose there is an ε > 0 and a function
f : N → N such that f(x)/(x/ log x) → 0 and for infinitely many F = Fq,
Orthogonal Vectors is solvable in time n2−ε · df((p−1)`). Then SETH is
false.

Corollary 4. Suppose there is an ε > 0 and a function f : N → N such that
f(x)/(x/ log x)→ 0 and for infinitely many F = Fq, Intersecting Subspaces
is solvable in time n2−ε ·max {k1, k2}f((p−1)`). Then SETH is false.

4.2 Upper Bound
By reducing to the problem of Intersecting Subspaces, we obtain faster
algorithms for k-KRE and k-SLR over the finite fields.

Theorem 12. k-KREF can be solved in time O(ndk/2eqdk/2e).

14



Proof. By combining the reduction in Lemma 7 and the algorithm described in
Lemma 11, we get a O(ndk/2eqdk/2e) time algorithm.

Corollary 5. k-SLRF can be solved in time O(ndk/2eqdk/2e).

Proof. The algorithm for k-SLRF is similar to that in Theorem 12. We first
randomly divide the columns of A into two buckets A1, A2 as in Lemma 7. Let
S1 be the collection of all the subspaces spanned by bk/2c-sized subsets from A1

and y. Let S2 be the collection of all subspaces spanned by dk/2e-sized subspaces
from A2. We then enumerate all the vectors spanned by these subspaces to
obtain two lists L1, L2 and check for linear dependencies. We consider only
those vectors in L1 which have nonzero coefficient of y when expressed as a
linear combination of the columns in A1 and y.

4.3 Lower Bound for k-SLR
The lower bound derived for k-SLR in Section 2 does not hold for small finite
fields, since the k-Sum conjecture does not hold over small finite fields.

We observe that the Perfect Code problem is very similar to the problem
of sparse linear regression when the solution vector x is constrained to be in
{0, 1}n. We adapt a reduction from Independent Set to Perfect Code
given by [7] (Theorem 4.1) to make it more robust so that we can reduce to
k-SLR.

Definition 15 (k-Independent Set). An independent set in a graph G =
(V,E) is a set of vertices V ′ ⊂ V such that no two vertices in V ′ are adja-
cent. The k-Independent Set problem is to determine whether there exists
an independent set of k vertices in G.

Definition 16. The neighborhood N(v) of a vertex v in G = (V,E) is the set
of vertices adjacent to v. The closed neighborhood N [v] is {v} ∪N(v).

Definition 17 (k-Perfect Code). A perfect code in a graph G = (V,E) is
an independent set of vertices V ′ ⊂ V such that for every vertex v ∈ V , there is
exactly one vertex in N [v]∪V ′. The k-Perfect Code problem is to determine
whether there exists a perfect code of k vertices in G.

Theorem 13. Suppose k-SLR over finite fields can be solved in no(
√
k) time,

then we can solve k-Independent Set in no(k) time.

Proof. We first reduce from an arbitrary instanceG = (V,E) of k-Independent
Set to an instance H = (V ′, E′) of (k′ =

(
k
2

)
+ k + 1)-Perfect Code such

that G has an independent set of size k if and only if H has a perfect code of
size k′.

Let the vertex set V of G be {1, . . . , n}.
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We construct the vertex set V ′ of H to be the union of the following sets of
vertices:

V0 = {h1, h2, h3}
V1 = {as | 0 ≤ s ≤ k′ + 1}
V2 = {bi | 1 ≤ i ≤ k}
V3 = {ci | 1 ≤ i ≤ k}
V4 = {di,u | 1 ≤ i ≤ k;u ∈ V }
V5 = {e[i, j, u] | 1 ≤ i < j ≤ k;u ∈ V }
V6 = {f [i, j, u, v] | 1 ≤ i < j ≤ k;u, v ∈ V }
V7 = {gi,j | 1 ≤ i < j ≤ k}

The edge set E′ of H is the union of the following sets of edges:

E0 = {{h1, h2} , {h1, h3} , {h2, h3}}
E1 = {{a0, ai} | i = 1, 2}
E2 = {{a0, bi} | 1 ≤ i ≤ k}
E3 = {{bi, ci} | 1 ≤ i ≤ k}
E4 = {{ci, di,u} | 1 ≤ i ≤ k, u ∈ V }
E5 = {{di,udi, v} | 1 ≤ i ≤ k;u, v ∈ V }
E6 = {{di,u, e[i, j, u]} | 1 ≤ i < j ≤ k, u ∈ V }
E7 = {{dj,v, e[i, j, u]} | 1 ≤ i < j ≤ k, v ∈ N [u]}
E8 = {{e[i, j, x], f [i, j, u, v]} | 1 ≤ i < j ≤ k;x 6= u;x /∈ N [v]}
E9 = {{f [i, j, u, v], f [i, j, x, y]} | 1 ≤ i < j ≤ k, u 6= x or v 6= y}
E10 = {{f [i, j, u, v], gi,j} | 1 ≤ i < j ≤ k}
E11 = {{h1, gi,j} | 1 ≤ i < j ≤ k}

The construction of H is shown in Figure 1.
Suppose the constructed graphH has a perfect code C of size k′ =

(
k
2

)
+k+1.

We show that G has an independent set of size k. Since ai for all i ≥ 1 are
attached to a0, none of them can be in C. It must be true that a[0] ∈ C to
cover all the other nodes in V1. a[0] covers all the nodes in V2, so none of the
nodes in V2, V3 can be present in C. To cover the nodes in V3, exactly one node
from each of the k cliques in V4 has to be present in C.

Let the set of vertices in G corresponding to V4 ∩ C be called I.

Claim 2. I is an independent set of size k in G.

Proof. Suppose for contradiction there exist nodes u, v ∈ I such that v ∈ N [u]∪
{u}. Then WLOG for some i, j, 1 ≤ i < j ≤ k, d[i, u], d[j, v] ∈ C. Both of these
vertices d[i, u], d[j, v] are adjacent to e[i, j, u], so C is not a perfect code.
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Conversely, we show that if G contains an independent set J = {u1, . . . , uk}
of size k, then H has a perfect code of size k′. The set

CJ = {a[0]} ∪ {d[i, ui] : 1 ≤ i ≤ k} ∪ {f [i, j, ui, uj ] : 1 ≤ i < j ≤ k}

is a perfect code of H with size k′.
We now reduce from the constructed instance H, k′ of Perfect Code to

k′-SLR.
Given a graph H as constructed above, with n vertices, construct matrix

A ∈ {0, 1}n×n with rows and columns indexed by the vertices of the graph. For
all i 6= j, Aij = 1 if vertices i and j are adjacent and Aij = 0 otherwise. For
all i, Aii = 1. The graph contains a perfect code of k′ vertices iff Ax = ~1 has a
k′-sparse solution x. Each entry xu in the support of x corresponds to a vertex
u in the perfect code.

Consider the vertices in V1. Since we are looking for a k′-sparse solution,
there is at least one i ≥ 1 such that xa[i] = 0. This implies xa0 = 1, xai = 0, i ≥
1. Further, xbi = −xci

Considering a0 and the vertices in V0, we get the following equations:

xh1 + xh2 + xh3 = 0

xh1 + xh3 = 0

xh1 + xh2 = 0

Therefore,

xh1
= xh2

= xh3
= 0.

Considering the vertex h1, we get that
∑
i,j xgi,j = 0. Suppose there exist

i, j such that xgi,j = 0. Then there must exist nodes u, v ∈ V such that
xf [i,j,u,v] 6= 0, and f [i, j, u, v] is in the support of x. This implies that at least(
k
2

)
vertices from V6 ∪ V7 have to be in the support of x.
We can now add at most k nodes from the remaining graph to the support

of x.
We show that at least one node from each of the k cliques in V4 need to be

present in the support. Suppose for contradiction that there exists an i such
that no node of the form d[i, u] is in the support of x. This implies that both
b[i], c[i] need to be in the support of x. Since we are looking for a k′-sparse
solution, this is not possible. It then follows that xu = 1 for all nodes u in the
support of x.

By combining Theorem 4.7 in [5], and Theorem 13, we get the following
lower bound for k-SLR over finite fields.

Corollary 6. Suppose k-SLR over finite fields can be solved in no(
√
k) time.

Then, ETH is false.
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Figure 1: Reduction from Independent Set to Perfect Code
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5 Gaussian Random Design
In this section, we sketch the computational equivalence of three different-
looking formulations of the sparse linear regression problem. The reductions
between the different forms take time poly(n, k).

1. (Gaussian Random Design I) Given access to a sampling oracle generating
i.i.d. pairs (X,Y ) with X ∼ N(0,Σ) and Y = 〈w,X〉 with w being k-
sparse, return with high probability a k-sparse w′ such that 〈w,X〉 =
〈w′, X〉 almost surely.

2. (Gaussian Random Design II) If m = Ω(k log(n/δ)) and we are given
access to A : m× n, y such that

y = Ax,

the rows of A are sampled from N(0,Σ) and the unknown x is k-sparse,
return with probability at least 1−δ (over the randomness of A) a k-sparse
x′ such that A(x− x′) = 0.

3. (Fixed Design) Given access to an arbitrary A : m×n and y such that x is
k-sparse and y = Ax, find a k-sparse solution x′ such that A(x− x′) = 0.

To demonstrate the equivalence, we give a reduction from problem 1 to 2, 2 to
3, and 3 to 1. For 1 to 2 we use the sampling oracle to generate the matrix A
with x = w and use the algorithm from 2 to find x′ such that A(x − x′) = 0.
Now we use some standard Lemmas which follow from concentration of Wishart
matrices; more detailed proofs of these Lemmas can be found in e.g. [10].

Lemma 12. Suppose X1, . . . , Xm ∼ N(0,Σ) with Σ : d × d and let Σ̂ :=
1
m

∑m
i=1Xi. Then with probability at least 1 − δ, 1

2 Σ̂ � Σ � 2Σ̂ provides that
m = Ω(d+ log(2/δ))

Proof. This is a standard result about concentration of Wishart matrices. When
Σ = I this is Theorem 4.6.1 in [15]. Otherwise, it follows by making a change
of basis to reduce to the case Σ = I.

Lemma 13. Suppose X1, . . . , Xm ∼ N(0,Σ) with Σ : d × d and let Σ̂ :=
1
m

∑m
i=1Xi. Then with probability at least 1 − δ, every k × k submatrix of Σ̂

is a 2-spectral approximation to the correspoding k × k submatrix of Σ provides
m = Ω(k log(d/δ)).

Proof. This follows from Lemma 12 and union bounding over all of the
(
d
k

)
possible choices of k × k submatrix.

Based on the last Lemma, we see that with high probability over the ran-
domness of A, A(x − x′) = 0 implies that 〈w,X〉 = 〈x′, X〉 almost surely, so
taking w′ = x′ solves the problem. For 2 to 3, clearly an algorithm for problem
3 can solve problem 2. For 3 to 1, define matrix B by adding y as an additional
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column to A so that B(x,−1) = 0 and observe solving this is equivalent to solv-
ing (x,−1)BTB(x,−1) = 0. Defining Σ = BTB and letting X ∼ N(0,Σ) we
see this is the same as asking for a solution to 〈(x,−1), X〉 = 0 or equivalently
〈x,X (n+1)〉 = Xn+1 which can be solved using an algorithm for problem 1 as
we can generate arbitrarily many samples from N(0,Σ) efficiently.
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