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Abstract. We study “proper pairings” for finite simple graphs. These are combinatorial objects
that Huang and Postnikov used to give a bijective proof of Pak and Postnikov’s reciprocity formula
for the spanning forest polynomial fG. We find that by introducing the “component graph” – a
combinatorial object related to proper pairings – we are able to see new enumerative properties for
these graph objects. As a result of our study, we give another combinatorial proof of the reciprocity
theorem similar to Huang and Postnikov’s. Furthermore, we generalize fG to a polynomial fG,H

that records the spanning trees of a graph that contain a fixed subgraph, and we show that these
generalized polynomials exhibit a similar reciprocity property. As an application, we deduce a
generalization of Cayley’s formula from our generalized reciprocity.

1. Introduction

A spanning tree of a graph is a connected acyclic subgraph whose vertex set is that of the
graph. Counting the number of labeled spanning trees of a simple finite graph is a well-studied
problem in classical combinatorics. A. Cayley’s formula states that there are nn−2 spanning trees
of the complete graph Kn on n vertices [3], and the Matrix-Tree Theorem expresses the number of
spanning trees of any connected graph G as the determinant of a matrix [2]. While these results
can provide nice formulas for the number of spanning trees with labeled vertices of a graph, neither
offers a way to list the spanning trees.

A famous algorithm for listing labeled spanning trees is due to H. Prüfer [6], whose coding
provides a bijection between labeled spanning trees of Kn and length-(n− 2) sequences of vertices
from the vertex set [n] = {1, 2, . . . , n}. The Prüfer sequence for a given tree T contains each vertex
v with multiplicity degT (v)−1, and A. Rényi introduced a graph polynomial tG which records these
multiplicities for each spanning tree of a given graph [7].

I. Pak and A. Postnikov modified Rényi’s polynomial to record the degree sequences of spanning
rooted forests of a graph G, rather than those of spanning trees [5]. This graph polynomial fG
exhibits a remarkable reciprocity property, which relates the spanning trees of a graph to those
of its complement. Pak and Postnikov initially proved this reciprocity formula by an inductive
algebraic argument.

S. Huang and A. Postnikov later gave a combinatorial proof of this reciprocity property by
constructing a bijection which specializes to the Prüfer code [4]. This bijection allows each term
in the reciprocity formula to be interpreted as a unique “proper pairing,” a combinatorial object
that defines a new spanning tree – the “replacement graph” – by specifying edges to add and delete
in an initial spanning tree. Inclusion and exclusion of these replacement graphs yields the correct
spanning trees of the complement graph.
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In this paper, we generalize the spanning forest polynomial fG to a polynomial fG,H , which records
the spanning forests of a graph G that contain all edges in H. We then show that this polynomial
exhibits a reciprocity property (Theorem 3.3) similar to the one that Pak and Postnikov proved for
fG. Our generalization of the spanning forest polynomial allows us to prove the generalized form of
Cayley’s formula (Corollary 3.4). In our proof of the generalized reciprocity property, we introduce a
directed multigraph called the “component graph” as an alternative way to interpret the relationship
between proper pairings and terms in the spanning tree polynomial. More specifically, we establish
a constant-to-one map from a subset of proper pairings to each component graph (Proposition 5.5)
and then compute the number of component graphs with labeled vertices (Proposition 5.4) to show
that the terms in the reciprocity formula are exactly the monomials of the “replacement graphs”
obtained from the operation specified by the proper pairings. Our interpretation of the terms in
the generalized spanning forest polynomial fG,H may provide a way to give further insight into the
geometry of spanning tree polytopes.

The structure of this paper is as follows: in section 2, we review some definitions and the properties
of the graph polynomial fG as discussed in [5]; in section 3, we give our generalized reciprocity
formula; in section 4, we define and discuss proper pairings; in section 5, we define the component
graph and use it to prove enumerative properties of proper pairings; in section 6, we give the
combinatorial proof of the generalized reciprocity formula.

2. fG and the Reciprocity Formula

We use standard graph definitions and notation, most of which can be found in [2]. In brief, the
degree of a vertex v in a graph G (i.e. the number of edges adjacent to v in G) is denoted degG(v);
the number of connected components of a graph G will be denoted k(G); the complete graph on n
vertices is denoted Kn and the empty graph En; and the complement of a graph G is denoted G.
Furthermore, a spanning tree of a graph G is a connected acyclic subgraph whose vertex set is that
of the graph, and a spanning tree on a set of n vertices is a spanning tree of the complete graph
on those vertices. From now on, we reserve the symbol G for a finite simple graph, and T for a
spanning tree.

We now review the spanning forest polynomial fG, its properties, and the reciprocity formula as
presented in [5]. Consider a simple graph G with vertex set V (G) = [n] and edge set E(G). We

define the extended graph G̃ of G to be the simple graph on vertices V (G̃) = {0} ∪ V (G) with edge

set E(G̃) = E(G) ∪ {0i : i ∈ V (G)}. We associate a variable xi to each vertex i (x is used in place

of x0) and assign each spanning tree T of G̃ a monomial

m(T ) :=
∏

i∈V (T )

x
degT (i)−1
i ,

as is done in [5]. We now define the spanning forest polynomial fG.

Definition 2.1. [5] For a graph G on [n], the spanning forest polynomial

fG(x;x1, x2, . . . , xn) :=
∑
T

m(T ),

where the sum is over all spanning trees T of the extended graph G̃.

Remark 2.2. Notice that, for a spanning tree T on vertices {0, 1, . . . , n}, we can construct a spanning
rooted forest FT by deleting vertex 0 from T and designating all vertices adjacent to 0 in T as roots
of FT . From now on, we use the symbol FT for the spanning rooted forest constructed from T .
Thus, fG is also a sum over all the spanning rooted forests of G.

This technique of constructing a rooted forest from a tree also appears in [2].
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The graph polynomial fG exhibits several useful properties. One relates the spanning forests of
a disjoint union of two graphs to the spanning trees of each graph. Let G1 and G2 be two graphs
such that V (G1) ∩ V (G2) = ∅. We associate the variables y1, y2, . . . , yn1 and z1, z2, . . . , zn2 to the

vertices of G1 and G2 respectively, and we associate the variable x to vertex 0 in G̃1, G̃2, and

G̃1 ∪G2. Then the following formula holds:

fG1∪G2(x; y1, . . . , yn1 , z1, . . . , zn2) = x · fG1(x; y1, . . . , yn1) · fG2(x; z1, . . . , zn2).

The proof can be found in [5].
Another important property of fG is the reciprocity property between a graph and its complement,

which was discovered by S. D. Bedrosian [1] in the case x1 = x2 = · · · = xn = 1.

Theorem 2.3 (Reciprocity). [5] Let G be a graph on [n]. Then

fG(x;x1, . . . , xn) = (−1)n−1fG(−x− Y ;x1, . . . , xn),

where Y = x1 + · · ·+ xn.

One can find an algebraic proof for Theorem 2.3 in [5]. Additionally, Huang and Postnikov gave
a combinatorial proof of Theorem 2.3 in [4], which we discuss in Remark 4.3.

3. fG,H and the Generalized Reciprocity Formula

We generalize the definition of fG from [5] by introducing a polynomial fG,H , which records the
spannning trees of G that contain H as a subgraph.

Definition 3.1. For graphs G, H on [n] with E(H) ⊆ E(G), the generalized spanning forest
polynomial

fG,H(x;x1, . . . , xn) :=
∑
T

m(T ),

where the sum is over all spanning trees T of G̃ with E(H) ⊆ E(T ).

Remark 3.2. Notice that when H is not a forest, fG,H is zero. In the case H = En, fG,En equals
fG, the spanning rooted forest polynomial in [5].

As with fG, the generalized spanning forest polynomial fG,H exhibits a disjoint union property.
Let G1 and G2 be two graphs such that V (G1) ∩ V (G2) = ∅ and H1, H2 be graphs such that
V (H1) = V (G1), E(H1) ⊆ E(G1), and V (H2) = V (G2), E(H2) ⊆ E(G2). We again associate the
variables y1, y2, . . . , yn1 and z1, z2, . . . , zn2 to the vertices of G1 and G2 respectively, and we associate

the variable x to vertex 0 in G̃1, G̃2, and G̃1 ∪G2. Then the following formula holds:

fG1∪G2,H1∪H2(x; y1, . . . , yn1 , z1, . . . , zn2) = x · fG1,H1(x; y1, . . . , yn1) · fG2,H2(x; z1, . . . , zn2).

Notice that every spanning tree T such that E(H1 ∪ H2) ⊆ E(T ) in graph G̃1 ∪G2 splits into

two spanning trees T1 and T2 in graphs G̃1 and G̃2 respectively. Since degT (0) − 1 = (degT1(0) −
1) + (degT2(0)− 1) + 1, we need one additional x on the right hand side.

Furthermore, the polynomial fG,H exhibits a reciprocity property similar to the reciprocity for-
mula in [5]. The following is the main result of this paper.

Theorem 3.3 (Generalized Reciprocity). Let G1, G2, H be graphs on [n] with G1 ∪G2 = Kn and
G1 ∩G2 = H. Then

fG2,H(x;x1, . . . , xn) = (−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn),

where Y = x1 + · · ·+ xn.
3



We prove Theorem 3.3 in section 5. In the specialization G1 = G and G2 = G (so that H = En),
this result becomes Theorem 2.3. Additionally, our proof gives another combinatorial proof of
Theorem 2.3.

A mild generalization of Cayley’s formula [3] follows easily from Theorem 3.3.

Corollary 3.4. Let F be an unrooted spanning forest on the vertex set [n] with k components
c1, . . . , ck, and suppose component ci contains ni vertices. Then the number of spanning trees T of
the complete graph Kn on [n] such that E(F ) ⊆ E(T ) is

nk−2
k∏
i=1

ni.

Proof of Corollary 3.4. First, notice that

fG,H(0;x1, . . . , xn) = (x1 + · · ·+ xn)

(∑
T

m(T )

)
,

where the sum is over all spanning trees T of G such that E(H) ⊆ E(T ). Consider a monomial of
a spanning tree T ′ of G, and note that the degree of x will be 0 in m(T ′) if and only if the degree
of vertex 0 is 1 in T ′. Deleting this edge and vertex 0 will define a spanning tree T of G. Since 0
can be adjacent to any of vertices {1, . . . , n}, we have the (x1 + · · ·+ xn) on the right hand side.

Consider an unrooted forest F on the vertex set [n]. Then the family of spanning trees T of

F̃ with E(F ) ⊆ E(T ) is in bijective correspondence with the family of rooted forests FT with
underlying unrooted forest F. Therefore,

fF,F (x;x1, . . . , xn) =
∑

(r1,...,rk)

xk−1
k∏
i=1

xri ,

where, for each i, ri is the root of component ci. By Theorem 3.3 with G1 = F and G2 = Kn, we
see that

fKn,F (x;x1, . . . , xn) = (−1)|E(F )|+n−1fF,F (−x− Y ;x1, . . . , xn)

= (x+ Y )k−1
∑

(r1,...,rk)

k∏
i=1

xri .

where Y = x1 + · · ·+ xn. Thus, we have

fKn,F (0; 1, . . . , 1) = nk−1
k∏
i=1

ni.

Then the number of spanning trees T of Kn with E(F ) ⊆ E(T ) is

nk−2
k∏
i=1

ni.

�

We note that Corollary 3.4 reduces to Cayley’s formula when F is the empty graph on n vertices.
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4. Proper Pairings

In this section, we discuss a combinatorial object called a proper pairing. In later sections,
we will classify proper pairings into families P(T,V), which will allow us to interpret the terms in

(−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn) in Theorem 3.3.
We first define proper pairings. Consider a spanning tree T on vertices {0, 1, . . . , n}.

Definition 4.1. Let n be a fixed positive integer.

(1) A pairing is a triple P = (T,V,S), where T is a spanning tree on vertices {0, 1, . . . , n}, V
is a multiset of ρ := |V| vertices from [n], and S = {(v1, r1), (v2, r2), . . . , (vρ, rρ)} is a set of
ordered pairs of vertices such that r1, r2, . . . , rρ are distinct roots of FT and {v1, v2, . . . , vρ} =
V as a multiset.

(2) Given a pairing P = (T,V,S), we call T its tree, V its multiset, and S its pair set. We define
ρ := |V| = |S| to be the size of the pairing.

(3) The replacement graph RP of a pairing P = (T,V, {(v1, r1), (v2, r2), . . . , (vρ, rρ)}) is a multi-
graph obtained from T by, for each i ∈ [ρ], deleting the edge 0ri and adding viri.

(4) A pairing P is called a proper pairing if its replacement graph RP is a spanning tree on
{0, 1, . . . , n}.

The following are some intuitive remarks about Definition 4.1.

Remark 4.2.

(1) Since the roots r1, . . . , rρ are required to be distinct in the pair set {(v1, r1), . . . , (vρ, rρ)},
the ρ elements of the pair set will be distinct even if some vi = vj for i 6= j.

(2) The size ρ of a pairing P = (T,V,S) cannot exceed the number of roots of FT because the
roots r1, . . . , rρ in S must be distinct.

(3) The replacement graph RP will have the same number of edges, counted with multiplicity,
as T.

Figure 1 gives an example of two pairings with the same tree T and multiset V.
We discuss the bijection that Huang and Postnikov constructed in [4] in the following remark.

Remark 4.3. In this remark, we will use our notation instead of that used in [4]. Huang and
Postnikov use an algorithm similar to the Prüfer coding. Their algorithm essentially associates
each proper pairing P = (T,V,S) to an ordered pair (T,W ). Here, W is a permutation of the set
V∪{0}k(FT )−1−ρ, where {0}k(FT )−1−ρ denotes the multiset of k(FT )−1−ρ zeros. Using this bijection,

Huang and Postnikov were able to interpret each monomial in (−1)n−1fG(−x− Y ;x1, . . . , xn) as a
proper pairing. More details about the bijection are provided in Appendix A.

5. Classification of Proper Pairings by Component Graphs

In this section, we classify proper pairings by their trees and multisets, which will allow us to
interpret terms in (−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn).

Let P(T,V) denote the family of all proper pairings with tree T and multiset V. Theorem 5.1 gives

the key enumerative property needed for our interpretation of (−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn).

Theorem 5.1. Suppose T is a spanning tree on {0, 1, . . . , n}. Let k := k(FT ), and let V be a
multiset of ρ vertices from [n] so that, for each i ∈ [n], vertex i is listed with multiplicity ρi. Then

|P(T,V)| =
(
k − 1

ρ

)
·
(

ρ

ρ1, ρ2, . . . , ρn

)
.
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A spanning tree T on vertices {0, 1, . . . , 4}
and a multiset V = {2, 3}

0

1

2

3
4

Ex. 1. P1 = (T,V, {(2, 1), (3, 4)}) has RP1

0

1

2

3
4

Ex. 2. P2 = (T,V, {(2, 4), (3, 2)}) has RP2

0

1

2

3
4

Figure 1. For a spanning tree T and a multiset V = {2, 3}, we give two examples of
pairings with their replacement graphs. The dashed lines in the replacement graphs
indicate deleted edges, and the red lines indicate added edges. The red vertices are
the vertices in V. Note that P1 is a proper pairing; P2 is not.

This theorem follows from Propositions 5.4 and 5.5 below.
Consider a spanning tree T on vertices {0, 1, . . . , n}. The connected components of FT canonically

induce a set partition of [n], which we will denote by B(FT ). Let the map h : [n] → B(FT ) send
each vertex v ∈ [n] to the component of v in FT . Instead of counting |P(T,V)| directly, we introduce
a new graph called the component graph for each pairing P .

Definition 5.2. Suppose P = (T,V, {(v1, r1), (v2, r2), . . . , (vρ, rρ)}) is a pairing. Then the compo-
nent graph CP of P is the directed multigraph whose

(1) vertex set V (CP ) = B(FT ), and
(2) directed edge set E(CP ) = {h(vi)h(ri) : i ∈ [ρ]}.

Figure 2 gives the component graphs for the proper pairing examples in Figure 1. Note that the
red edges in the replacement graphs, which are the edges added due to the pair set, become directed
edges in the component graphs. However, the black edges, which are the edges in FT , are no longer
present in the component graph.

Let C(T,V) denote the family of component graphs for all proper pairings in P(T,V). We will count
|C(T,V)| and present a numerical relationship between |C(T,V)| and |P(T,V)| to prove Theorem 5.1.

We define a cycle in a (directed) multigraph to be any closed trail, regardless of edge direction,
with exactly one repeated vertex (i.e. the start and finish vertex). In particular, a loop will be
considered a cycle.

Proposition 5.3. Suppose T is a spanning tree on {0, 1, . . . , n}, and let V be a multiset of ρ vertices
from [n] so that, for each i ∈ [n], vertex i is listed with multiplicity ρi.

Consider a directed multigraph H on vertex set B(FT ). Then H ∈ C(T,V) if and only if all of the
the following conditions are satisfied:
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Ex. 1. P1 = (T,V, {(2, 1), (3, 4)}) has RP1 and CP1

0

1

2

3
4 c1 c2 c3

Ex. 2. P2 = (T,V, {(2, 4), (3, 2)}) has RP2 and CP2

0

1

2

3
4 c1 c2 c3

Figure 2. We construct the component graphs for the pairings P1 and P2 shown in
Figure 1. The vertices c1, c2, c3 of the component graph are {1}, {2, 3}, {4} respec-
tively.

(1) Exactly ρ vertices in H have indegree 1, and all other vertices have indegree 0.
(2) For each b ∈ B(FT ), the outdegree of vertex b in H is outdegH(b) =

∑
i∈b ρi.

(3) H contains no cycles.

Proof. Suppose H ∈ C(T,V), i.e. H is the component graph of some proper pairing of the form
P = (T,V, {(v1, r1), . . . , (vρ, rρ)}). Points (1) and (2) are straightforward. For (3), suppose to the
contrary that H contained a cycle b1b2 · · · bm of length m ≥ 1, where b1, . . . , bm ∈ B(FT ) are distinct
components of FT . Note that the induced subgraph of T on bi is a tree on |bi| vertices and therefore
has |bi| − 1 edges. The subgraph of RP induced on

⋃m
i=1 bi has “original edges” from T and “new

edges” from P. We know that there are at least m new edges: those which appear as edges in the
cycle b1 · · · bm. Therefore, the subgraph has at least(

m∑
i=1

|bi| − 1

)
+m =

m∑
i=1

|bi| =

∣∣∣∣∣
m⋃
i=1

bi

∣∣∣∣∣
edges, which contradicts the fact that R is a tree.

Conversely, suppose that all three properties hold for some directed graph H. We construct a
proper pairing P = (T,V,S) with component graph H by assigning an ordered pair (v(e), r(e)) of
vertices in [n] to each edge e ∈ E(H) as follows:

(1) v(e): For each edge e from the set of outdegH(b) edges leaving b ∈ V (H), we assign v(e) to
be a vertex in component b so that, after some v(e) has been assigned to each edge, the set
{e′ : v(e′) = j} contains ρj elements.

(2) r(e): To each directed edge e = h(v(e))h(ri) in H, we assign the root ri as r(e).

(We note that, although in general there are many ways to execute step 1, there is exactly one
way to execute step 2.) If we let S := {(v(e), r(e)) : e ∈ E(H)}, then this assignment process defines
a pairing P = (T,V,S) whose component graph is H.

We now show that P is a proper pairing, i.e. that its replacement graph RP is a tree. Because
RP contains the same number of edges as T, it suffices to check that RP is acyclic. Suppose to the
contrary that RP had a cycle. Since the rooted forest FT contained no cycles, the cycle must include
at least one edge in E(RP − {0})− E(FT ). When all components of FT are contracted within RP
to form the underlying undirected graph of H, this cycle will become a closed trail with at least
one edge, which contradicts condition (3). Hence, P is a proper pairing, so H ∈ C(T,V). �
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As we see in Figure 2, CP1 satisfies all conditions in Proposition 5.3, and CP2 does not.
Using the characterization of C(T,V) from Proposition 5.3, we now count |C(T,V)| in the following

proposition.

Proposition 5.4. Let T , V = {v1, . . . , vρ}, ρ, ρi, and k be defined as in the previous proposition.
Label the k components of FT as c1, . . . , ck (so that {c1, . . . , ck} = B(FT )). For each i ∈ [k], let
qi :=

∑
j∈ci ρj.

Then |C(T,V)| =
(k−1)!

(k−ρ−1)! ·
1

q1!···qk! .

Proof. It suffices to count the number of directed graphs H on {c1, . . . , ck} that satisfy the three
requirements in Proposition 5.3. Let H0 denote the empty graph on vertices {c1, . . . , ck}. For each
vertex vi in V, we construct a new directed multigraph Hi by adding a directed edge h(vi)F (vi) to
Hi−1, where F (vi) is some other vertex in {c1, . . . , ck}, so that Hi is acyclic and each vertex of Hi

has indegree at most 1. For a given i ∈ [ρ], we call F (vi) the “finish vertex,” and we will count the
number of ways to assign distinct finish vertices F (vi) for i ∈ [ρ] to create Hi. (Figure 3 gives an
example of this assignment process.)

We claim that, after F (v1), . . . , F (vi−1) have been designated (so thatHi−1 has been constructed),
there are exactly k − i legal choices for F (vi): all k vertices c1, . . . , ck except

(1) F (v1), . . . , F (vi−1), which were already used as finish vertices, and
(2) One additional vertex h(vγm), where γm is the last value on the list defined by the algorithm

(a) Start with γ = i (so that γ0 = i). Set a counter m = 0.
(b) Loop:

(i) Store the current value of γ as γm.
(ii) If h(vγ) /∈ {F (v1), . . . , F (vi−1)}, RETURN the list γ0, γ1, . . . , γm, and TERMI-

NATE.
(iii) Else, h(vγ) = F (vγ′) for some γ′ ∈ [i− 1]. Increment m, reassign γ to be γ′, and

repeat the loop.
(Assuming there were no cycles formed from edges in {h(v1)F (v1), . . . , h(vi−1)F (vi−1)}, the
algorithm will terminate.)

More intuitively, h(vγm) is the vertex “at the start” of the component of h(vi) in Hi−1. If
h(vγm) were used as F (vi), then the edge h(vγ0)h(vγm) would close a cycle with other edges
h(vγ0)F (vγ0), h(vγ1)F (vγ1), . . . , h(vγm)F (vγm).

By construction, h(vkm) is not on the list in (1).

We claim that, for any of the k− i choices for F (vi) described above, adding the edge h(vi)F (vi)
to Hi−1 will not create a cycle in Hi. Assume that Hi−1 was acyclic, and suppose to the contrary
that adding edge h(vi)F (vi) created a cycle in Hi. Then the cycle would contain the new edge
h(vi)F (vi), so F (vi) = h(vj) for some edge h(vj)F (vj) (j ≤ i) in the component of h(vi) in Hi−1,
where h(vj) was not previously used as a finish vertex. The only such vertex h(vj) is h(vkm), which
is forbidden by the above algorithm. We have shown that there are k − i legal choices for F (vi),

so there are (k−1)!
(k−ρ−1)! ways to assign finish vertices to the edges h(v1)F (v1), . . . , h(vρ)F (vρ) in that

order. To count |C(T,V)|, we need to divide by
∏
i∈[n] qi! since, for each i, the qi edges leaving vertex

ci are indistinguishable. Therefore, |C(T,V)| =
(k−1)!

(k−ρ−1)! ·
1

q1!···qk! as desired. �

Now that we have computed |C(T,V)|, we compute |P(T,V)| by defining a map g : P(T,V) → C(T,V)
that sends each proper pairing P 7→ CP .

Proposition 5.5. Let k, ρi, and qi be defined as in the previous proposition. The map g : P(T,V) → C(T,V)
is a surjective q1!q2!···qk!

ρ1!ρ2!···ρn! -to-1 map.
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Vertices:
c1 c2 c3 c4

c1

c2
c3

c4C1:

c1

c2

c3

c4C2 :

c1 c2

c3

c4

C3 :

Figure 3. As in the proof of Proposition 5.4, we construct the three component
graphs C1, C2, C3 for the (T,V) shown in Figure 4 by assigning “finish vertices” to
vertices c3, c4. Note that the two edges leaving c4 are considered indistinguishable.

T

0

1

2 3 4 5

6 7

V = {4, 6, 7}

c1 c2 c3 c4

The components are
{1, 2}, {3}, {4}, {5, 6, 7}.

P1 = {(4, 2), (6, 3), (7, 4)}
P2 = {(4, 2), (6, 4), (7, 3)} C1: c1 c2 c3 c4

P3 = {(4, 3), (6, 2), (7, 4)}
P4 = {(4, 3), (6, 4), (7, 2)} C2: c1 c2 c3 c4

P5 = {(4, 5), (6, 2), (7, 3)}
P6 = {(4, 5), (6, 3), (7, 2)} C3: c1 c2 c3 c4

Figure 4. k = 4, ρ = 3, (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7) = (0, 0, 0, 1, 0, 1, 1), (q1, q2, q3, q4) =
(0, 0, 1, 2). The map g is a surjective 2-to-1 map, and there are 3 component graphs
in C(T,V).

Proof. Consider a component graph CP ∈ C(T,V). We label the components of FT as {c1, . . . , ck} as

before. We construct all q1!q2!···qk!
ρ1!ρ2!···ρn! proper pairings P = (T,V,S) in g−1(CP ) by assigning an ordered

pair (vi, ri) to each directed edge cjci in CP so that h(vi) = cj and the multiset {v1, . . . , vρ} = V (in
9



some order). We note that each ordered pair’s second element ri is determined by the corresponding
edge’s endpoint ci (because there is only one root in each component of FT ), so it suffices to assign
only the first vertex vi to each edge.

For each j ∈ [k], the outdegree of cj is qj . Since all directed edges in CP have distinct finish
vertices, there are

qj !∏
i∈cj ρi!

ways to assign the qj edges leaving the vertex cj ∈ CP to the qj vertices in the component Cj of
rj in FT , noting that the ρi copies of the same vertex i ∈ V should not be distinguished during

the assignment process. It follows that there are q1!q2!···qk!
ρ1!ρ2!···ρn! such assignments possible, so there

are q1!q2!···qk!
ρ1!ρ2!···ρn! pairings with component graph CP . Because we began with a component graph CP ,

Proposition 5.3 shows that each of these pairings is proper. �

Figure 4 shows an example of the map g. Since q1!q2!q3!q4!
ρ1!ρ2!ρ3!ρ4!ρ5!ρ6!ρ7!

= 0!0!1!2!
0!0!0!1!0!1!1! = 2, we see that g is

a 2-to-1 map. Furthermore, since (k−1)!
(k−ρ−1)! ·

1
q1!q2!q3!q4!

= (4−1)!
(4−3−1)! ·

1
0!0!1!2! = 3, there are 3 component

graphs in C(T,V). As Theorem 5.1 asserts, there are 6 proper pairings in P(T,V).
In the next section, we show how Theorem 5.1 allows us to interpret the terms in Theorem 3.3.

6. Proof of Generalized Reciprocity

Definition 6.1. For a graph G on [n] and a spanning subgraph H of G,

(1) Let Si(G,H) denote the family of spanning trees T of G̃ with H ⊆ T and degT (0) = i+ 1.
(2) Define a degree-(n− i− 1) polynomial in x1, . . . , xn by

ai(G,H) = x−i
∑

T∈Si(G,H)

m(T ).

Then fG,H(x;x1, . . . , xn) = an−1(G,H)xn−1 + an−2(G,H)xn−2 + . . .+ a0(G,H).
(3) Let Y := x1 + · · ·+ xn.

We note that if H is not a forest, both Si(G,H) and ai(G,H) are zero.
In the following proposition, we describe the monomials of the replacement graph of the proper

pairings in P(T,V).

Proposition 6.2. Suppose i, j are integers such that 0 ≤ j ≤ i ≤ n− 1.

(1) For T ∈ Si(G,H) and V such that |V| = i− j,∑
P∈P(T,V)

m(RP ) =

(
i

j

)(
i− j

ρ1, . . . , ρn

)
x−(i−j)m(T )

∏
v∈[n]

xρvv ,

where ρ1, ρ2, . . . , ρn are the multiplicities of vertices 1, 2, . . . , n in V.
(2) Then

xjai(G,H)

(
i

j

)
Y i−j =

∑
T∈Si(G,H)

∑
V

|V|=i−j

∑
P∈P(T,V)

m(RP ).

Proof. Fix i, j such that 0 ≤ j ≤ i ≤ n− 1, and let T ∈ Si(G,H). First consider a fixed multiset V
of i − j vertices, in which each vertex v ∈ [n] is listed with multiplicity ρv. From the definition of
the replacement graph, we observe the following:

(1) The degree of x in m(RP )
m(T ) is −|V| = −(i− j).

10



(2) The degree of xi in m(RP )
m(T ) is ρi, the multiplicity of vertex i in V.

Then, we see that the monomial of RP for any proper pairing P ∈ P(T,V) will be

m(RP ) = x−(i−j)m(T )
∏
v∈[n]

xρvv .

By Theorem 5.1, there are
(
i
i−j
)(

i−j
ρ1,...,ρn

)
=
(
i
j

)(
i−j

ρ1,...,ρn

)
proper pairings in P(T,V), and the replace-

ment graph of each has the same monomial. This proves (1). Figure 5 is an example of (1).
For (2), we sum over all T ∈ Si(G,H) and V with |V| = i− j:

∑
T∈Si(G,H)

∑
V

|V|=i−j

∑
P∈P(T,V)

m(RP ) =
∑

T∈Si(G,H)

[ ∑
V:|V|=i−j

(
i

j

)(
i− j

ρ1, . . . , ρn

)
x−(i−j)m(T )

∏
v∈[n]

xρvv

]

= x−(i−j)
(
i

j

) ∑
T∈Si(G,H)

[
m(T )

∑
ρ1+···+ρn=i−j

(
i− j

ρ1, . . . , ρn

) ∏
v∈[n]

xρvv

]

= xj

x−i ∑
T∈Si(G,H)

m(T )

(i
j

) ∑
ρ1+···+ρn=i−j

(
i− j

ρ1, . . . , ρn

) ∏
v∈[n]

xρvv

= xjai(G,H)

(
i

j

) ∑
ρ1+···+ρn=i−j

(
i− j

ρ1, . . . , ρn

) ∏
v∈[n]

xρvv

= xjai(G,H)

(
i

j

)
Y i−j .

�

Proposition 6.2 provides an interpretation for the monomials of the replacement graphs. We now
prove Theorem 3.3.

The proof of Theorem 3.3 relies on the following lemma.

Lemma 6.3. Given a spanning tree T ′ on vertices {0, 1, . . . , n} and an unrooted forest F in G such
that E(F ) ⊆ E(T ′), there is exactly one proper pairing P = (T,V,S) such that

(1) F is the underlying unrooted forest of the rooted forest FT .
(2) The replacement graph RP is T ′.

Proof. Suppose T ′ is a spanning tree on {0, 1, . . . , n} and F an unrooted forest in G such that
E(F ) ⊆ E(T ′). Define the set E(T ′, F ) := E(FT ′)− E(F ).

We prove by induction on |E(T ′, F )| that, given T ′ and F, exactly one proper pairing satisfies
properties (1) and (2) in the lemma. If E(T ′, F ) = ∅, then the only proper pairing satisfying (1)
and (2) is (T ′,∅,∅). Now suppose that the result holds whenever |E(T ′, F )| < j, and consider

|E(T ′, F )| = j. We claim that there exists a component Ĉ of F that contains a vertex x incident to

an edge in E(T ′, F ) and a vertex y adjacent to 0 in T ′. If there were no such component Ĉ, then
each component of F would be one of two types:

(1) No vertex in the component is adjacent to 0.
(2) No vertex in the component is incident to any edge in E(T ′, F ).

Note that not all components are in type 1 because 0 cannot be an isolated point in T ′, and not
all components are in type 2 because E(T ′, F ) 6= ∅. However, there are no edges in F between any

11



T

0

1

2 3 4 5

6 7

m(T ) = x3x2x
2
5

V = {2, 3}

m(RP ) = xx22x3x
2
5

{(2, 3), (3, 4)}
0

1

2
3

4 5

6 7

{(2, 3), (3, 5)}
0

1

2
3

4 5

6 7

{(2, 4), (3, 2)}
0

1

2
3

4 5

6 7

{(2, 4), (3, 2)}
0

1

2 3 4 5

6 7

{(2, 5), (3, 2)}
0

1

2 3 4 5

6 7

{(2, 5), (3, 4)}
0

1

2 3 4 5

6 7

Figure 5. This figure shows the replacement graphs of proper pairings in P(T,V).
Each replacement graph has the monomial x−2m(T )x2x3 = xx22x3x

2
5, and there are(

3
2

)(
2

0,1,1,0,0,0,0

)
= 6 of them in P(T,V).

component in type 1 and any component in type 2, so the components in type 2 are not connected
to 0 in T ′, a contradiction.

We will now identify the unique proper pairing P = (T,V,S) for T ′ and F . Select a component

Ĉ of F such that x ∈ Ĉ is incident to an edge xx′ ∈ E(T ′, F ) and y ∈ Ĉ is adjacent to 0 in T ′.
Note that x′ /∈ V because then 0x ∈ E(T ), which would create a 3-cycle 0yx in T . Thus x ∈ V, and
the ordered pair (x, x′) ∈ S.

We delete edge xx′ in T ′ and add edge 0x′ to get a new tree T ′◦ whose set E(T ′◦, F ) := E(FT ′◦)− E(F )
has order |E(T ′◦, F )| = |E(T ′, F )|−1. By the inductive hypothesis, there is exactly one proper pair-
ing P ◦ = (T ◦,V◦,S◦) such that

(1) F is the underlying unrooted forest of FT ◦ .
(2) The replacement graph RP ◦ = T ′◦.

Then the unique proper pairing for T ′ and F must be P = (T ◦,V◦ ∪ {x},S◦ ∪ {(x, x′)}). �

We use this lemma to prove Theorem 3.3.
12



Proof of Theorem 3.3. We expand each (x + Y )i term in (−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn)
and apply Proposition 6.2 to get

(−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn)

= (−1)−|E(H)|

[
an−1(G1, H)(x+ Y )n−1 − · · · ± a0(G1, H)

]

= (−1)−|E(H)|
n−1∑
j=0

xj
n−1∑
i=j

(−1)n−i−1ai(G1, H)

(
i

j

)
Y i−j

=
n−1∑
j=0

n−1∑
i=j

(−1)n−i−1−|E(H)|

[ ∑
T∈Si(G1,H)

∑
V

|V|=i−j

∑
P∈P(T,V)

m(RP )

]
.

We note that a spanning tree T ∈ Si(G,H) has i + 1 edges incident to vertex 0 and n − i − 1
edges not incident to 0. Since |E(H)| of the edges not incident to 0 are edges of H, we see that
ai(G1, H) 6= 0 iff n− i− 1 ≥ |E(H)|. In particular, ai(G1, H) = 0 for all i > n− |E(H)| − 1, so the
previous expression can be rewritten as

(∗) (−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn)

=
n−1∑
j=0

n−|E(H)|−1∑
i=j

(−1)n−i−1−|E(H)|

[ ∑
T∈Si(G,H)

∑
V

|V|=i−j

∑
P∈P(T,V)

m(RP )

]
.

For a given replacement graph RP , we show using Lemma 6.3 that the coefficient of m(RP ) in the
above expression is 1 if every edge of RP is in G2 (i.e. no edge of RP is in G1 − E(H)) and 0
otherwise.

By Lemma 6.3, the underlying unrooted forest F of FT and a replacement graph T ′ together
determine the proper pairing P, so we can reindex the triple sum from equation (∗) as∑

T∈Si(G1,H)

∑
V

|V|=i−j

∑
P∈P(T,V)

m(RP ) =
∑
F

∑
T ′

m(T ′),

where F is the underlying unrooted forest of FT for T ∈ Si(G1, H) and T ′ is a spanning tree on
{0, 1, . . . , n} such that E(F ) ⊆ E(T ′) with exactly j + 1 edges incident to 0. Consider a particular
spanning tree T ′ with j + 1 edges incident to 0 and b(T ′) edges in G1 −H. Then F must have had

n− i− 1− |E(H)| edges in G1 −H, so there are
( b(T ′)
n−i−1−|E(H)|

)
choices of F that give replacement

tree T ′. It follows that

(−1)n−i−1−|E(H)|
∑

T∈Si(G1,H)

∑
V

|V|=i−j

∑
P∈P(T,V)

m(RP )

=
∑
T ′

(−1)n−i−1−|E(H)|
(

b(T ′)

n− i− 1− |E(H)|

)
m(T ′),

where the sum on the right hand side is over all spanning trees T ′ on {0, 1, . . . , n} containing all
the edges in H and exactly j + 1 edges incident to 0.
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From the above discussion, we see that (−1)n−|E(H)|−1fG1,H(−x−Y ;x1, . . . , xn) can be expressed
as

n−1∑
j=0

n−|E(H)|−1∑
i=j

∑
T ′

(
b(T ′)

n− i− 1− |E(H)|

)
m(T ′),

where T ′ is again a spanning tree on {0, 1, . . . , n} such that E(H) ⊆ E(T ′) with exactly j + 1
edges incident to 0. Exchanging the first two summations and summing over all T ′ such that
E(H) ⊆ E(T ′) (note that the number of edges incident to 0 is no longer fixed to be j + 1), we see
that

(−1)n−|E(H)|−1fG1,H(−x− Y ;x1, . . . , xn)

=

n−1−|E(H)|∑
i=0

∑
T ′

(−1)n−i−1−|E(H)|
(

b(T ′)

n− i− 1− |E(H)|

)
m(T ′)

=
∑
T ′

[
n−1−|E(H)|∑

i=0

(−1)n−i−1−|E(H)|
(

b(T ′)

n− i− 1− |E(H)|

)]
m(T ′)

=
∑

T ′: spanning
tree of G2

s.t. E(H)⊆E(T ′)

m(T ′).

Notice that the coefficient of m(T ′) for spanning trees T ′ /∈ G2 becomes 0 due to cancellation. Thus,
we are left with the monomials of the spanning trees of G2 that contains H as a subgraph, which
is by definition fG2,H(x;x1, . . . , xn). This finishes the proof of Theorem 3.3. �
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14

https://arxiv.org/abs/0909.2508
https://arxiv.org/abs/0909.2508
http://math.mit.edu/~apost/papers/tree.ps
http://math.mit.edu/~apost/papers/tree.ps


Appendix A. Bijection by Huang and Postnikov

We present the bijection found by Huang and Postnikov in [4]. We will use our notation instead
of that used in [4].

Let A be the set of all proper pairings P = (T,V,S), and let B be the set of all (T,W ), where W
is a sequence of k(FT )− 1 vertices chosen from {0, 1, . . . , n}. The bijection between A and B works
as follows:

I. ϕ : A → B (see Definition 4.1 from [4])
Consider some proper pairing P = (T,V,S) ∈ A. Start with a setR = {r ∈ [n] : r is a root of FT }

and an empty sequence W = ().
WHILE |R| > 1:

(1) Delete leaves from V (RP )−R until all remaining leaves are in R.
(2) Let `max be the leaf of maximum index remaining in RP .

(a) Append `max’s neighbor to the end of W.
(b) Delete `max from both RP and R.

RETURN (T,W ) ∈ B.
We note that ϕ specializes to the Prüfer code when FT = En.

II. ϕ−1 : B → A (see Definition 4.3 from [4])
Consider some weight sequence W ∈ B. Again, let R be the set of roots of FT . Start with a copy

T ∗ of the tree T and an empty set S = {}.
WHILE |W | > 0:

(1) Let v be the first element in the remaining sequence W , and let r be the root of maximum
index in R that is not in v’s component of FT ∗ . (In the case v = 0, let r be the root of
maximum index, regardless of component.)

(2) Delete v from W and r from R.
(3) If v 6= 0:

(a) Add edge vr and remove 0r in T ∗.
(b) Add (v, r) to S.

RETURN (T,V,S) ∈ A.
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