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Abstract

The notion of cooperation in biological systems has recently motivated the for-
mation of evolutionary game theory, the study of evolving populations through game
theoretic methods. Through modeling individuals as nodes in a graph and connec-
tions between them as edges, evolutionary game theory focuses on the dynamics of
node strategy updating. This consists of nodes changing their strategies or behaviors
according to a given process in either a discrete or continuous time basis. In this
paper we study the long-term behavior of graphs with highly interconnected and
highly sparse regions (such as the two-island, two-barbell, and rich-club graphs) un-
der the birth-death and death-birth reproduction models given a prisoner’s dilemma
payoff matrix. We discuss empirical evidence and observe that the degree-weighted
frequency difference between two cliques tends to zero after long periods of time
through observing the expectation of its derivative.
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1 MOTIVATION

1 Motivation

A central notion that has been of interest to game theorists and biologists for decades
has been that of cooperation, which is defined to be the action of helping or bestowing
some benefit upon another individual. Cooperation usually requires an individual to pay
some sort of personal price, and with no guarantee their neighbors will reciprocate their
generosity, the simple fact that an individual will cooperate at all is an intriguing one.
After all, why should an individual as seemingly insensate as a bacterium care to help
one of its competitors in the struggle for survival? Nevertheless, cooperation does occur,
and this kind of behaviour has been present in several milestones of life on Earth [5],
such as the formation of multicellular organisms or the organization of living creatures
into communities. Game theory has provided a useful way to approach these kinds of
questions, however many of its intricacies have yet to be fully explored.

As for the field of noncooperative game theory, it primarily focuses on games or dilem-
mas that are to be played just once and in which all players behave with complete ra-
tionality; this means it is assumed that players know the rules of the game and all data
about other players [7]. However, although many organisms lack the ability to make
rational decisions, in general, their behaviour still adheres to some of the principles of
noncooperative game theory, such as the fact that the outcome of the individuals’ deci-
sions depends on a payoff matrix. A popular example of this is that of bacteria; although
they lack the ability to remember past events and improve their way of approaching situ-
ations based off of that knowledge, they can still make decisions which lead to symbiotic
relationships. Some years ago, a study [8] observed four different species of bacteria all
coexisting on the tomato plant in order to promote the plant’s growth through hormones
and to prevent the growth of hostile bacteria.

Evolutionary game theory (EGT) serves to model these situations with games that
are played over and over. Individuals are chosen from the population according to some
stochastic process in order to interact or reproduce a copy of themselves accordingly,
although still not necessarily in a fully rational way [7].

Such models can help us to better understand the evolution and propagation of certain
behaviors in a network, such as cooperativity or even a mutation in a gene. What’s more,
the results in this area can be applied to various real-world situations, such as the spread
of cancerous cells and the response of a tumor to therapy [6], or the spread of an emotion
through a massive social media network such as Facebook [3].

1.1 Evolutionary mechanisms

EGT has led to the study of different mechanisms for determining the way in which
a game develops, such as how nodes receive their payoff or reproduce [5]. Some mecha-
nisms require that the individuals have memory of past occurrences and others do not.
Two evolutionary mechanisms of main interest are fitness-based assessment and spatial
selection.

Fitness-based assessment consists of each individual taking action according to its level
of fitness, or to the fitness level of its adversary; note that fitness, though not rigorously
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2 SETUP

defined yet, is a measure of reproductive ability. In short, it tells how well a node is
doing at the current point in time with respect to the network that it’s in. Spatial
selection is a mechanism in which network structure is a strong factor in determining
who interacts with whom and who competes with whom in order to reproduce. The
graphs that determine reproduction and interaction need not be the same, nor must
they have static structure [5]. However, in this work we assume both graphs are static
and coincide.

As an alternative for fitness-based assessment, an individual can decide its action by
assessing its own strategy, i.e. decision making process. One strategy that is commonly
modeled in evolutionary game theory research is tit-for-tat, in which the player cooperates
in all its first encounters with others and from then on replicates the action of its latest
opponent. The main focus of this work is on the strategies always cooperate and always
defect. In particular, we explore how the proportions of individuals with a particular
strategy can evolve over time, and we attempt to determine what the long-term steady
state proportions of cooperators are for various graphs.

2 Setup

We now study how a strategy can propagate through areas of a graph. We therefore
give special attention to the role of network structure in the evolution of cooperation
through EGT models. In evolutionary games, we are interested in interactions between
individuals, each of which can decide between cooperating or defecting (helping or not
helping the other). These interactions take place between pairs of individuals in a pop-
ulation represented by a graph, comprised of the following elements:

• Nodes represent individuals from a population

• An edge between two nodes indicates that these are neighbors and have some
probability of interacting with each other.

• Edge weights represent the propensity for two neighboring nodes to interact.

After the graph is defined, it follows an evolutionary game. At each timestep we have
the following:

1. Some pairs of nodes interact (simultaneously or not), and parameters in the graph
are updated accordingly

2. A node reproduces itself by copying its own strategy and replacing that of another
node

2.1 Graph-structural definitions

Since every edge has a given weight, and these weights will affect the likelihood of certain
events to happen, we define several variables which will be necessary later on.

Definition 2.1. A network is a graph G(V,E), consisting of a set of vertices V and a
set of undirected edges E.
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2.2 Pairwise interactions 2 SETUP

Remark. Throughout this paper, all networks are assumed to be connected, nonbipartite,
undirected and with no self loops.

In a graph as defined above, we use wij to denote the weight of the edge that
connects i, j ∈ G. Since G is undirected, then wij = wji. These variables let us define
node weights, wi =

∑
j∈G wij ; thereupon we can define the total graph weight,

W =
∑

i∈G wi.

If we were to perform a random walk on G, with steps taken with probability pro-
portional to edge weight, then the probability to take a step from node i to node j is
pij =

wij

wi
. Then, the probability that an n step walk starting from i ends up at j is

p
(n)
ij . We know that, since G is connected and nonbipartite, there is a unique stationary

distribution {πi}i∈G for this random walk, in which πi = wi
W .

As a last note in this section, we provide the following result, which will be needed in
order to do some of the substitutions later on in Section 4.

Proposition 2.1. Given the previously defined variables, πipij = πjpji

Proof. We can note, by the definitions above that

πi
πj

=
wi/W

wj/W
=
wi
wj

On the other hand,
pji
pij

=
wji/wj
wij/wi

=
wi
wj

Therefore, πi
πj

=
pji
pij

, and we conclude the proof.�

2.2 Pairwise interactions

Remark. In our interaction model (death-birth, which we explain thoroughly later on),
our nodes take decisions based off in one of the strategies always-cooperate or always-
defect. We declare then, for each i ∈ G, a strategy variable si which takes the value 0 or
1, respective to the strategies previously mentioned.

Definition 2.2. Given two individuals i, j ∈ G, a pairwise interaction is given by a game
in which each of the individuals can decide between cooperating (C) or defecting (D).

Definition 2.3. Given a pairwise interaction, its payoff matrix is a 2× 2 matrix whose
entries determine the payoffs for each of the involved players, correspondingly.

Remark. We are assuming that the payoff matrix is symmetric; this means that if the
payoff matrix for the first player is:

M =

C D( )
C R S
D T P

then the payoff matrix for the second player is MT .
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Definition 2.4. A pairwise social dilemma with strategies C and D is called a prisoner’s
dilemma when T > R > P > S

Remark. In other words, a game is a prisoner’s dilemma if it is always best for a player
to defect, regardless of the other player’s action.

Definition 2.5. The donation game is a prisoner’s dilemma game whose payoff matrix
for the first player is:

M =

C D( )
C b− c −c
D c 0

. The payoff matrix for the second player is MT , with b > c. We call b the benefit and
c the cost of the donation game.

Remark. In other words, a donation game is one in which each player can either cooperate
(paying cost c and generating a benefit of b for its partner), or defect (not paying any
cost, although still accepting benefit) under the condition b > c. As a result, mutual
cooperation generates b−c for both players, mutual defection generates 0 for both players,
and cooperation-defection generates b for the defector and c for the cooperator.

Definition 2.6. In the game above, the benefit to cost ratio is defined as b/c.

Remark. As has been worked with in previous papers [2], [1], we may perform a change
of scale in the payoffs of the game above and assume c = 1.

2.3 Reproduction variables

Another important aspect of evolutionary games is that of strategy propagation. We
define here some of the variables pertinent to the death-birth process, whose guidelines
we specify later in section 2.

Definition 2.7. We define fi(s) to be the edge-weighted average payoff of vertex
i in state s. This value depends on the states of i’s neighbors, the payoff matrix for
the graph, and the probability of i interacting with its neighbors, and has the following
form:

fi(s) = −csi + b
∑
j∈G

pijsj

Definition 2.8. We define Fi(s) to be the reproductive rate of vertex i given state
s. Fi(s) can be expressed as Fi(s) = eδfi or, assuming δ is very small, we may take the
Taylor expansion and express Fi(s) as

Fi(s) = 1 + δfi

.

Definition 2.9. We define δ to be the strength of selection. This is a factor affecting
the degree to which node fitness levels affect their ability to reproduce.
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2.4 Recent result 2 SETUP

2.4 Recent result

A recent paper from Benjamin Allen et al (2017) [4] proves a strong technique that
determines whether any given network structure favors cooperation or not under weak
selection using the following notation and propositions:

Definition 2.10. We define ρA as the probability that a node with interaction strategy
A emerging at a random place in G takes over the population.

Proposition 2.2. A network structure G following the donation game favors cooperation
when ρC >

1
N , where N is the number of nodes in G.

Proposition 2.3. A network structure G following the donation game favors cooperation
when ρC > ρD.

Remark. The propositions above are equivalent when players interact through a donation
game.

This paper uses a duality between the probability that two coalescing random walks
meet at time t < T and two nodes having the same strategy after T steps of reproduction

of the evolutionary game. Then, for any network we can calculate
(
b
c

)
∗, where:

Definition 2.11. The critical benefit to cost ratio, or
(
b
c

)
∗ (when it is positive) is the

amount such that natural selection favors cooperation in the given network whenever
the benefit to cost ratio is greater than the given amount.

Remark. It always happens that |
(
b
c

)
∗ |> 1.

Remark. When
(
b
c

)
∗ is negative, then natural selection inhibits cooperation regardless

of the benefit to cost ratio.

Then, the closest that
(
b
c

)
∗ is to 1 (given that it is positive), the better that the graph

is in promoting cooperation.

2.5 Models

We considered connected, nonbipartite, undirected graphs G with no self loops and with
edge weights wij = wji ∀i, j ∈ G. We carried Monte Carlo simulations on these graphs,
where in each timestep we updated the graph according to the guidelines below, in the
following order:

1. A reproductive step, which could follow one of the two following models:

• Death-birth: j ∈ G is chosen uniformly to be replaced, and a node i ∈ G is
chosen among j’s neighbors, with probability proportional to Fiwji. Then, i
replaces the node j.

• Birth-death: i ∈ G is chosen with probability proportional to Fi, and then
one if its neighbors j ∈ G is chosen uniformly at random. Then, i replaces
the node j.
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3 EMPIRICAL WORK

Both of these models, however, do not alter the graph’s structure, i.e. the connec-
tions or edge weights of the replaced node are left unchanged.

2. An interaction step, in which every pair of nodes interact through a prisoner’s
dilemma game, where each node can either cooperate or defect, and the payoff for
the first player is given by the following payoff matrix

C D( )
C b− c −c
D 0 b

Each of the two players decides whether to cooperate or not in the following way:

• By strategy: We have only two strategies in our model, always-cooperate and
always-defect. Then, if i and j interact with each other, then i’s intended ac-
tion is cooperating iff si = 1, which corresponds to the strategy all-cooperate.

Furthermore, we included the following factors which could add noise to our simulations:

• Mutation: When node i with strategy si makes a copy of itself whose strategy is
s̃i and replaces some other node j, there is some probability that the replication is
not exact, in the sense that si 6= s̃i. We denote the probability of this happening
(in any reproduction event) as u ∈ [0, 1]

• Noise: When node i interacts with node j, and has intention of action ai ∈ {C,D},
we denote pnoise = P[ai 6= ai], where ai is the executed action by i.

Remark. In the death-birth model, the probability that i replaces a node j, given that j
is going to be replaced, or Rate[i→ j], is

Rate [i→ j](s) =
wijFi(s)∑
k∈G wkjFk(s)

3 Empirical Work

Accurately modeling a network of many players interacting simultaneously and updating
their strategies is computationally intense, so to discover the long-term behavior of such
a network we turn to empirical simulations. In such simulations we may explore how
varying the structure, connectivity, and starting proportions of cooperators in a network
affects it’s long-term steady state.

In order to further understand how strategies may propagate from one highly con-
nected group to another, we focus our simulations on modelling barbell, island, and rich
club graphs. Throughout our simulations, we fixed the following parameters for muta-
tion, strength of selection, benefit and cost values, and noise probability, respectively:

u = 5× 10−5 δ = 0.002 b = 2 c = 1 pnoise = 5× 10−5
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3.1 Barbell graphs 3 EMPIRICAL WORK

3.1 Barbell graphs

Although there are several conventional definitions for the barbell graph, in this work
we consider a 2-barbell graph, with the following definition:

Definition 3.1. A 2-barbell graph is a graph consisting of two fully connected cliques
joined by a path of length n between two nodes, one from each clique.

Figure 1 shows an example of a 2-barbell graph with a connecting path of length 2.

Figure 1: A two-clique barbell, with 20% and 70% cooperators in each clique. Color
intensities denote fitness levels, which are randomly chosen at the initial state which is
shown here.

One of the unique structural aspects of barbell graphs is their propensity for protecting
cooperators. Considering the case of a complete clique with N nodes, its value of (b/c)∗

is negative, implying that this graph does not promote the diffusion of cooperators.
However, if our scenario consisted of two cliques (each of size N) which we connect
through a pair of nodes (one representative in each clique), then (b/c)∗ becomes positive
and finite, albeit growing quadratically with respect to the number of nodes, namely
at a rate of O(N2). In other words, connecting two communities that don’t promote
cooperation might result in a new graph that does promote cooperation [2].

Another structural aspect of barbell graphs is that they have the potential to create a
bottleneck for strategy propagation. For example, suppose a network was modeled by a
2-barbell graph in which one clique (call it cliqueA) starts with all nodes cooperating and
the other (call it clique B) starts with all nodes defecting. Aside from variations due to
mutation and noise, the only way for B to gain a cooperator node is for a cooperating node
of A to reproduce and replace a path node, that path node to then in turn reproduce and
replace its neighboring path node, and so on, until finally a cooperating path node can
reproduce its strategy onto B. We supposed that when clique sizes are small, sequence
of actions would be somewhat probable, as is supported by the simulation data in figure
2.

We also supposed that when the clique size increases it becomes much harder for
cooperators propagating into the defector clique to survive. If a cooperator is born into
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3.1 Barbell graphs 3 EMPIRICAL WORK

a very large defector clique it will most likely be exploited by its neighbors until its
fitness level lowers to the point that it dies off. This leads to both cliques retaining their
proportions of cooperators close to their initial states, as is supported by the simulation
data in figure 3. However, for many trials, the data is not so intuitive. Often proportions
of cooperators in cliques remain different from each other, even with clique size is small.

Note that for all simulations of barbell graphs we employ the birth-death model for
strategy updating.

Figure 2: Above we see the proportion of
cooperators over time for each clique in a
2-barbell with cliques of size 15, an inter-
mediary path of length 4, and each clique
starting with either all cooperators or all
defectors. The different cliques are de-
noted by the differently colored and styled
lines.

Figure 3: The proportion of cooperators
over time for each clique in a 2-barbell with
cliques of size 40, an intermediary path of
length 4, and each clique starting with ei-
ther all cooperators or all defectors. The
different cliques are denoted by the differ-
ently colored and styled lines.

In figure 4, we graph the proportions of cooperators over time in each clique of a 2-
barbell when one clique begins with ten percent of its nodes having the strategy cooperate
and the other begins ninety percent of its nodes having the strategy cooperate. Over
time we can see that the proportions of cooperators in each of the nodes become equal.
This can be seen more clearly in figure 5, which plots the difference between proportions
of cooperators in each clique of the barbell. However, in other trials, the difference in
proportions of cooperators remains different, even across long periods of time, as we can
see in figures 6 and 7

To formalize this discrepancy we graph the average of many trials with the same
parameters in figure 8 and see that over time the standard deviation across trials becomes
very high. Therefore our empirical data cannot be considered conclusive, and so in
order to understand the propagation of strategies more precisely, we turn to other graph
structures, as well as theoretical calculations for a graph’s steady state.
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3.1 Barbell graphs 3 EMPIRICAL WORK

Figure 4: The proportion of cooperators
over time for each clique in a 2-barbell with
cliques of size 15, an intermediary path of
length 4, and each clique starting with ei-
ther 10% or 90% cooperators. The differ-
ent cliques are denoted by the differently
colored and styled lines.

Figure 5: Difference in proportions of co-
operators for a two-clique barbell graph
with cliques of size 15, an intermediary
path of length 4, and each clique starting
with either 10% or 90% cooperators.

Figure 6: The proportion of cooperators
over time for each clique in a 2-barbell with
cliques of size 15, an intermediary path of
length 4, and each clique starting with ei-
ther 10% or 90% cooperators. The differ-
ent cliques are denoted by the differently
colored and styled lines.

Figure 7: Difference in proportions of co-
operators for a two-clique barbell graph
with cliques of size 15, an intermediary
path of length 4, and each clique starting
with either 10% or 90% cooperators.
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3.2 Island graphs 3 EMPIRICAL WORK

Figure 8: The average proportion of cooperators over time for each clique in a 2-barbell
with cliques of size 15, an intermediary path of length 4, and each clique starting with
either 10% or 90% cooperators. The different cliques are denoted by the differently
colored and styled lines with their standard deviations drawn in the same color above
and below.

3.2 Island graphs

A similar construction to the barbell graph is that of the island model, whose properties
have been studied greatly by [4]. Note that for all simulations of island graphs we employ
the death-birth model for strategy updating.

Definition 3.2. A two-island graph is a complete undirected graph with no self loops
whose node set is separated into two disjoint sets: an island A and an island B, such
that the edges have the following weights:

• edges connecting two nodes in the same island have weight q

• edges connecting two nodes from different islands have weight m, with m� 1

The choice of edge weights directly affects the probability of two nodes interacting
with each other. Indeed, it is much more likely for nodes in the same island to interact
than for nodes in different islands. This structure has a similar behaviour to that of a
barbell graph, in the sense that, when m is very close to zero, the impact of a node in a
two island graph on a node from the opposite clique can be as small as it would be on a
barbell graph with small path size.

Also, note that if nA and nB are the respective sizes of the islands A and B, then
the assumption that nA = nB = N implies that the island is a weighted regular graph,
namely that for every node i ∈ G, the sum of its incident edge weights is Nm+(N −1)q.
Let us name this homogeneous node weight ω, which will be useful in our theoretical
discussion in Chapter 4.

We ran several simulations on two-island graphs in order to determine how strategies
propagate through its structure. In figures 9 and 10, we see how, even when the starting
proportions of cooperators are very different for each clique, eventually the proportions
of cooperators in every clique converge.
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3.2 Island graphs 3 EMPIRICAL WORK

Figure 9: Two islands, starting with 20%
and 80% of cooperators.

Figure 10: Two islands, starting with 10%
and 90% of cooperators.

In figures 9 and 10, each color corresponds to a trial and each linestyle denotes one of
the two islands. In all trials the graph starts out in a state where one clique has 20%
cooperators and the other has 80% cooperators. As we can see in the above figure, over
time the proportions of cooperators in each clique become equal for a given network.
Note, however, that the exact proportion of cooperators that is reached differs for each
trial.

We also ran simulations in which we averaged the proportion of cooperators in each
of the cliques over more than one trial. In both simulations, all islands had 25 nodes
and m, the weight of edges across cliques, was set as m = 0.002. We ran 50 trials for
Figure 11, whereas we ran 20 trials for plotting the results in figure 12. As the reader
can observe, the proportion of cooperators of both cliques becomes very close in the long
term.

Figure 11: Two islands, starting with 10%
and 90% of cooperators, respectively, over
50 trials, each of 100 timesteps.

Figure 12: Two islands, starting with 40%
and 60% of cooperators, respectively, over
50 trials, each of 100 timesteps.
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3.3 Rich Club graphs

To further understand how the connectivity of graphs affects the propagation of coop-
erative strategies, we shall also examine rich club graphs. Just as above, there might be
different definitions given for a rich club graph. This is, however, the definition that we
worked with:

Definition 3.3. A rich-club graph is a complete, undirected graph with no self loops
whose node set is separated into two groups: a club of size kc and a periphery of size kp,
with kc � kp, such that the edges have the following weights:

• edges connecting two rich club nodes have weight a

• edges connecting a rich club node and a periphery node have weight b

• edges connecting two periphery nodes have weight c

Remark. In our simulations, we utilised values of c that were close to 0 and values of a
that were close to 1. In particular, we used c = 0.1, a = 0.9 and b = 0.5.

In other words, these are extremely heterogeneous graphs constituted by a small
dense core of highly weighted, highly connected nodes called the rich club, and a large
yet sparsely-connected set of nodes called the periphery. This model can be very useful
to represent certain networks like oligarchy institutions [4]. The reason why we were
interested in this graph model was that it was basically an island model, but breaking
the folloing two symmetries: (1) size of graph : our two clique sizes are now far apart
from each other; (2) connectivity within the cliques: the rich club is densely connected
whereas the periphery is sparsely connected.

The following images are the results from running Monte Carlo simulations on rich
clubs. In all simulations of barbell graphs we employ the death-birth model for strategy
updating. The left simulation has: num trials = 1 ; t = 100. The parameters varying
across simulations are specified below:

Figure 13: Club size kc = 8; periph-
ery size kp = 80 ; prop cooprich = 0.4;
prop cooppphery = 0.5

Figure 14: Club size kc = 8; periph-
ery size kp = 70 ; prop cooprich = 0.7;
prop cooppphery = 0.2
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From our simulations, we can see that in rich-club graphs with these parameters there
is a tendency for the proportions of cooperators in the rich-club and the periphery to
converge in the long-term. In particular, the proportion of cooperators that is converged
upon tends to be more similar to the starting proportion of cooperators in the periphery
than that of the rich club.

A possible explanation for this may be that in these models the periphery nodes
have connecting edge weights that are much stronger than those connecting the rich-
club nodes or those connecting the rich-club and the periphery nodes. An area of further
study would be to make differing choices for the parameters a, b, c (a = 0.999, b = 0.8
and c = 0.001 for instance), so that the influence of the periphery on the rich club would
be less notorious.

4 Theoretical Results

Through running the aforementioned simulations and analyzing their empirical results,
several patterns arose. The primary observation was that in all of the graph structures
mentioned above the proportion of nodes with strategy cooperate in each of the given
cliques (respective to their graph structure) converged after many time steps. This
phenomenon, however, was not persistent in all the starting conditions of the two-barbell
graph. Nevertheless, this phenomenon was prevalent in all the simulations performed on
the island model. Therefore, we present the following proposition:

Proposition 4.1. Given a two island graph consisting of two cliques A and B, such that
they have a starting proportion of cooperator nodes CA(0) and CB(0) respectively,

lim
t→∞

| CA(t)− CB(t) |= 0

While this observation has not been proved yet, we present in this section the work
that we did in order to understand this phenomenon. In our calculations, we started by
working with the following variables:

Variable name Meaning

b benefit that a cooperator bestows upon the other player

c cost that a cooperator has to pay in order to help

si the strategy of node i, either cooperate or defect

s the string of random variable si, with i ∈ G
S(t) the string of node strategies at time t

δ strength of selection

wij = wji weight of an edge that connects i and j

wi =
∑

j∈G wij node weights

pij = wij/wi probability of going from node i to node j in a
random walk on G, parametrized by edge weights

ω =
∑

i∈G wi the total node weight of the graph

πi = wi/ω the stationary probability of node i in a random
walk on G, parametrized by edge weights

fi(s) the edge-weighted average payoff of vertex i in state s

Fi(s) the reproductive rate of vertex i in state s
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Note that above, being able to define S(t) implied that we are working in the
continuous-time version of the evolutionary game consisting on the death-birth process,
which, does not affect neither fixation probabilities, nor conditions for success [4]. We
recall that Fi(s) = 1 + δfi(s), as well as the formula for fi(s), the edge-weighted average
payoff of vertex i,

fi(s) = −csi + b
∑
j∈G

pijsj

We work on a two-clique island graph that is updated according to death birth model.
Following the work of Allen et al. (2017) [4], and using all of the values stated above,
we define a function S that describes the state of the graph. Unlike Allen’s original
model, however, we don’t want to measure the number of cooperators, but the difference
between the number of cooperators between the two cliques. We then label the two
cliques as A and B, and define the following variable:

π̃i =

{
πi if i ∈ A
−πi if i ∈ B

Which permits us to define S as

S =
∑
i∈G

π̃isi

An important notion that was introduced in the supplementary notes of [4] was that
of the expected instantaneous rate of change, which we can also use with S:

E
[
S(t+ ε)− S(t) | S(t) = s

]
= D(s)ε+ o(ε)

Note that, given that i replaces j, the change in S is π̃j(si − sj). We can then
calculate the expected instantaneous rate of degree-weighted frequency change D(s) [4]
in the following way :

D(s) =
∑
j∈G

π̃j

(
−sj +

∑
i∈G

si
wijFi(s)∑

k∈GwkjFk(s)

)

= δ

∑
i∈G

si

0 +
∑
j∈G

(
π̃jpjifi(s)− π̃j

∑
k∈G

pjkpjifk(s)

)+O(δ2)

= δ

∑
i∈G

si
∑
j|j∼i

αji(s) +
∑
i∈G

si
∑
i|i�j

αji(s)

+O(δ2)

Remark. Above, we use the following notation to denote an equivalence relation between
members of the same clique: this is, i ∼ j denotes that i is in the same island as j and
i � j denotes that i is not in the same island as j.
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In order, we took the expectation of the change in S using Rate[i→ j] from [4], then
utilised a Taylor expansion around δ = 0, and finally denoted

αji(s) = π̃jpijfi(s)− π̃j
∑
k∈G

pjkpjifk(s)

In order to reduce the first term of D(s), we do the following.

δ
∑
i∈G

si
∑
j|j∼i

αji(s) = δ
∑
i∈G

si

πifi(s) ∑
j|j∼i

pij −
∑
j|j∼i

πi
∑
k∈G

pijpjkfk(s)


= δ

∑
i∈G

si

πifi(s) ∑
j|j∼i

pij − πi
∑
j|j∼i

∑
k∈G

fk(s)
∑
j|j∼i

pijpjk


= δ

∑
i∈G

si

(−πi)fi(s)
∑
j|j�i

pij − (−πi)
∑
j|j�i

∑
k∈G

pijpjkfk(s)


= δ

∑
i∈G

si

(−πi)fi(s)
∑
j|j�i

pij + πi
∑
k∈G

fk(s)
∑
j|j�i

pijpjk


= δ

∑
i∈G

si

πifi(s)
∑
j|j∼i

pij −
∑
j|j�i

pij

+ πi
∑
k∈G

fk(s)

−∑
j|j∼i

pijpjk +
∑
j|j�i

pijpjk


= δ

∑
i∈G

siπi

fi(s)((N − 1)q −Nm
ω

)
+
∑
k∈G

fk(s)

−∑
j|j∼i

pijpjk +
∑
j|j�i

pijpjk


where q denotes the edge weight between nodes in the same island and m denotes the edge

weight between nodes in different islands. Now we focus on reducing−
∑
k∈G

fk(s)
∑
j|j∼i

pijpjk +
∑
j|j�i

pijpjk.

By splitting up our summation according to which of the two islands k is in, we get the
following:

−
∑
k∈G

fk(s)

∑
j|j∼i

pijpjk +
∑
j|j�i

pijpjk

 =

− ∑
j|j∼i, j∼k

fk(s)pijpjk

−
 ∑
j|j∼i, j�k

fk(s)pijpjk

+

 ∑
j|j�i, j∼k

fk(s)pijpjk

+

 ∑
j|j�i, j�k

fk(s)pijpjk

 =

− ∑
j|j∼i, j∼k

fk(s)
q2

ω2

−
 ∑
j|j∼i, j�k

fk(s)
qm

ω2

+

 ∑
j|j�i, j∼k

fk(s)
qm

ω2

+

 ∑
j|j�i, j�k

fk(s)
m2

ω2

 .

Note that in the above equation we assumed j 6= i and j 6= k, since our graphs
have no self loops, and a factor pij = 0 or pjk = 0 would imply that the corresponding
summand is 0. In this last expression, the middle two terms sum to zero, due to the
following: From the complete equation for D(s), we can see that each i value is fixed
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before we take the sums in the above expression. To further our analysis of the last
equation term by term, let us assign the following σi values:

σ1 = −
∑

j|j∼i, j∼k

fk(s)
q2

ω2

σ2 = −
∑

j|j∼i, j�k

fk(s)
qm

ω2

σ3 =
∑

j|j�i, j∼k

fk(s)
qm

ω2

σ4 =
∑

j|j�i, j�k

fk(s)
m2

ω2
.

In both σ2 and σ3 it is the case that i � k. So we can rewrite the expression as the
following:

σ2 + σ3 =
∑
k|k�i

∑
j|j∼k

fk(s)−
∑
j|j�k

fk(s)


Supposing there are N nodes in each clique in our graph, there are N − 1 values of

j such that j ∼ k and N − 1 values of j such that j � k. The value of fk(s) does not
depend on the position of j, so we have that

σ2 + σ3 =
∑
k|k�i

(
(N − 1) · fk(s)− (N − 1) · fk(s)

)
=
∑
k|k�i

0 = 0

Therefore, the equation simplifies to

−
∑
k∈G

fk(s)
( ∑
j|j∼i

pijpjk +
∑
j|j�i

pijpjk

)
= σ1 + σ4

=
(
−

∑
j|j∼i, j∼k

fk(s)
q2

ω2

)
+
( ∑
j|j�i, j�k

fk(s)
m2

ω2

)

=
∑
k|k∼i

∑
j|j∼k

fk(s) ·
−q2

ω2

+

∑
j|j�k

fk(s) ·
m2

ω2


=
∑
k|k∼i

(
(N − 2) · fk(s) ·

q2

ω2
+ (N) · fk(s) ·

m2

ω2

)
=
∑
k|k∼i

fk(s) ·
Nm2 − (N − 2)q2

ω2

Substituting this back into the full equation for D(s) gives us

D(s) = δ
∑
i∈G

siπi

fi(s)((N − 1)q −Nm
ω

)
+
∑
k|k∼i

fk(s) ·
Nm2 − (N − 2)q2

ω2


18



5 DISCUSSION

Because fi(s) = −csi + b
∑

j∈G pijsj , then we know that fi(s) can be lower bounded
fi(s) ≤ b (in the case that i defects while all of its neighbors cooperate). Therefore,

D(s) = δ
∑
i∈G

siπi

fi(s)((N − 1)q −Nm
ω

)
+
∑
k|k∼i

fk(s) ·
Nm2 − (N − 2)q2

ω2


≤ δ

∑
i∈G

siπi

b((N − 1)q −Nm
ω

)
+
∑
k|k∼i

b · Nm
2 − (N − 2)q2

ω2


= δ

∑
i∈G

siπib

(
(N − 1)q −Nm

ω
+
N · (Nm2 − (N − 2)q2)

ω2

)
= δΦb · S

Where Φ =
(

(N−1)q−Nm
ω + N ·(Nm2−(N−2)q2)

W 2

)
is a constant. Similarly, we can observe

the lower bound −c ≤ fi(s) (the case where i is a cooperator and all of its neighbors
defect), and then derive a similar result to the one above, so as to obtain these bounds:

δ(−cΦ · S) ≤ D(S) ≤ δ(bΦ · S)

Then, by assuming equality in both of the inequalities above, we obtain a differential
equation with respect to δ. By solving it, we can then say:

Ω(e−c·Φ·δ
2/2) = S = O(eb·Φ·δ

2/2)

Upon arriving to this result, we were not able to conclude a proof for Proposition 4.
However, working through these calculations was crucial for us to better understand the
relationship of D(S) and S, and thus the long term difference of cooperators between
two cliques in a two island model.

5 Discussion

The reasons behind why individuals sacrifice some of their own fitness in order to help
their neighbors is not well understood by biologists. This is partly due to the enormous
number of factors accounting for individuals’ fitness levels and strategy updates. To
further quantify and understand this phenomenon, we employed computer simulations to
model large networks of nodes simultaneously interacting and updating their strategies.
In particular, this project focused on the behaviour of two-barbell graphs, two-island
graphs, and rich-club graphs, as the reader can observe in sections 3.1, 3.2, and 3.3,
respectively.

In the case of the two-island model, we conjectured that this type of graph behaves
in such a way that over time, the two cliques will come to have the same proportion
of cooperators. This conjecture was supported by our computer simulations, as can be
observed in ??.
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5.1 Future Work

Although this work focused on games having only two possible strategies, there are many
other game variations yet to be explored. The behavior of complicated networks over
long periods of time is still not fully understood, however the following areas of study
may greatly help in shedding light on this complicated topic:

• Concluding the work done in order to prove Proposition 4.

• Developing faster algorithms so that the simulations take less time.

• Relating the phenomenon of decreasing frequency difference between islands dis-
cussed in section 6 with that of thermal equilibrium. Although models for thermal
equilibrium are continuous and models in evolutionary game theory discrete, a pos-
sible way to do this might be to analyze strategy updating as a Poisson process.

• Simulating networks where different types of games are played on different areas of
the graph. This could provide a more accurate model for real-world phenomenon,
as often laws and trade rules differ according to geographical location.

• Incorporating the strategy tit-for-tat, which was mentioned in chapter 1, in the
simulations, so as to make our model more realistic.
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