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Abstract. In this paper, we discuss the decay rate for the solution to semi-
linear energy-critical wave equation that behaves like the free wave. It is known

that free waves in Rn have a decay rate of (1+t)−
n−1
2 . Using the Klainerman-

Sobolev inequality and Strichartz estimates, we are able to prove non-linear

waves that scatter in R3 have a decay rate of t−
1
2 . Moreover, we generalize

the results to Rn to obtain a (1 + t)−
n−2
2 decay rate, and also discuss some

results that might be helpful to improve our bound.

1. Introduction

We study the decay rate for solutions to the energy-critical semi-linear wave
equation:

□u := −∂2
t u+∆u = ±u5

u[0] = (u(0, x), ∂tu(0, x)) = (f, g) ∈ C∞
c (R3)× C∞

c (R3)

in R3 under the scattering assumption, which means that there exists a free wave
uL that solves

□uL = 0

with a possibly different initial condition than f and g, and

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t → ∞.

Remark 1.1 The equation

□u = u5

is often called the defocusing equation, and the equation

□u = −u5

is often called the focusing equation.

The motivation behind this problem is that any free wave uL that has smooth
and compactly supported initial data in R3 has a L∞

x -norm decay rate of t−1. For
semi-linear waves that scatter (i.e. the difference between the semi-linear wave and
the free wave tends to 0), it is tempting to think that they behave very similarly
as t goes to infinity. Hence, we conjectured u should also have a decay rate of t−1,
and the propose of this paper is to give a bound for these semi-linear waves. The
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method we used is similar to the one used in the free wave equation, and we can
prove a t−1/2 decay rate for semi-linear wave equations.

Note that in this paper, we will need our solution u to exist for all time t. In
the defocusing equation, this follows from the global well-posedness described in
Corollary 5.2 in [2]. However, in the focusing case, not all solution u exist for all
time t. (i.e. some u blows up in finite time). The assumption of small energy on
the initial data is required in the focusing equation for u to exist in all time t. In
this paper, we will only be discussing solutions that exist for all time t and doesn’t
blow up in finite time.

Remark 1.2 The intuition behind focusing equations can blow up in finite time
while defocusing equations don’t is due to the plus and minus sign inside the energy
function. Namely, in the defocusing case, we have the energy function

E(u) =

∫
R3

1

2
|ut|2 +

1

2
|∇u|2 + 1

6
|u|6dx

being constant. Hence ∇u, ut, and u are all controlled by a constant that depends
on the initial data. However, in the focusing case, we have the energy function

E(u) =

∫
R3

1

2
|ut|2 +

1

2
|∇u|2 − 1

6
|u|6dx

being constant. Since there is a minus sign in front of |u|6, we can not bound any
terms like we did before and therefore can not prevent u from blowing up.

Theorem 1.3 (Decay rate for ∥u(t, ·)∥L∞
x
) Let u(t, x) be a solution to the following

equation:
□u = ±u5, u[0] = (f, g) ∈ C∞

0 (R3)× C∞
0 (R3)

Assume that there exists a free wave uL with a possibly different initial condition
then f and g, and

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t goes to infinity. Then

∥u(t, ·)∥L∞
x

≤ C√
1 + t

for a constant C that only depends on u and doesn’t depend on t.

We will be using the Klainerman-Sobolev inequality, Strichartz estimates, and
other techniques to establish this bound. Moreover, our results can also be easily
generalized into Rn for any n ≥ 3. Finally, we will also provide some progress that
we made towards to the t−1 decay rate.

2. Preliminaries, Definitions, Klainerman-Sobolev inequality, and
Strichartz estimates

Throughout this paper, the default space we will be working with will always be
R3. If we don’t specify, then all the norms will also be integrating over R3.

To simplify things, we will be using the notation u[t] as

u[t] = (u(t, x), ∂tu(t, x))

to shorten some of our equations, and the ∆ operator here will denote

∆ =
n∑

i=1

∂2
i .
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We will be using X ≲ Y to denote that X ≤ CY for some absolute constant C.
The constant C can vary from line to line.

We will start by recalling the homogeneous and normal Sobolev spaces, which
are spaces that we will be using when studying wave equations:

Definition 2.1 (Sobolev space) The Sobolev space, denoted as Hs, consists of all
functions f such that

∥f∥Hs < ∞,

with norm

∥f∥Hs =

√∫
Rn

|f̂(ξ)|2(1 + |ξ|2)sdξ.

Definition 2.2 (Homogeneous Sobolev space) The homogeneous Sobolev space,

denoted as Ḣs, is very similar to the normal Sobolev spaces. However, the (1+ |ξ|2)
term here will be replaced by just |ξ|2 instead. Namely, Ḣs consists of all functions
f such that

∥f∥Ḣs < ∞,

with norm

∥f∥Ḣs =

√∫
Rn

|f̂(ξ)|2|ξ|2sdξ.

Now we recall the free wave and the energy critical wave equations:

Definition 2.3 (Free wave) A free wave uL is a function that satisfies the wave
equation

□u = 0, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3)

for some initial data (f, g).

Definition 2.4 (Energy critical wave equation) The energy critical wave equation
in Rn has the following form:

□u = ±u
n+2
n−2 (1)

for all n ≥ 3.

Remark 2.5 These wave equations are called energy critical since they satisfy the
scaling invariant property, which means that whenever u(t, x) is a solution to (1),
then

uλ =
1

λ
n−2
2

u(
t

λ
,
x

λ
)

will be a solution as well. Moreover, we also have

∥uλ∥Ḣ1×L2 = ∥u∥Ḣ1×L2

as well, which means that the energy of u is constant no matter what λ is.

Remark 2.6 Since we will be mainly working in R3 here, the energy critical wave
equation will then be

□u = ±u5.

Definition 2.7 (Scattering condition) We say an energy critical wave u scatters
if there exists a free wave uL with possibly different initial conditions that satisfy

∥u[t]− uL[t]∥Ḣ1×L2
x
→ 0

as t goes to infinity.
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Remark 2.8 Notice that the equation we are focusing on is

□u = ±u5.

However, the plus or minus sign doesn’t matter much in our theorems and proofs
since we will always be taking absolute values around u5. Hence from now on, we
will only discuss the equation

□u = u5

unless otherwise stated. Throughout this paper, u will solve the above equation
unless otherwise stated.

We will start off with a fundamental property for general wave equations, which
is the finite speed of propagation [7]. Finite speed of propagation is an important
property that allows us to control a lot of norms since we will only have to integrate
over a finite volume when the initial data has compact support.

Theorem 2.9 (Finite Speed of Propagation) Let u be a solution to the equation

□u = F (u), u[0] = (f, g) ∈ C∞
c × C∞

c ,

with F being smooth and F (0) = 0. Moreover, if f, g are supported in a ball of
radius R centered at the origin, then u(x, t) = 0 when |x| > t+R.

Corollary 2.10 Let u be a solution for

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Suppose that f, g are supported in a ball of radius R centered at the origin, then we
always have u(x, t) = 0 when |x| > t+R.

Proof. Since F (u) = ±u5 satisfies F (0) = 0, Theorem 2.9 proves this immediately.
□

Therefore from now on, we will only need to consider x when |x| ≤ R + t, since
we will always have u(t, x) = 0 otherwise.

Now we introduce one of an essential theorem that will help us obtain a bound for
|∇u(t, x)|, which is the Klainerman-Sobolev inequality [3]. However, we will need
to define some vector fields before we can state the Klainerman-Sobolev inequality.

Definition 2.11 (Invariant vector fields) Let

Γ = {∂t, ∂i,Ωij := xi∂j − xj∂i, S := t∂t +

n∑
i=1

xi∂i,Ω0i := t∂i + xi∂t}

be a set of vector fields. These are the generators of the linear transformations that
commutes with □ in the equation

□u = 0.

Moreover, all the vector fields in Γ actually commutes directly with □, with the
exception of S. To be clear, we have

□(Su) = S(□u) + 2□u,

and so S commutes with □ in the free wave equation.

Remark 2.12 Notice that in R3, there are 5 types of different invariant vector fields
up to symmetry, and a total of 14 of them.

Now we are ready to state the Klainerman-Sobolev inequality.
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Theorem 2.13 (Klainerman-Sobolev inequality) For any integer n, let
u(t, ·) ∈ C∞(Rn) vanish when |x| is large for all t. Then there exists a Cn > 0 such
that

(1 + t+ |x|)
n−1
2 (1 +

∣∣t− |x|
∣∣) 1

2 |u(t, x)| ≤ Cn

∑
|α|≤n

2 +1

∥Γαu(t, ·)∥L2(Rn)

holds for all t ≥ 0.

Notice that this theorem gives us bounds for any smooth function u with compact
support in space in terms of t and |x|, while sacrificing the summation of invariant
vector fields applying to u. Our goal is to bound all the invariant vector fields terms
to get a bound for both |∇u| and |u|, and this will be done in Section 3.

Lastly, we will introduce another essential tool that will help us obtain bounds
for |∇u|, which is called the Strichartz estimates [5]. The Strichartz estimates gives
us an inequality that can be used in a lot of non-linear wave equations, and we
will use it to bound the vector field terms coming from the Klainerman-Sobolev
inequality (Theorem 2.13).

First, we will have to define what does a pair of exponents means to be wave
admissible.

Definition 2.14 (Wave admissible) In the Rn space, a pair of number (p, q) is
called wave admissible if

(1) p, q ≥ 2
(2) 2

p + n−1
q ≤ n−1

2

(3) (p, q, n) ̸= (2,∞, 3)

all holds.

Remark 2.15 The Hölder conjugate of a is denoted as a′, which is defined as

1

a
+

1

a′
= 1.

Now we can state the Strichartz estimates.

Theorem 2.16 (Strichartz estimate) Suppose that

(1) n ≥ 2
(2) (p, q) and (a, b) are both wave admissible
(3) q ̸= ∞, b ̸= ∞
(4) 1

p + n
q = n

2 − γ = 1
a′ +

n
b′ − 2

all holds. Moreover, if u solves the equation

□u = F, u[0] = (f, g),

then for time 0 < T < ∞ the following inequality holds for some constant C:

∥u∥Lp
t ([0,T ];Lq

x(Rn)) + ∥u(T, ·)∥Ḣγ(Rn) + ∥∂tu(T, ·)∥Ḣγ−1(Rn)

≤ C(∥u[0]∥Ḣγ(Rn)×Ḣγ−1(Rn) + ∥F∥La′
t ([0,T ];Lb′

x (Rn))).

Corollary 2.17 In R3, suppose that

(1) (p, q) and (a, b) are both wave admissible
(2) q, b ̸= ∞
(3) 1

p + 3
q = 1

2 = 1
a′ +

3
b′ − 2,
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all holds. Moreover, if u solves the equation

□u = F, u[0] = (f, g),

then for time 0 < T < ∞ we have:

∥u∥Lp
t ([0,T ];Lq

x) + ∥∇u(T, ·)∥L2
x
+ ∥∂tu(T, ·)∥L2

x

≤ C(∥u[0]∥Ḣ1×L2 + ∥F∥La′
t ([0,T ];Lb′

x ))

for some constant C.

Proof. Plug in γ = 1 and n = 3 in Theorem 2.16 and we are done. □

Remark 2.18 Note that the gradient operator in this paper will always be space gra-
dient (i.e. without the time derivative) unless otherwise stated. Hence its L2 norm
will be comparable to the sum of the L2 norms of all derivatives in x. Therefore
we can freely change between

∥∇u∥L2
x

and
3∑

i=1

∥∂iu∥L2
x
.

Now that we have all the tools, we are ready to prove our main results in the
next section.

3. Quantitative decay for energy critical wave equations

Before proving the decay rate for energy critical wave equations, we will first
prove the decay rate for free wave equations. Since the main ideas for proving the
energy critical case follows from the free wave case, it will be helpful to understand
how to prove the decay rate for free waves.

Theorem 3.1 (Decay Rate for free wave equations) Let n be an odd integer, and
u be a solution to the following equation:

□u = 0, u[0] = (f, g) ∈ C∞
c (Rn)× C∞

c (Rn).

Then the following inequality holds:

∥u(t, ·)∥L∞ ≲ 1

t
n−1
2

.

Remark 3.2 The strategy here is to use the Klainerman-Sobolev inequality to first
prove a bound for

∥∇u(t, ·)∥L∞ ,

and then use the fundamental theorem of calculus to get a bound for

∥u(t, ·)∥L∞ .

The reason that we don’t use Klainerman-Sobolev inequality directly on u is that
the term

∥u(t, ·)∥L2

is not controllable. We will also follow this idea when it comes to the energy critical
wave equation.
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Proof. To simplify notations, ∇ in this proof will denote both space and time
derivative. Apply the Klainerman-Sobolev inequality to ∇u(t, x), and we obtain
that

|∇u(t, x)| ≤

Cn

∑
|α|≤n+1

2

∥Γα∇u(t, ·)∥L2
x

(1 + t+ |x|)n−1
2 (1 +

∣∣t− |x|
∣∣) 1

2

. (2)

Now since Γ commutes with □, we have

□Γαu = 0.

Combine that with commuting two Γ will only result in a linear combination of
more Γ and ∂i ∈ Γ, we know from (2) that

|∇u(t, x)| ≤

Cn

∑
|α|≤n+1

2

∥∇Γαu(t, ·)∥L2
x

(1 + t+ |x|)n−1
2 (1 +

∣∣t− |x|
∣∣) 1

2

=

Cn

∑
|α|≤n+1

2

∥∇Γαu(0, ·)∥L2
x

(1 + t+ |x|)n−1
2 (1 +

∣∣t− |x|
∣∣) 1

2

.

(3)

The last equality is the energy equality.
Notice that since we assume f, g ∈ C∞

c , we also have

Γαf,Γαg ∈ C∞
c

for any Γ. Therefore ∑
|α|≤n+1

2

∥∇Γαu(0, ·)∥L2
x
< ∞. (4)

Hence from equation (3) and (4), we have

|∇u(t, x)| ≤ C
′

n

(1 + t+ |x|)n−1
2 (1 +

∣∣t− |x|
∣∣) 1

2

for some constant C
′

n.
Since n is odd, by Chapter 1, Theorem 2.2 in [5] we know that

u(t, x) = 0 if
∣∣t− |x|

∣∣ > R,

where f, g are supported in a ball centered at the origin with radius R (this is the
strong Huygens principle). Therefore for any pair of (t, x), there exists a y such
that

u(t, y) = 0 and
∣∣|y| − |x|

∣∣ ≤ R.

Now by the fundamental theorem of calculus, we now that

|u(t, x)| ≤ |u(t, y)|+R
C

′

n

(1 + t)
n−1
2

≲ 1

(1 + t)
n−1
2

as desired.
□
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Now we will start proving the decay rate for energy critical waves. However,
before proving that all the vector field bounds are finite, we need the following two
lemmas:

Lemma 3.3 (Trapping Lemma) Suppose that there exists a family of continuous
functions Kϵ : R+

0 → R that satisfy both

(1) Kϵ(0) = 0
(2) Kϵ(t) ≤ C + ϵKϵ(t)

m for some fixed m > 1, C > 0.

for all ϵ > 0, then

∥Kϵ(·)∥L∞(R+
0 ) < ∞

holds for some ϵ > 0.

Remark 3.4 This lemma will be used later in the scattering lemma (lemma 3.5) to
show that once a function is small enough at time t = 0, then it will always be
bounded.

Proof. If C > 1, choose ϵ = 1
(2C)m . Then

sup{x− ϵxm | x ≥ 0} ≥ 2C − (2C)m

(2C)m
= 2C − 1 > C.

If C ≤ 1, then choose ϵ = 1
4m and we know that

sup{x− ϵxm | x ≥ 0} ≥ 4− 1 = 3 > C.

Hence by continuity

Kϵ(t) ∈ [0, Qm],

where Qm is the smallest positive root for the equation x− ϵxm = C. Therefore we
can conclude that

∥Kϵ(·)∥L∞(R+
0 ) < ∞

holds for some ϵ > 0 as desired. □

Notice that one of our assumption to the energy critical wave is that u scatters,
which means that

∥u[t]− uL[t]∥Ḣ1×L2 → 0.

This assumption isn’t necessarily easy to use, but we can get an equivalent state-
ment that controls some norms of u.

Lemma 3.5 (Scattering lemma)

(1) If

∥u∥La
t L

b
x
< ∞

holds for some (a, b) such that

1

a
+

3

b
=

1

2
and a, b ≥ 1,

then there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t goes to infinity.
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(2) If there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t goes to infinity, then

∥u∥La
t L

b
x
< ∞

holds for all (a, b) such that

1

a
+

3

b
=

1

2
and a, b ≥ 1.

Proof. (1) follows from Theorem 6.1 in [2], so we will only be proving (2) here.
First let p = 5

4 , q = 30
17 , then by the Strichartz estimates and Hölder’s inequality

we know that

∥u∥L5
tL

10
x

≤ C(∥f∥Ḣ1 + ∥g∥L2 + ∥u5∥Lp
tL

q
x
)

= C(K + ∥(u− uL + uL)
5∥Lp

tL
q
x
)

≤ C(K + ∥(u− uL)
5∥Lp

tL
q
x
+ ∥u5

L∥Lp
tL

q
x
)

≤ C(K + ∥(u− uL)∥L∞
t L6

x
∥(u− uL)∥4L5

tL
10
x

+ ∥u5
L∥Lp

tL
q
x
).

Now again by Strichartz estimates we know that

∥u5
L∥Lp

tL
q
x
= ∥uL∥5L5p

t L5q
x

is bounded by initial data and therefore finite. The Sobolev inequality [3] also tells
us that

∥u− uL∥L∞
t L6

x
≤ ∥u− uL∥L∞

t Ḣ1 .

Notice that for any ϵ > 0, we can choose a T big enough such that

∥u− uL∥L∞
t ([T,∞);Ḣ1) ≤ ϵ

since the Ḣ1 norm goes to 0 as t goes to infinity. Combining these two inequalities
while setting T as the new initial starting time and we have

∥u∥L5
tL

10
x

≤ C(K + ϵ∥(u− uL)∥4L5
tL

10
x
)

≤ C(K + ϵ∥u∥4L5
tL

10
x
).

By the trapping lemma (lemma 3.3) we know that there exists an ϵ > 0 such
that

∥u∥L5
t ([T,∞);L10

x )

is finite. (Here T depends on ϵ).
Moreover, by the finite speed of propagation, we know that

∥u(t, ·)∥L10
x

is just integrating u over a finite space, and

∥u∥L5
t ([0,T );L10

x )

is just integrating
∥u(t, ·)∥L10

x

over a finite interval, so it must be finite. Hence

∥u∥L5
tL

10
x

= ∥u∥L5
t ([0,T );L10

x ) + ∥u∥L5
t ([T,∞);L10

x )

is finite.
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Now that we have ∥u∥L5
tL

10
x

is finite, we can again use the Strichartz estimates

to show that for all (a, b) such that

1

a
+

3

b
=

1

2
and a, b ≥ 1,

we have

∥u∥La
t L

b
x
≤ C(∥f∥Ḣ1 + ∥g∥L2 + ∥u∥5L5

tL
10
x
) < ∞

as desired. □

With this lemma, we can use the scattering assumption to control some of the
norms for u and use them in the Strichartz estimates once again. However, this
time we will be putting them on the right-hand side of the inequality and try to
bound the left-hand side, which consists of the invariant vector fields applied to u.

Lemma 3.6 (Bounds for ∥∇Γαu(t, ·)∥L2
x
) Let u be a solution to the equation

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Suppose there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t → ∞, then

∥∇Γαu(t, ·)∥L2
x

is bounded by a constant for every |α| ≥ 0 that is independent of t.

Proof. Let’s first prove the case |α| = 0, which means that we will have to bound

∥∇u(t, ·)∥L2
x

by a constant. Since

□u = u5,

this is just a straightforward application of the Strichartz estimates (Corollary 2.17):

∥∇u(T, ·)∥L2
x
≤ C(∥u[0]∥Ḣ1×L2 + ∥u5∥L1

t ([0,T ];L2
x)
)

= C(∥u[0]∥Ḣ1×L2 + ∥u∥5L5
t ([0,T ];L10

x ))

≤ C(∥u[0]∥Ḣ1×L2 + ∥u∥5L5
t ([0,∞);L10

x )).

The last expression above is a constant independent of T since

∥u∥L5
t ([0,∞);L10

x )

is bounded by Lemma 3.5.
Now for |α| ≥ 1, the idea is that we apply Γα on both sides of the original

equation □u = u5, which will give us

Γα□u = Γαu5.

Notice that all Γ except for S commutes with □. Moreover, even when Γ = S we
have

S(□u) = □(Su)− 2□u = □(Su)− 2u5.

When there are two S we have

S2(□u) = S(□(Su)− 2u5) = □(S2u)− 2□(Su)− 2Su5,
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and so on. Combine that with all the Γ being linear; we know that after applying
Γα to the original equation, it will have the form of

□(Γαu) = P (Γαu,Γα−1u, . . . ,Γu, u). (5)

Where P is homogeneous,

P ∈ Z[Γαu,Γα−1u, . . . ,Γu, u], deg(P ) = 5,

and Γα−mu means there are m less Γ applied to the equation. Moreover, the term
u4Γαu will always have a nonzero coefficient in P.

By the Strichartz estimates applying on (5) we know that

∥Γαu∥L5
t ([0,T ];L10

x ) + ∥∇Γα(T, ·)u∥L2
x

≤ C(∥Γαu[0]∥Ḣ1×L2 + ∥P∥L1
t ([0,T ];L2

x)
).

Now by Lemma 3.5 we know that

∥u∥L5
t ([0,∞);L10

x ) < ∞.

Therefore for any ϵ > 0, we can find a series of number

0 = T1 < T2 < T3 < · · · < TM = ∞
such that

∥u∥L5
t ([Ti,Ti+1];L10

x ) < ϵ

for all 1 ≤ i ≤ M − 1. Notice that we can make any Ti ̸= TM be the initial time,
then from the above inequality we know that for all T ∈ [Ti, Ti+1], the following
inequality holds:

∥Γαu∥L5
t ([Ti,T ];L10

x ) + ∥∇Γα(T, ·)u∥L2
x

≤ C(∥Γαu[Ti]∥Ḣ1×L2 + ∥P∥L1
t ([Ti,T ];L2

x)
).

By Hölder’s inequality and there is a term in P that consists of both Γαu and u,
we can continue the above inequality:

≤ C(∥Γαu[Ti]∥Ḣ1×L2

+∥Γαu∥L5
t ([Ti,T ];L10

x )∥u∥L5
t ([Ti,T ];L10

x )∥P1∥L5/3
t ([Ti,T ];L

10/3
x )

+ ∥P2∥L1
t ([Ti,T ];L2

x)
).

(6)

Here

P1, P2 ∈ Z[Γα−1u, . . . ,Γu, u], deg(P1) = 3,deg(P2) = 5.

Choose ϵ small enough such that the constant for

∥Γαu∥L5
t ([Ti,T ];L10

x )

is less than 1
2 for all i in the right hand side of (6), then we have

1

2
∥Γαu∥L5

t ([Ti,T ];L10
x ) + ∥∇Γα(T, ·)u∥L2

x
≤ C(∥Γαu[Ti]∥Ḣ1×L2 + ∥P2∥L1

t ([Ti,T ];L2
x)
).

By the finite speed of propagation we know that the right hand side of the above
equation is always finite. Let

Q = max{C(∥Γαu[Ti]∥Ḣ1×L2 + ∥P2∥L1
t ([Ti,T ];L2

x)
)} | 1 ≤ i ≤ M − 1} < ∞,

then we have

∥∇Γα(T, ·)u∥L2
x
≤ Q

for some constant Q independent of T as desired.
□
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The above lemma is very close to what we wanted, the only thing that is missing
is that we successfully bounded

∥∇Γαu(t, ·)∥L2
x
,

but what we have in the Klainerman Sobolev inequality is

∥Γα∇u(t, ·)∥L2
x
.

To fix this, we will need one more lemma:

Lemma 3.7 (Bounds for ∥Γα∇u(t, ·)∥L2
x
) Let u be a solution to the equation

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Suppose there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t → ∞, then

∥Γα∇u(t, ·)∥L2
x

is bounded by a constant for every |α| ≥ 0 that is independent of t.

Proof. By Lemma 3.6 we know that

∥∇Γαu(t, ·)∥L2
x

is bounded by a constant for every |α| ≥ 0 that is independent of t. Now we know
from remark 2.18 that we can change ∇ into the sums of ∂i. Moreover, commuting
∂i and Γ will result in a linear summation of multiple ∂j terms (1 ≤ j ≤ 3). Hence
every

∥Γα∇u(t, ·)∥L2
x

can be written as a linear combination of

∥∇Γαu(t, ·)∥L2
x
,

which means they are also bounded.
□

With the above lemmas, we can now easily prove the decay rate for ∇u by
applying the Klainerman-Sobolev inequality to ∇u. However, the Klainerman-
Sobolev inequality requires the function being applied on the be smooth in space
and has compact space support for all t > 0, and we will need to show that ∇u does
have these characteristics. The compact space support part is a direct corollary of
the finite speed of propagation, and we will show that ∇u is smooth here.

Proposition 3.8 (Persistence of regularity) Let u be a solution to the equation

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Suppose there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t → ∞, then

∇u(t, ·) ∈ C∞(R3)
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Proof. By Sobolev embedding, we only need to prove that

u(t, ·) ∈ Hs

for all s. Now to prove ∇u is in Hs, we will need to show that

∥∇∇αu(t, ·)∥L2
x

is finite for all 0 ≤ |α| ≤ s. (There is one extra ∇ since our original function already
has 1). Moreover, notice that ∇ can be partitioned into 3 different ∂i, and all of
them are one of the invariant vector fields described in Definition 2.11. Hence by
Lemma 3.6, we know that

∥∇∇αu(t, ·)∥L2
x
⊂ ∥∇Γαu(t, ·)∥L2

x

is finite for all |α| ≥ 0
Now we are all set to show the decay rate for ∇u: □

Theorem 3.9 Let u be a solution to the equation

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Suppose there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t → ∞, then

|∇u(t, x)| ≲ 1

(1 + t+ |x|)(1 +
∣∣t− |x|

∣∣) 1
2

.

Proof. Apply the Klainerman-Sobolev inequality to ∇u(t, x), and we obtain that

|∇u(t, x)| ≤
C3

∑
|α|≤2

∥Γα∇u(t, ·)∥L2

(1 + t+ |x|)(1 +
∣∣t− |x|

∣∣) 1
2

.

Now by Lemma 3.7 we know that∑
|α|≤2

∥Γα∇u(t, ·)∥L2

is bounded by a constant independent of t. Hence we have

|∇u(t, x)| ≲ C

(1 + t+ |x|)(1 +
∣∣t− |x|

∣∣) 1
2

,

where C is a constant only depending on u.
□

Corollary 3.10 Let u be a solution to the equation

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Suppose there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t → ∞, then

∥∇u(t, ·)∥L∞ ≲ 1

1 + t
.
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Proof. This is a straightforward application of Theorem 3.9. Since

|∇u(t, x)| ≲ 1

(1 + t+ |x|)(1 +
∣∣t− |x|

∣∣) 1
2

,

we know that for any fixed t the following holds:

|∇u(t, x)| ≲ 1

1 + t
.

□

Now we are finally ready to prove Theorem 1.3, which is ∥u(t, ·)∥L∞
x

decays like

t−1/2:

Proof. By the fundamental theorem of calculus, we know that

|u(t, x)| ≤ |u(t, x

|x|
(R+ t))|+

∫ R+t

|x|
|∇u(t, y)|dy

≤ |u(t, x

|x|
(R+ t))|+

∫ R+t

0

|∇u(t, y)|dy.

Combine this with finite speed of propagation (Theorem 2.9) and the bounds for
∇u (Theorem 3.9), we obtain

|u(t, x)| ≤
∫ R+t

0

dy

(1 + t+ y)
√
1 + |t− y|

=

∫ t

0

dy

(1 + t+ y)
√
1 + t− y

+

∫ R+t

t

dy

(1 + t+ y)
√
1 + y − t

≤
(∫ t

0

dy

(1 + t+ y)
√
1 + t− y

)
+

R

1 + t
.

Now ∫ t

0

dy

(1 + t+ y)
√
1 + t− y

=
ln(1 +

2−2
√

2(t+1)

2t+1 )− ln(3− 2
√
2)√

2(1 + t)
.

Since ln(3−2
√
2) is a constant, we will only need to try to bound ln(1+

2−2
√

2(t+1)

2t+1 ).
Notice that

3− 2
√
2 ≤ 1 +

2− 2
√
2(t+ 1)

2t+ 1
≤ 1

holds for all t ≥ 0, which means that

ln(3− 2
√
2) ≤ ln(1 +

2− 2
√
2(t+ 1)

2t+ 1
) ≤ 0.

Therefore we can conclude that

|u(t, x)| ≤ − ln(3− 2
√
2)

1
√
1 + t

≲ 1√
1 + t

as desired.
□
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4. Discussion

In this section, we will show some results we have that could lead us to prove
the 1

1+t decay rate.

From Theorem 3.9 we have a bound for |∇u| that is approximately 1
(1+t)1.5 when

|x| is away from t. By the fundamental theorem of calculus it is straightforward to
guess that the bound for |u| using |∇u| will be 1√

1+t
. However, if we restrict |x|

into some smaller area, then we will be able to obtain a better bound than 1√
1+t

.

Proposition 4.1 Let u(t, x) be a solution to the following equation:

□u = ±u5, u[0] = (f, g) ∈ C∞
0 (R3)× C∞

0 (R3)

Assume that there exists a free wave uL with a possibly different initial condition
then f and g, and

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t goes to infinity. Then for any β < 1, there exists an ϵ = 1−β
2.5 > 0 such that

∥u(t, ·)∥L∞
x (|x|≥t−tβ) ≤

C

(1 + t)0.5+ϵ

holds for a constant C that only depends on u.

Proof. From Theorem 3.9 we know that

|∇u(t, x)| ≲ 1

(1 + t+ |x|)(1 +
∣∣t− |x|

∣∣) 1
2

.

The finite speed of propagation tells us that we only need to consider

|x| ≤ R+ t.

Hence by the fundamental theorem of calculus, we know that when
t− tβ ≤ |x| ≤ R+ t, the following inequality holds

|u(t, x)| ≤
∣∣u(t, x

|x|
(R+ t))

∣∣+ ∫ R+t

|x|
|∇u(t, y)|dy

≤
∫ t

t−tβ
|∇u(t, y)|dy +

∫ R+t

t

|∇u(t, y)|dy.

Now choose

a1 = 0.5− ϵ, ai+1 =
ai
2

+ 0.5− ϵ.

We know that

lim
n→∞

an = 1− 2ϵ > β,

since ϵ = 1−β
2.5 . Hence we have

|u(t, x)| ≤
∫ t

t−ta1

|∇u(t, y)|dy +
N∑
i=1

∫ t−tai

t−tai+1

|∇u(t, y)|dy +
∫ R+t

t

|∇u(t, y)|dy

for some N large enough such that aN > β. Now each term from the above
inequality can be bounded as follow:∫ t

t−ta1

|∇u(t, y)|dy ≲ ta1

(1 + t)
≤ 1

(1 + t)0.5+ϵ
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t−tai+1

|∇u(t, y)|dy ≲ tai+1

(1 + t)
√
1 + tai

≲ tai+1

(1 + t)(1 + t)
ai
2

≤ 1

(1 + t)0.5+ϵ∫ R+t

t

|∇u(t, y)|dy ≲ R

1 + t
≲ 1

1 + t
.

Since N is finite, we can sum up the three inequalities above and proved that

|u(t, x)| ≲ 1

(1 + t)0.5+ϵ

for some ϵ > 0 when |x| ≥ t− tβ . Therefore

∥u(t, ·)∥L∞
x (|x|≥t−tβ) ≤

C

(1 + t)0.5+ϵ

holds.
□

Remark 4.2 The above proposition tells us that the decay rate for energy critical
waves is better than 1√

1+t
when |x| is near t. However, the volume where |x| ≤ t−tβ

is still grows like t3 no matter how close β is to 1.

Theorem 1.3 gives us the 1√
1+t

bound, which is not quite the 1
1+t we expected.

The above proposition gave us a slightly better 1
(1+t)0.5+ϵ bound for certain areas.

Now we show that the ϵ we improved can actually be very beneficial for us to
improve the bound towards 1

1+t . Namely, the global 1
(1+t)0.5+ϵ decay will give us

the global 1
1+t decay immediately:

Proposition 4.3 Let u(t, x) be a solution to the following equation:

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Assume that there exists a linear wave uL(t) such that

∥u(t)− uL(t)∥Ḣ1×L2 → 0

as t goes to infinity, and

∥u(t, ·)∥L∞
x

≲ 1

(1 + t)
1
2+ϵ

for some ϵ > 0, then

∥u(t, ·)∥L∞
x

≤ 1

1 + t
.

Remark 4.4 Assume that we already have the bound improved to 1

(1+t)
1
2
+ϵ
, then

we can use this result to improve the bound to 1
1+t . This implies that if the decay

rate for ∥u(t, ·)∥L∞
x

is a polynomial in t, then it can only be 1
1+t or 1√

1+t
.

Proof. Suppose that we already have

∥u(t, ·)∥L∞
x

≲ 1

(1 + t)
1
2+ϵ
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holds for a fixed ϵ > 0, then by the Duhamel’s formula [2] we know that

|u(t, x)− uL(t, x)| ≤
∫ ∞

t

∣∣∣∣∫
R3

eiπx
sin((t− s)|ξ|)

|ξ|
û5(s, ξ)dξ

∣∣∣∣ ds
=

∫ ∞

t

1

4π(s− t)

∫
|x′=x|=|s−t|

u5(s, x′)dS(x′)ds.

The equality above comes from equation (7) from [6]. Now from our assumption
for the decay rate of u, we know that∫ ∞

t

1

4π(s− t)

∫
|x′−x|=|s−t|

u5(s, x′)dS(x′)ds.

≲
∫ ∞

t

4π(s− t)2

4π(s− t)

1

(1 + s)2.5+5ϵ
ds =

∫ ∞

t

(s− t)

(1 + s)2.5+5ϵ
ds ≲ 1

(1 + s)0.5+5ϵ
.

Hence

|u(t, x)− uL(t, x)| ≲
1

(1 + t)0.5+5ϵ
.

We already know from Theorem 3.1 that the free wave uL decays like 1
1+t , which

implies that ∥u(t, ·)∥L∞
x

has a decay rate of 1
(1+t)0.5+5ϵ . Do the above progress for

K times and we will be able to prove that

∥u(t, ·)∥L∞
x

≲ 1

(1 + t)min{0.5+5Kϵ,1} =
1

1 + t

if we take K large enough. □

The above argument gave us the 1
1+t bound but required some additional as-

sumptions. On the other hand, we can also prove the desired 1
1+t decay rate without

any additional conditions inside any compact space using Hardy’s inequality [4].

Theorem 4.5 (Hardy’s inequality) Let f be a smooth function with compact sup-
port, then the following inequality holds:∥∥∥∥f(x)|x|

∥∥∥∥
Lp(Rn)

≤ p

n− p
∥∇f∥Lp(Rn).

Theorem 4.6 (Decay rate within compact support) Let u(t, x) be a solution to the
following equation:

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Assume that there exists a linear wave uL with possibly different initial conditions
then f and g, and

∥u(t)− uL(t)∥Ḣ1×L2 → 0

as t goes to infinity. Let K be any compact space, then

||u(t, ·)||L∞
x (K) ≲

1

1 + t
.

Proof. Since K is a compact set, we know that there exists a real number R such
that K ⊂ B(0, R).
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Let χR be a function that is constant in t and smooth in x. Moreover, χR is 1
inside B(0, R), 0 outside of B(0, R + 1), and is decreasing in between them. Then
by Theorem 4.5, we know that

1

R+ 1
∥χRu(t, ·)∥L2

x
≤

∥∥∥∥χRu(t, ·)
|x|

∥∥∥∥
L2

x

≤ 2

n− 2
∥∇(χRu(t, ·))∥L2

x
.

Hence we know that

∥χRu(t, ·)∥L2
x
≲ ∥∇(χRu(t, ·))∥L2

x
.

Now since χRu is a smooth function, its derivative is bounded be a constant. Com-
bine that with Theorem 1.3 and Theorem 3.9 we know that

∥∇(χRu(t, ·))∥L2
x
= ∥∇(χRu(t, ·))∥L2

x(B(0,R+1))

≤ ∥∇u(t, ·)∥L2
x(B(0,R+1)) + ∥(∇χR)u(t, ·)∥L2

x(B(0,R+1))

≲ 1

(1 + t)1.5
+ ∥u(t, ·)∥L2

x(B(0,R+1))

≲ 1

(1 + t)1.5
+

1√
1 + t

.

Note that we have

|∇u(t, x)| ≤ 1

(1 + t)1.5

since we are only considering a compact set, and therefore t is far away from |x|
when t is big enough.

Therefore we proved that

∥χRu(t, ·)∥L2
x(Rn) ≲

1√
1 + t.

(7)

For the other invariant vector field terms, we know that

∥ΓαχRu(t, ·)∥L2
x

will be bounded like the one above since |x| is finite, except when Γ consists of the
weight t.

Notice that the weight t always pairs up with ∂t or ∂i in Γ.
Now when we apply t∂t on χR, it will simply vanish since χR is constant in t.

Moreover, when t∂t is applied to u, it won’t change the order of u since we will gain
1
t from ∂t and t back right after.

For t∂i, when we apply it on χR, we will gain a t; when we applied to u, it won’t
change the order of u since we will again gain 1

t from ∂i and t back right after.
Therefore the worst possible term is

∥ΓαχRu(t, ·)∥L2
x
,

where |α| = 2 and both Γ consists of t∂i. Let t∂i = Ω, then∥∥Ω2χRu(t, ·)
∥∥
L2

x
≲ ∥Ωtu(t, ·)∥L2

x
+ ∥ΩχRu(t, ·)∥L2

x

≲
∥∥t2∇u(t, ·)

∥∥
L2

x
+ ∥tu(t, ·)∥L2

x
+ ∥t∇u(t, ·)∥L2

x

≲
√
1 + t+

√
1 + t+

1

1 + t

≲
√
1 + t.

(8)
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Since χRu(t, x) is smooth in space and has compact space support, we can use the
Klainerman-Sobolev inequality on χRu(t, x) and obtain that

|χRu(t, x)| ≲

∑
|α|≤2

∥ΓαχRu(t, ·)∥L2

(1 + t+ x)
√
1 +

∣∣t− |x|
∣∣ . (9)

Now by |x| ≤ R+ 1, (7), (8), and (9) we know that

|χRu(t, x)| ≲

∑
|α|≤2

∥ΓαχRu(t, ·)∥L2

(1 + t)1.5
≲ 1

1 + t
.

Finally, since χRu(t, x) = u(t, x) when x ∈ K, we proved that

||u(t, ·)||L∞
x (K) ≲

1

1 + t
.

□

For the last part of the paper, I would like to point out that almost all the
theorems we proved above can be easily generalized from R3 into Rn for all n ≥ 3.
Recall the energy critical equation in Rn is

□u = u
n+2
n−2 .

Using the same argument, we have the following two decay rates for u:

Theorem 4.7 Let u be a solution to the equation

□u = u5, u[0] = (f, g) ∈ C∞
c (R3)× C∞

c (R3).

Suppose there exists a linear wave uL such that

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t → ∞, then

|∇u(t, x)| ≲ 1

(1 + t+ |x|)n−1
2 (1 +

∣∣t− |x|
∣∣) 1

2

.

Theorem 4.8 (Decay rate for ∥u(t, ·)∥L∞
x

in Rn) Let u(t, x) be a solution to the
following equation:

□u = u
n+2
n−2 , u[0] = (f, g) ∈ C∞

0 (Rn)× C∞
0 (Rn)

Assume that there exists a free wave uL with a possibly different initial condition
then f and g, and

∥u[t]− uL[t]∥Ḣ1×L2 → 0

as t goes to infinity. Then

∥u(t, ·)∥L∞
x

≤ C

(1 + t)
n−2
2

for a constant C that only depends on u.

The proof for both theorems is entirely analogous to the R3 case. The only
difference is when using the Klainerman Sobolev inequality, we get more powers of
(1 + t+ |x|) in the denominator and therefore have a bound that depends on n.
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