
Uniform Generation of w-free Strings and H-free
Subgraphs with Partial Rejection Sampling

SPUR Final Paper, Summer 2018

Juan Gil and Joshua Amaniampong

Mentor: Jake Wellens

Project suggested by: Jake Wellens
August 1, 2018

Abstract

Recently, Guo, Jerrum, and Liu introduced a simple and powerful general purpose algo-
rithm for exact uniform sampling, which they called partial rejection sampling (PRS). The
technique has applications to a variety of sampling problems, including random spanning
trees, sink-free orientations of a graph, satisfying assignments of certain CNFs, and point
configurations from the so-called Hard Disks model. It was also used to give an FPRAS
for the all-terminal network reliability problem. PRS always produces uniform samples by
design, but in general, it can be quite inefficient – in many cases, it simply degenerates to
rejection sampling. In this paper, we prove that PRS can be used to efficiently sample from
two types of spaces. The first space is the set of strings s ∈ Σn avoiding some contiguous
substring w. The second is the set of (non-induced) subgraphs of various grids avoiding a
certain subgraph H. In each case, we exploit the geometry of the underlying dependency
graphs to prove the efficiency of PRS in parameter regimes that are much larger than those
obtained by simply applying the original analysis of Guo et al. to these problems.

1

1 Introduction

Given a set of “bad” events A1, . . . , Am depending on variables X1, . . . , Xn, how can we sample
a uniformly random assignment σ to the variables subject to the constraint that

σ ∈
m⋂
i=1

Ai ?

The most naive approach would be to repeatedly sample an assignment σ uniformly at ran-
dom until, by a stroke of luck, σ ∈ ∩mi=1Ai. While this algorithm is attractively simple and
always outputs a sample from the desired distribution upon termination, it takes an often
intractably large 1

Pr[∩m
i=1Ai]

rounds in expectation. Is there a general-purpose way to make
rejection sampling more efficient? Enter partial rejection sampling.

Introduced by Guo, Jerrum and Liu in 2017, partial rejection sampling (PRS) is a general
algorithm for uniform sampling which captures (at least partially) the simplicity of rejec-
tion sampling, without necessarily taking an enormous number of rounds to terminate when
Pr[∩mi=1Ai] is small.

The basic idea behind partial rejection sampling is simple: instead of resampling all of the
variables every time at least one bad event occurs, we only sample a subset of them. Suppose
σ is some assignment to the variables X1, . . . , Xn. If Bad(σ) is the set of bad events which
occur under this assignment, and each Ai depends on a subset var(Ai) of variables, then we
will certainly want to resample all of the variables in ∪i∈Bad(σ)var(Ai), so that every one of
these occurring events has a chance of being avoided in the next sample. (This is in fact what
Moser and Tardos’s celebrated constructive proof (7) of the Lovasz Local Lemma does).

There is an important class of instances for which this algorithm already outputs a uniform
sample, i.e. resampling ∪i∈Badvar(Ai) is already sufficient to guarantee uniformity upon ter-
mination. These are called extremal instances, and are characterized by the property that
dependent bad events are disjoint. In other words, the set of occurring bad events is always an
independent set inside the dependency graph. The classic “sink-popping” algorithm of Cohn,
Pemantle and Propp (1) – which generates a uniformly random sink-free orientation of an undi-
rected graph by randomly reorienting all edges incident to a sink– fits into this framework1,
and is in fact where the term “partial rejection sampling” was first used. We’ll discuss other
examples of extremal partial rejection sampling in depth in Section 2 of this paper.

In general, however, to obtain a uniform sample avoiding the bad events, one has to resample
a larger set of variables. Guo et al. provided one method of doing this, which is the one
we discuss in Section 3. As shown in (3), this method of selecting the resampling set (Res)
yields a sampling algorithm which is, generally speaking, efficient when any dependent pair
of bad events share many of their variables. As an example, the authors of (3) use PRS to
sample satisfying assignments of k-CNFs with the property that no variable occurs in more
than ≈ 2k/2 clauses, and every pair of dependent clauses share at least k/2 variables. The
problems we consider in this paper do not have this large-overlap feature, and so in proving

1No edge can point from one sink to another sink, and so the sinks form an independent set in the input
graph, which is also the dependency graph for this problem.

2

efficiency of PRS we need to exploit different properties of the underlying dependency graphs,
tailored to these specific examples.

The following theorem, proved in (3), gives a set of sufficient conditions under which PRS runs
efficiently. To state their result we need to introduce a bit of notation. Let p = maxi Pr[Ai] be
the maximum probability of a bad event, and let Rij be the event that a random assignment
on var(Ai) ∩ var(Aj) can be extended to an assignment satisfying Aj . Set r = maxi,j Pr[Rij].

Theorem 1. ((3), Theorem 26): Let m be the number of bad events, n the number of variables,
and ∆ the maximum degree in the dependency graph. For any ∆ ≥ 2, if 6ep∆2 ≤ 1 and
3er∆ ≤ 1, then the expected number of rounds used by PRS is O(logm) and the expected
number of resampled events is at most O(m).

In this paper, we apply and analyze the performance of partial rejection sampling on two types
of problems within the variable framework:

• Sampling w-free strings: Given input (Σ, w, n), where Σ is a finite alphabet and w is
some string over Σ, generate a uniformly random element of Σn which does not contain
w as a contiguous substring.

• Sampling H-free subgraphs: Given an input (G,H, λ), where G and H are graphs
and λ ∈ (0, 1), generate a sample from the following distribution, which is supported on
H-free (non-induced) subgraphs of G:

Pr(G′) ∝

λe(G
′)(1− λ)e(G)−e(G′) ∝

(
λ

1−λ

)e(G′)
if G′ ⊆ G is H-free

0 otherwise
(1)

In this paper we only deal explicitly with the case that G is a subgraph of either the
triangular or the square grid, and H is either a triangle or a square, respectively.

We quickly survey what is known about each of these problems, and finally state our results.

1.1 w-free string sampling

There is a somewhat obvious algorithm which solves this problem exactly: for each character
a ∈ Σ, use generating functions and/or recursive formulas to compute the number of w-free
strings whose first bit is a. Sample the first bit according to this distribution and proceed
recursively. While this is technically an efficient algorithm, it is somewhat impractical and has
a number of undesirable features. For one, this procedure becomes more complicated as |Σ|
and |w| grow large – indeed, the most natural implementations involve computing Ω(|Σ||w|)
generating functions in general, and/or finding and the roots of various polynomial equations.
Such algorithms are also not robust to slight changes in the problem structure – for example,
if the string is wrapped back on itself into a circle or a figure 8, or more complicated shapes,
the combinatorics of exact counting can quickly become impossible. Approximate sampling
via Monte-Carlo-Markov-Chain methods is also possible, although we do not know if this can
be turned into an exact sampler (e.g. via coupling from the past).

3

In the notation of Theorem 1, the general case of the w-free string sampling problem has
p = |Σ||w|, ∆ = 2(|w| − 1), and r = 1

|Σ| . Appealing directly to Theorem 1 would require

|Σ| > 16|w|,

which is rather undesirable. We show that for |Σ| ≥ 3 and any string w, this condition is not
necessary.

Theorem 2. For |Σ| ≥ 3 and any w, the expected number of rounds used by PRS to sample a
w-free string in Σn is O(logn) and the expected number of resampled events is O(n).

It will be clear from the proof that Theorem 2 also applies to circular strings (i.e. necklaces),
and can be adapted to more complicated structures without much loss (one only needs to add
the assumption |w| ≥ C, for some C depending on the number of self intersections.) As we
will show in Section 2, the condition |Σ| ≥ 3 in Theorem 2 cannot be removed. However, as a
corollary of our proof of this theorem, we are able to show that PRS works for w-free string
sampling over binary alphabets for w satisfying certain conditions (see Corollary 17).

1.2 H-free subgraph sampling

In contrast to string sampling, the exact counting problem for subgraph sampling seems quite
hard, even in subgraphs of a grid. However, when G and H have the property that no edge
of G appears in more than 2 copies of H inside G, then there is an FPRAS for approximately
sampling from this distribution when λ ≤ 1/2, based on an algorithm of Lin, Liu and Lu (6).
Both the square and triangular grid versions of the problem we consider in this paper satisfy
this property. However, even on these grids the FPRAS can be quite inefficient – the runtime
bound in (6) becomes O(n11.16(1/ε)2.58) when applied to an n× n grid.

Again we can try appealing directly to Theorem 1 to see how PRS performs. In the case of
sampling triangle free subgraphs of the triangular grid, the condition 3er∆ ≤ 1 becomes

λ ≤ 1
9e ≈ 0.04088

while for square-free subgraphs of the square grid, it becomes

λ ≤ 1
12e ≈ 0.03065

We show that both of these bounds can be significantly improved.

Theorem 3. If λ ≤ λ∆ ≈ 0.3748 and G is a subgraph of the n × n triangular grid, then
running on the instance (G,K3, λ), PRS takes O(logn) rounds in expectation.

Theorem 4. If λ ≤ λ� ≈ 0.4063 and G is a subgraph of the n× n square grid, then running
on the instance (G,C4, λ), PRS takes O(logn) rounds in expectation.

Numerical evidence based on simulations of PRS leads us to conjecture that the optimal val-
ues of λ∆ and λ� are about 0.471 and 0.456 respectively. We suspect that the true values of

4

these constants may reflect important geometric properties of these lattices, from a statistical
physics perspective.

Organization of the paper. In Section 2, we discuss extremal partial rejection sampling,
and show how it can solve certain cases of the w-free string and the H-free subgraph prob-
lems. In Section 3, we discuss the general version of PRS introduced in (3). We give a brief
overview of how Theorem 1 was proved, since we still use many of these ideas in proving the
stronger versions tailored to our applications. In Section 4 we give a proof of Theorem 2, and in
Section 5 we prove Theorems 3 and 4. Then in Section 6 we discuss some conjectures and possi-
ble directions for future work. Appendix A contains some numerical data from our simulations.

A word on exact versus approximate sampling. For many sampling problems, either an
FPRAS for approximate sampling is known, or there is a hardness result making the existence of
such an algorithm impossible under standard complexity assumptions. Comparatively little is
known about the existence of exact sampling algorithms. Although a .01-approximate sampler
almost always suffices in practice, we think it is a fundamentally interesting question whether
exact sampling can be harder than approximate sampling. When exact counting isn’t an
option (as is almost always the case), there are (as far as the authors are aware) only two
somewhat-general approaches to exact sampling: one of them is PRS, and the other is a
technique called coupling from the past which can sometimes be used to turn MCMC-based
approximate samplers into exact samplers (8).

2 Extremal partial rejection sampling

Let X1, ..., Xn be independent random variables and let {A1 ..., Am} be a set of bad events
dependent on some of the Xi. Let var(Ai) be the set of random variables that the bad event
Ai depends on. We can define the dependency graph G = (V,E), where V = {A1, ..., An}, and
Ai ∼ Aj (i.e. Ai and Aj are neighbors) if var(Ai) ∩ var(Aj) 6= ∅. In other words, Ai ∼ Aj
if they both depend on the same random variable Xk. Let S be a subset of events on the
dependency graph G. Then we define Γ(S) = {Ai |Ai ∼ Aj for some Aj ∈ S,Ai 6∈ S} and
Γ+(S) = S ∪ Γ(s).

We call an instance of this setup extremal if Ai ∼ Aj =⇒ Pr[Ai ∩ Aj] = 0. As shown in (3),
the following algorithm produces a uniform sample from the product distribution (X1, . . . , Xn)
conditioned on no Ai occurring.

Guo et al. give an exact formula for the expected runtime of Algorithm 1 on extremal instances:

Theorem 5. Let qS be the probability that the set of occurring bad events is exactly S, and
suppose q∅ > 0. Then the expected number of resampled events during Algorithm 1 is

n∑
i=1

q{i}
q∅

.

5

Algorithm 1: Partial Rejection Sampling
Result: Partial rejection sampling in the extremal case.
Draw independent samples of all random variables Xi;
while at least one Ai holds do

find the independent set I of all occurring bad events Ai;
independently resample all random variables Xi ∈

⋃
j∈I var(Aj);

end
Output assignment of random variables Xi.

2.1 Sampling w-free strings: extremal case

Let Σ be a finite alphabet and let w ∈ Σ∗ be a string. We would like to uniformly sample from
the distribution of w-free strings of length n; that is, strings of length n that do not contain w
as a contiguous substring.

Viewing this problem in the variable framework, we let Xi be i.i.d. random variables over Σ
for i ∈ [1, n]. The random variable Xi corresponds to the i-th index of the string. Then, the
bad events Ai for i ∈ [1, n− |w| − 1] correspond to an instance of the substring w whose first
character is at index i.

Note that for general w this is not an extremal problem – that is, two bad events can depend
on the same variable without being disjoint. For example, if w = aba and the substring ababa
appears starting at index i, then Ai and Ai+2 both occur despite both depending on Xi+2. As
a result, in order to use Algorithm 1, we’ll have to assume something about w. In Section 4
we’ll be able remove this assumption.

Definition 6. We say that w is non-translatable if no prefix of w is also a suffix of w.

For example, the string abcb is non-translatable, but the string abcbabc is not because the
prefix abc is also a suffix of that string. It is straight-forward to see that bad events defined
by a non-translatable string are extremal, so we can apply Algorithm 1.

Theorem 7. Let Σ ≥ 3 be an alphabet and let w be a non-translatable substring in that
alphabet. When running Algorithm 1 to uniformly sample a w-free string of length n, the
expected number of resampled characters is at most n.

To prove Theorem 7, we use the following notation. Let Σn be the set of strings of length n
with characters in alphabet Σ, let Σn

w be the set of w-free strings of length n, and let Σn
w,1 be

the set of strings with exactly one instance of substring w. Now we are ready to prove the
theorem.

Proof. By applying Theorem 5, we obtain that the expected number of resampled events in
the run of Algorithm 1 is at most |Σ

n
w,1|
|Σn

w|
. To show that |Σ

n
w,1|
|Σn

w|
≤ n, we exhibit an injection from

Σn
w,1 to Σn

w × [n].

Let |w| = k, and let the first character of the substring w be at index i ≤ n− k+ 1. We claim
that there is a way to change the k characters in indices i to i+ k− 1 to create a w-free string.

6

There are |Σ|k possible reassignments of these k characters, and we will argue that at most

2 |Σ|
k − 1

|Σ| − 1 − 1

of these assignments will create an instance of w elsewhere in the string. Because this quantity
is strictly less than |Σ|k for |Σ| ≥ 3, this will imply the existence of such a reassignment of the
k characters that eliminate all instances of w.

If a reassignment of the characters at indices i to i + k − 1 were to create an instance of w
elsewhere in the string, the indices of the new string and the indices of the old string would
necessarily intersect as no other characters in the string would have changed. As a result, the
new instance of w would need to have its first character in one of the indices from i− k+ 1 to
i + k − 1. Suppose that the index of the first character of the new instance of w is j. Then,
the maximum number of reassignments of characters in indices from i to i + k − 1 is |Σ||i−j|.
Therefore, the maximum number of reassignments of the k characters that result in an instance
of w is

|Σ|k−1 + |Σ|k−2 + ...+ |Σ|1 + |Σ|0 + |Σ|1 + ...+ |Σ|k−2 + |Σ|k−1 = 2 |Σ|
k − 1

|Σ| − 1 − 1.

Now, we can define the injection. Given an element s from Σn
w,1 with the first element of

substring w at index i, we can reassign the k characters of w to obtain an element s′ of Σn
w.

Then, we can construct the tuple (s′, i), which is an element of Σn
w × [n], as desired. Note

that given (s′, i), the string s can be reconstructed by changing the k characters at indices i
to i+ k − 1 to the characters of the substring w. This proves the theorem.

Remark: The bound in the lemma is tight up to a factor which is constant in n. Indeed, if we
send a pair (s, i) ∈ Σn

w× [n] to the string which has w spliced into it at location i, we obtain an
element of Σn

w,1 (since w is non-translatable this only creates a single copy of it). The number
of pre-images of any s ∈ Σn

w,1 under this mapping is at most |Σ||w|, which implies the bound

|Σn
w,1|
|Σn
w|
≥ n · |Σ|−|w|.

Remark: The assumption |Σ| ≥ 3 in the lemma is necessary. Indeed, consider Σ = {a, b}
and w = ab. Then |Σn

w| = n + 1, but |Σn
w| & n3, since it contains all strings of the form

biajbkan−(i+j+k).

However, there is something we can say for sampling w-free strings from a binary alphabet
when |w| ≥ 5:

Proposition 8. Let Σ = {0, 1} and |w| ≥ 5. Then the expected number of resampled events
when using Algorithm 1 to uniformly sample over w-free strings of length n is logarithmic in
n.

We leave the proof of this proposition for Section 4.

7

2.2 Sampling H-free subgraphs: extremal case

Suppose we wish to sample a uniformly random (non-induced) subgraph of a graph G which
does not contain a copy of some fixed graph H. In this context, the random variables X1, ..., Xn

are i.i.d. Bernoulli random variables, indicating the presence/absence of each edge of G in our
sampled subgraph. The corresponding dependency graph has a vertex for each copy of H in G,
and two copies of H are connected by an edge in the dependency graph iff the corresponding
copies of H share at least one edge in G. In general, the copies of H may overlap essentially
arbitrarily inside of G, so this is certainly not an extremal problem. However, placing certain
assumptions on G can create extremal instances.

For example, suppose G is C4-free, and we wish to sample a triangle free subgraph of G. No
two bad events (i.e. triangles) are dependent on one another (i.e. share an edge), so this is
trivially extremal. (If two triangles shared an edge in G, then they would form a C4.) It is
easy to check that the bound from Theorem 5 is O(|E(G)|) in this case.

This can be extended to give a sampling algorithm for instances in which the dependency
graph has O(1)-sized connected components (e.g. sampling a triangle-free subgraph of a graph
G which is C100 and K2,100-free), but the running time is quite bad (although still polynomial
in the size of G) and we omit the details.

3 General partial rejection sampling

We now discuss the general version of PRS (in (3)) which does not require any extremal
conditions.

For any event E, let Γ(E) = {i : Ai ∼ Aj and Ai 6= E}, and for S ⊂ [m], let Γ+(S) =
S ∪i∈S Γ(Ai). Let p = maxi Pr[Ai] and ∆ = maxi |Γ(Ai)|. Let Rij be the event that the
partial assignments on var(Ai) ∩ var(Aj) can be extended to an assignment satisfying Aj . Let
rij = Pr[Rij], and r = maxi∼j rij .

For a set of events F , let σF be the current assignment restricted to ∪i∈F var(Ai). We say an
assignment σF blocks an event i if i cannot occur given σF .

Let σt denote the assignment of the random variables after t rounds of 3 and Rest denote the
resampled events at this stage. Then the following theorem from (3) guarantees general partial
rejection sampling the gives the desired output:

Theorem 9. Given Res0,Res1, . . . ,Rest, for t ≥ 0, σt+1 has the product distribution condi-
tioned on none of the events Ai occurring, where i ∈ [n] \ Γ+(Rest). In particular, the output
upon termination is a sample from the product distribution conditioned on none of the bad
events occurring.

One of the main theorems in Guo, Jerrum and Liu is the following:

Theorem 10. ((3), Theorem 26): Let m be the number of events and n the number of vari-
ables. For any ∆ ≥ 2, if 6ep∆2 ≤ 1 and 3er∆ ≤ 1, then the expected number of rounds used
by Algorithm 3 is O(logm) and the expected number of resampled events is at most O(m).

8

Algorithm 2: Resample Set
Result: The set to be resampled at round t
let R = Bad(σ) #The events to be resampled;
let N = ∅ #The events that will not be resampled;
while ∂R \N = ∅ do

for i ∈ ∂R \N do
if σR blocks i then

Add i to N ;
else

Add i to R;
end

end
end

Algorithm 3: General Partial Rejection Sampling
Result: A uniform sample from a distribution conditioned on no bad events occuring
Draw independent samples of every variable X1, .., Xn from their distributions;
while At least one bad event occurs do

Res = Output from Algorithm 2 ;
Resample the variables of every event in Res;

end

The proof of Theorem 10 works by showing that the expected size of the resampling set Rest
is exponentially decaying in t. The main idea is that when an event i is added during stage
` of Algorithm 5, there must be a chain of ` events ending at i and beginning at a bad event
which occurs, such that the partial assignments never block the next event in the chain. The
probability of such an occurrence can be bounded by pr`−1, and the number of such potential
paths can be bounded by something like ∆(∆−1)`. Hence the need for a condition like r∆ . 1.

The following lemma is implicit in (3):

Lemma 11. If i is added to R` during a run of Algorithm 5 on an assignment σ, then there
exists a path i0, i1, . . . , i` = i in the dependency graph such that, for each 0 ≤ k ≤ `,

(1) ik ∈ Rk

(2) ik′ ∼ ik ⇐⇒ |k − k′| ≤ 1

(3) the events Rik−1ik hold

Proof: If i is added in to R`, it must be because it was unblocked by some neighboring event
i`−1 which was added in the previous round. By induction, there is a path i0, i1, . . . , i`−1 as in
the lemma. If i ∼ ik for k < `− 1, then Algorithm 5 would’ve added i to either Rk+1 or Nk+1
during stage k+ 1 < `, which is impossible since i is added during stage `. Therefore the path
i0, . . . , i`−1, i` satisfies the desired conditions.

We shall henceforth refer to such paths as bad paths (as is done in (3)).

9

Let EP denote the event that the path P = i0, i1, . . . , i` is bad. Then condition (2) implies
that the events Rik−1ik are independent for different values of k – indeed, Rik−1ik depends only
on var(Aik−1)∩var(Aik), and (2) implies that var(Aik)∩var(Aik′) = ∅ unless |k−k′| ≤ 1. Hence

Pr[EP] = Pr[(i0 ∈ R0) ∧Ri0i1 ∧ (i1 ∈ R1) ∧Ri1i2 ∧ · · · ∧ (i` ∈ R`) ∧Ri`−1i`]

≤ Pr[Ai0 ∧Ri0i1 ∧ · · · ∧Ri`−1i`] ≤ Pr[Ai0 ∧Ri0i1]
∏̀
k=2

rik−1ik (2)

To prove their Theorem 10, Guo et al. bound the probability of each Rik−1ik by r to obtain a
uniform bound on the probability that a path of a length ` is bad, and then union bound over
the possible paths of length `. Improving upon their results will typically require more careful
accounting of these paths.

The algorithm stops when Rest = ∅, and begins with Res0 = Bad0 = [m]. Summing the bound
(2), the authors of (3) are able to obtain an upper bound of the form

E[|Rest+1| |Rest] ≤ C|Rest| (3)

for some explicit C < 1, which as the following lemma shows, implies a logarithmic runtime
bound.

Lemma 12. If (3) holds with some C < 1, then the expected number of resampled events
during Algorithm 6 is at most

m

1− C
and the expected number of rounds of resampling is at most

log1/C m+ C

1− C .

Proof: By Theorem 9, (3) is equivalent to

E[|Rest+1| |Res0,Res1, . . . ,Rest] ≤ C|Rest|

By the tower property of conditional expectations, E|Rest| ≤ CtE|Res0| = Ct ·m. If C < 1,
then the expected total number of resampling events is

∞∑
t=0

E|Rest| ≤ m ·
∞∑
t=0

Ct = m

1− C

Let T be the number of rounds before Algorithm 6 terminates. Then

E[T] ≤ log1/C m+
∑

t>log1/C m

Pr[T > t] ≤ log1/C m+
∑

t>log1/C m

E|Rest|

︸ ︷︷ ︸
≤
∑∞

t=1 C
t

and hence E[T] ≤ log1/C m+ C
1−C .

10

4 w-free strings

To sample w-free strings over Σ for any string w, we’ll use Algorithm 3. Note that in this case
∆ = 2|w| − 2 and r = 1

|Σ| . As mentioned in the introduction, to appeal directly to Theorem
10, we would need

|Σ| > 16|w|. (4)
We now prove that for |Σ| ≥ 3, this condition is unnecessary.

To prove Theorem 2, we improve upon the analysis in (3) used to prove Theorem 10. We’ll
make use of the following fact, which essentially says that if an event E does not share many
dependent variables in common with a set S of bad events, then conditioning on B(S) doesn’t
increase the likelihood of E by too much, where B(S) denotes the event that none of the events
in S occur. It can be proven inductively in a way similar to the Lovasz Local Lemma.

Lemma 13. (Theorem 2.1 in (4), symmetric form): If x ∈ R+ is such that x(1 − x)∆ ≥ p,
then

Pr[E |B(S)] ≤ Pr[E] (1− x)−|Γ(E)∩S| (5)
for any event E and any set S ⊂ [m].

Let ∆ = 2(|w|−2) be the maximum degree in the dependency graph the w-free string problem,
and p = |Σ|−|w| be the probability of any bad event. In everything that follows, we assume z is
some positive number satisfying z(1−z)∆ ≥ p, and α := (1−z)−1. Set δ ≤ ∆ to be the number
of compatible shifts of w in either direction, so that δ is, for a typical bad event, the number of
neighboring bad events which are not blocked by it (and δ = 0 ⇐⇒ w is non-translatable).
Let Ct denote the number of connected components of Rest.

Lemma 14. At any stage t of Algorithm 3, we have

E[Ct+1 |Rest] ≤ E[|Badt+1| |Rest] ≤
p∆
2 |Rest|+

(
2pα

(
α∆/2 − 1
α− 1

)
− p∆

2 + p

)
Ct.

Proof: The first inequality is obvious from the nature of Algorithm 2 – it builds Rest+1 starting
from Badt+1 and attaching unblocked neighbors, so the number of connected components of
Rest+1 is at most |Badt+1|. To prove the second inequality, we need to look more closely at the
structure of Γ+(Rest), which we know contains Badt+1.

Let S be some connected component of Rest, and we will consider its contribution Γ+(S) to
Γ+(Rest). Since S is connected, it looks like a line segment with gaps of at most |w|−2 between
adjacent events, which will get included upon moving to Γ+(S). At each end of the segment,
there are up to |w| − 1 extra events. Thus,

|Γ+(S)| ≤ |S|+ (|w| − 2)|S|+ 2(|w| − 1) = ∆
2 |S|+ ∆ (6)

More precisely, Γ+(S) contains at most ∆ events with any “unfresh” variables – just the ones
on the fringes. There are at most

(|w| − 1)(|S| − 1) + 1 = ∆
2 |S| −

∆− 2
2 ,

11

interior (i.e. fresh) events, which therefore contribute at most an expected p∆
2 |S| −

p(∆−2)
2

events to Badt+1, while the unfresh events contribute at most

p · 2 ·
∆/2∑
k=1

αk ≤ 2pα ·
(
α∆/2 − 1
α− 1

)

in expectation by Lemma 13. Summing these contributions over all components S of Rest, we
obtain

E[|Badt+1| |Rest] ≤
p∆
2 |Rest|+

(
2pα

(
α∆/2 − 1
α− 1

)
− p∆

2 + p

)
Ct

as desired.

Lemma 15. If
rα|w| − αr|w|

α− r
< 1,

then at any stage t of Algorithm 3, we have

E[|Rest+1| |Rest] ≤ Bt+1 ·

1 + α∆/2 · δ
1− rα|w|−αr|w|

α−r

where Bt+1 is the upper bound on E[|Badt+1| |Rest] obtained in Lemma 14.

Proof: By Lemma 11, we know that for any event i which is added to Rest+1, there must be
a bad path i0, i1, . . . , i` = i. Paths of length 0 correspond exactly to Badt+1, whose expected
size we know how to bound from Lemma 14. For a given i0, there are at most δ choices for the
next event i1, which also fixes the “direction” of the path (the path moves “right” iff i0 < i1).
From here, the path is parametrized by a tuple

(d1, d2, . . . , d`−1)

where each di ∈ {1, . . . , ∆
2 }, and ik+1 = ik + dk for rightward paths, while ik+1 = ik − dk

for leftward paths. For a tuple (d1, . . . , d`−1), the probability (conditional on Rest) that the
corresponding path is bad is at most

Pr[Ai0 ∧Ri0i1 ∧ · · · ∧Ri`−1i` |Rest] = Pr[Ai0 ∧Ri1i2 ∧ · · · ∧Ri`−1i` |B([m] \ Γ+(Rest)])

≤ Pr[Ai0 ∧Ri1i2 ∧ · · · ∧Ri`−1i`] · α
|E\Γ+(Rest)|

≤ p · r(`−1)|w|−
∑`−1

k=1 dk · α|E\Γ+(Rest)|

where E = Γ+({i0, i1, . . . , i`}). We can bound

|E \ Γ+(Rest)| ≤ |Γ+(i0) \ Γ+(Rest)|+ |Γ+(i0) \ Γ+(i1)|+
`−1∑
k≥1
|Γ+(ik+1) \ Γ+(ik)|

≤ |Γ+(i0) \ Γ+(Rest)|+
∆
2 +

`−1∑
k=1

dk

12

and so

Pr[Ai0 ∧Ri0i1 ∧ · · · ∧Ri`−1i` |Rest] ≤ p · α∆/2+|Γ+(i0)\Γ+(Rest)| · r(`−1)|w| ·
(
α

r

)∑`−1
k=1 dk

.

Summing this bound over all i0 ∈ Γ+(Rest) and admissible choices of i1, we obtain the bound

E[|Rest+1 \ Badt+1| |Rest] ≤ α∆/2 ·Bt+1 · δ
∑
`≥1

r(`−1)|w| ∑
(d1,...,d`−1)

(
α

r

)∑`−1
k=1 dk

(7)

Observe that for any x, we have

∑
(d1,...,d`−1)

x
∑`−1

k=1 dk = (x+ x2 + · · ·+ x|w|−1)`−1 = x`−1
(
x|w|−1 − 1
x− 1

)`−1

(8)

Plugging in x = α/r, we see that

∑
`≥1

r(`−1)|w| ∑
(d1,...,d`−1)

(
α

r

)∑`−1
k=1 dk

=
∑
`≥1

r(`−1)|w| ·
(
α

r

)`−1
·

(αr)|w|−1 − 1
α
r − 1

`−1

(9)

=
∑
`≥1

(
rα|w| − αr|w|

α− r

)`−1

(10)

= 1
1− rα|w|−αr|w|

α−r
(11)

whenever the series converges, i.e. when rα|w|−αr|w|
α−r < 1.

So the upper bound in (7) becomes

E[|Rest+1 \ Badt+1| |Rest] ≤
α∆/2 ·Bt+1 · δ
1− rα|w|−αr|w|

α−r
(12)

Adding in the remaining E[|Badt+1 |Rest] ≤ Bt+1 paths of length 0 yields the lemma.

Lemma 16. Set

Xt = p∆
2 |Rest|+

(
2pα

(
α∆/2 − 1
α− 1

)
− p∆

2 + p

)
Ct.

Then at any stage t of Algorithm 3, we have

E[Xt+1 |Rest] ≤

p∆
2

 α∆/2δ

1− rα|w|−αr|w|
α−r

+ 2pα
(
α∆/2 − 1
α− 1

)
+ p

Xt.

13

Proof: This follows immediately by taking the appropriate linear combination of the bounds
in Lemmas 14 and 15.

Proof of Theorem 2: We can assume |w| ≥ 2, since |w| = 1 is trivial. Let |Σ| ≥ 3. The upper
bound in Lemma 16 is clearly increasing in δ, so we can assume δ = ∆. For |Σ| ≥ 4, plugging
this value of δ into Lemma 16, along with α = (1 + 1/∆) already yields the corollary (via
Lemma 12). For |Σ| = 3, this works for |w| 6∈ {2, 3, 4}. For these remaining lengths, we can
choose α more optimally: set z equal to the smallest value of x for which x(1 − x)∆ ≥ 3−|w|,
and pick α = (1 − z)−1. This tightens the bounds enough to work in these cases, as can be
easily verified.

Note that when δ = 0, Algorithm 3 degenerates to Algorithm 1, and hence Lemma 16 can
be used to obtain a runtime bound for Algorithm 1. In this case, Algorithm 1 takes O(logn)
rounds when

2
|Σ||w|

·
(

1
2 + α|w| − α

α− 1

)
< 1

for any α = (1 − z)−1 with z(1 − z)2|w|−2 ≥ |Σ|−|w|. When |Σ| = 2, this says nothing for
|w| = 2, 3, 4, but for |w| ≥ 5 we can take z = 0.0453 and α = 1.0475, so that

2
25 ·

(
1
2 + 1.04755 − 1.0475

0.0475

)
≈ 0.312 < 1.

Corollary 17. For non-translatable w ∈ Σn, Algorithm 1 takes O(logn) rounds in expectation,
except possibly for |w| = 2, 3, 4 over binary alphabets.

5 Sampling H-free graphs

Recall that the H-free subgraph problem takes as input a graph G and a parameter λ and asks
for a sample from the following distribution, supported on H-free (non-induced) subgraphs of
G:

Pr(G′) ∝

λe(G
′)(1− λ)e(G)−e(G′) ∝

(
λ

1−λ

)e(G′)
if G′ ⊆ G is H-free

0 otherwise
(13)

We can think of this problem as a special case of the hard core model in hypergraphs. When λ =
1/2, the problem is simply asking for a uniformly random H-free subgraph of an input graph.
Viewed another way, each instance of the H-free subgraph problem (for λ = 1

2) corresponds to
a monotone e(H)-CNF ∧

(e1,...,ee(H))∼=H
(¬e1 ∨ ¬e2 ∨ · · · ∨ ¬ee(H))

whose clauses correspond to copies of H and whose variables correspond to edges. Here we
want to sample a uniformly random satisfying assignment. On instances G in which each edge

14

Figure 1: The 10 × 10 triangle grid.

appears in at most k different copies of H inside G, we say the corresponding CNF is a read-k-
monotone CNF. When k = 2 (as it will be in the case of planar grid graphs), an algorithm of
Lin, Liu and Lu (6) gives a FPTAS for approximately counting the set of satisfying assignments
to a read-twice-monotone-CNF.

Theorem 18. For λ ≤ 1/2, there is an algorithm which ε-approximately solves the H-free
subgraph problem on instances G in which each edge of G appears in at most 2 different copies
of H. The running time is O(n3.58m2 · (1/ε)2.58), where n = |E(G)| and m is the number of
copies of H in G.

Proof: First suppose λ = 1/2. The approximate counting algorithm for read-twice-monotone-
CNF given in (6) actually works by recursively estimating marginals – that is, for some edge
e, it obtains an estimate for the ratio

Z(G \ e)
Z(G)

where Z(G) denotes the number of H-free subgraphs of G. It then removes another edge and
recurses down to the empty graph, whereby taking the product of all these estimates gives an
estimate for Z(G). When sampling instead of counting, rather than taking the product of the
marginals one could simply sample from them recursively. This gives an approximate sampler
for λ = 1/2.

For λ < 1
2 , one performs the above procedure but scales down each marginal probability of

including an edge by a factor λ
1−λ . We refer the reader to (6) for further details.

Remark: Liu and Lu (5) subsequently gave a FPTAS for counting solutions to read-k-
monotone CNF, for k ≤ 5. However, their algorithm is somewhat impractical, with a provable
runtime bound on the order of (n/ε)144. For k ≥ 6, there is no FPTAS (resp. FPRAS) for this
problem unless NP = P (resp. NP = RP).

5.1 Triangle-free subgraphs of the triangular grid

We now analyze the performance of Algorithm 3 on instances G of the H-free subgraph prob-
lem, where G is a subgraph of the m×m triangular grid graph, and H = K3 is the triangle.

15

Figure 2: Randomly sampled K3-free subgraphs with λ = 0.25 and λ = 0.5.

Here, the bad events correspond to the presence of each triangle, so ∆ = 3 and p = λ3. Since
any pair of dependent triangles share exactly one edge, rij = λ for every i ∼ j. Applying
Theorem (10) directly, we see that for

λ ≤ 1
9e ≈ 0.04088

Algorithm 3 solves this problem efficiently. Our present goal is to extend this range of λ.

Lemma 19. At any stage t during Algorithm 3,

|Γ+(Rest)| ≤ 2.5 · |Rest|

Proof: Let ∆ ∈ Badt be an occurring triangle in round t. It suffices to prove the expansion
inequality for the connected component S of Rest containing ∆. There are a handful of cases
to consider, depending on the number of neighbors of ∆ in the dependency graph, which of
course depends on the graph G. Since all edges of ∆ are present by assumption, each of its
neighbors will be added to S during stage 1 of Algorithm 2, so S1 := Γ+({∆}) ⊆ S. In each
case |S1| ∈ {1, 2, 3, 4}, we can check that

|Γ+(S1)|
|S1|

≤ 2.5

holds. Now we observe that attaching a triangle to any non-empty set S′ of triangles increases
|S′| by 1 and |Γ+(S′)| by at most 2. Since a

b ≤ 2.5 =⇒ a+2k
b+k ≤ 2.5 for any k ≥ 0, the

inequality remains true for S, and hence for Rest.

Proposition 20. If

2.5λ3 + 7.5λ3

1− 2λ
1+λ

< 1

then Algorithm 3 takes an expected O(logm) rounds. In particular, we may take λ ≤ 0.3748.

Proof: At a high level, instead of counting bad paths, we directly estimate the expected number
of events added to Rest during each phase of Algorithm 2, conditioned on the previous rounds.

16

More precisely, let Rt` be the intermediate set at stage ` in Algorithm 2, during round t of
Algorithm 3 (so in particular Rt0 = Badt and Rt∞ = Rest). We will show that for ` ≥ 1,

E[|Rt+1
`+1| |R

t+1
` , . . . , Rt+1

0 ,Rest] ≤ C(λ)|Rt+1
` | (14)

for some constant C(λ). Since E[|Rt+1
0 | |Rest] ≤ λ3|Γ+(Rest)| ≤ 2.5λ3|Rest| (by Lemma 19)

and |Rt+1
1 | ≤ 3|Rt+1

0 |, we have

E[[|Rt+1
1 | |Rest] ≤ 7.5λ3|Rest|.

To upper bound E[|Rt+1
2 | |Rt+1

1 , Rt+1
0 ,Rest], we observe that each event (i.e. triangle) in Rt+1

2
is one of the ≤ 2|Rt+1

1 | triangles which share an edge with a triangle in Rt+1
1 and do not belong

to Rt+1
0 ∪ Rt+1

1 . For each triangle ∆ in Rt+1
1 , we know that a certain edge (and possibly one

more) is present (the common edge(s) between ∆ and Rt+1
0), and that not all three edges in

∆ are present – otherwise it would have been in Rt+1
0 . If ∆ shares two edges with Rt+1

0 , we
know for sure the third edge is not present, and so it contributes nothing to Rt+1

2 . Otherwise,
I claim that

Pr(∆ has another edge |Rt+1
1 , Rt+1

0 ,Rest) ≤ Pr(∆ has another edge |∆ 6∈ Badt+1)

= 2λ
1 + λ

and hence E[|Rt+1
2 | |Rt+1

1 , Rt+1
0 ,Rest] ≤ 2λ

1+λ · |R
t+1
1 |. The same argument works for 2 and

1 replaced by ` + 1 and `, and so (14) holds with C(λ) = 2λ
1+λ . By the tower property of

conditional expectations, it follows that

E[|Rt+1
`+1| |Rest] ≤ C(λ)` · 7.5λ3|Rest|. (15)

Summing over ` ≥ 0, we see that

E[|Rest+1| |Rest] ≤
(

2.5λ3 + 7.5λ3

1− 2λ
1+λ

)
|Rest|

from which the proposition follows.

5.2 Square-free subgraphs of the square grid

We now analyze the performance of Algorithm 3 on instances G of the H-free subgraph prob-
lem, where G is a subgraph of the m×m square grid graph, and H = C4 is the square.

Here the bad events correspond to the presence of each square, so ∆ = 4 and p = λ4. Since any
pair of dependent squares share exactly one edge, rij = λ for every i ∼ j. Applying Theorem
(10) directly, we see that for

λ ≤ 1
12e ≈ 0.03065

Algorithm 3 solves this problem efficiently. Our present goal is to extend this range of λ.

17

Figure 3: All squares which can be added to Rest+1 in stage 1 or 2 of Algorithm 2 due to
i0 ∈ Badt+1.

Lemma 21. At any stage t during Algorithm 3,

|Γ+(Rest)| ≤ 3 · |Rest|

Proof: The idea is the same as in the proof of Lemma 19. Let � ∈ Badt, and let S be the
component of Rest containing �, which also must contain S1 := Γ+({�}). It is easy to check
that for every possible S1 we have

|Γ+(S1)|
|S1|

≤ 3,

and since attaching an additional square to any nonempty set S′ of squares increases |S′| by 1
and |Γ+(S′)| by at most 3, the inequality persists all the way to S and hence to Rest.

Proposition 22. Let G be a subgraph of the m×m square grid. If

3λ4
(

5 + 4λ− 4λ2 − 12λ3

1− 2λ− λ2

)
< 1

then sampling a square-free subgraph with Algorithm 3 takes an expected O(logm) rounds. In
particular we may take λ ≤ 0.4063.

Proof: For each i0 ∈ Γ+(Rest), we bound the expected number of squares which are added to
Rest+1 as a result of a bad path rooted at i0. All probabilities will be conditional on Rest, that
is, conditional on a certain set of squares not being present – however, by monotonicity, we can
ignore this conditioning and exploit the resulting independence. The square i0 (represented in
black in Figure 3 above) is present with probability at most λ4. If i0 is present, it automatically
brings the (≤) four adjacent (heavy-hatched) squares into Rest+1. Each of the four light-
hatched squares can only be added to Rest+1 if the two edges they share with the heavy-hatched
squares are present, which happens with probability at most λ2. If those edges are not present,
the squares will be blocked by the heavy-hatched squares and hence not added to Rest+1. Each
of the light-grey squares will be blocked unless their edge bordering a heavy-hatched square

18

is present, which happens with probability at most λ. Thus, the expected number of squares
added due to i0 during stages 1 and 2 of Algorithm 5 is at most

λ4

 5︸︷︷︸
i0 and its 4 neighbors

+ 4λ2︸︷︷︸
light-hatched squares

+ 4λ︸︷︷︸
light grey squares

 .
Next we bound the expected number of squares added due to paths i0, i1, . . . , i`, with ` > 2
and ik ∼ ik′ ⇐⇒ |k−k′| = 1. This last condition is stronger than that of a self-avoiding walk
– even the neighbors of previously visited sites must be avoided on the next step – so we’ll
call them very self-avoiding walks, or vSAWs. We can break up the set of such walks into two
categories – S and D – based on their first two moves: either the first two moves are the same
(e.g. left, left or up, up) or the two moves are different (e.g. up, right). I claim that for ` ≥ 2,

S`+1 = S` + 2D` (16)
D`+1 = S` +D` (17)

where S` and D` count the number of length-` vSAWs of type S and D respectively starting
from a fixed square. Indeed, if the first two moves of a length ` + 1 vSAW are the same –
say left, left – then up, down, left are the next available moves, which correspond to walks
of length ` of type D, D, and S respectively, proving equation (16). To prove (17), suppose
without loss that the first two moves are left, up. Then the next move is either right or up,
since a left move would land on a neighbor of the original square. This yields (17).

Combining all of the above, we know that each i0 ∈ Γ+(Rest) contributes at most

5λ4 + λ4 ·
〈 ∞∑
`≥0

(
λ 2λ
λ λ

)`(
4λ
4λ2

)
,

(
1
1

)〉
= λ4

(
5 + 4λ− 4λ2 − 12λ3

1− 2λ− λ2

)
(18)

to E[|Rest+1| |Rest] (where we have used the identity
∑
`≥0A

` = (I−A)−1). Summing up these
contributions over all |Γ+(Rest)| ≤ 3|Rest| (Lemma 21), we have shown

E[|Rest+1| |Rest] ≤ 3λ4
(

5 + 4λ− 4λ2 − 12λ3

1− 2λ− λ2

)
.

By Lemma 12, this implies the proposition.

6 Conjectures and Future Work

6.1 w-free strings

We have shown that partial rejection sampling is takes an expected O(logn) rounds of resam-
pling for |Σ| ≥ 3, as well as for non-translatable |w| ≥ 5 over binary alphabets.

19

Figure 4: Randomly sampled C4-free subgraphs with λ = 0.25 and λ = 0.5.

Figure 5: Average number of resampling rounds for w-free string sampling. Left: w = 01,
Right: w = 11.

Based on our simulations (see figures), we make the following conjecture regarding the perfor-
mance of PRS on w-free string sampling over binary alphabets:

Conjecture: Consider the w-free string problem over Σ = {0, 1}. If w = 10 or w = 01, then
the expected number of rounds required by PRS is Θ(n2), while if |w| ≥ 3 or w ∈ {11, 00}, it
is O(logn).

6.2 H-free subgraphs

We have proved (Theorem 3) that, for λ ≤ 0.3748, sampling a triangle-free subgraph in the
triangular grid graph takes an expected O(log(n)) rounds. Similarly, we have shown (Theorem
4) that the same is true on for sampling square-free subgraphs in the square grid, for λ ≤ 0.4063.
However, based on our simulations, we make the following conjecture:

Conjecture: Theorem 3 holds for λ ≤ 0.471, and Theorem 4 holds for λ ≤ 0.456.

One source of slack in Theorems 4 and 4 comes from the boundary expansion lemmas (Lemmas
19 and 21). While these are tight in the worst case, the sets with |Γ+(S)|/|S| near these bounds
are essentially one dimensional, which is not true of a typical component of Rest. Replacing
the number 2.5 in Lemma 19 with the number 1 for instance, already yields a bound on λ
which nearly matches our conjecture.

Note that while the logarithmic behavior appears to transition beyond these values of λ, it is

20

Figure 6: Average number of resampling rounds for K3-free subgraph sampling on the trian-
gular grid with λ = 0.46, 0.471 and 0.48 respectively.

Figure 7: Average number of resampling rounds for C4-free subgraph sampling on the square
grid with λ = 0.45, 0.456, and 0.46 respectively.

not clear what type of behavior kicks in next and for what range of λ. Understanding this
phase transition would be quite interesting, and will require techniques substantially different
from ours, as ours inevitably prove either exponential decay or nothing at all.

It would also be interesting to know if, in situations where this version of general PRS is
inefficient, Algorithm 2 could be modified to produce a smaller resampling set, while only
breaking uniformity slightly. That is, when can PRS be turned into an FPRAS?

7 Acknowledgments

We would like to thank the MIT Department of Mathematics for providing so many research
opportunities to students; SPUR+ has been an excellent and exciting program. Thank you to
Professor Davesh Maulik and Professor Ankur Moitra for your helpful feedback and guidance
throughout the course of this research. Last but not least, many thanks to our mentor Jake
Wellens, without whom this project would not have been possible.

21

References

[1] Henry Cohn, Robin Pemantle, and James G. Propp. Generating a random sink-free ori-
entation in quadratic time. Electr. J. Comb., 9(1), 2002.

[2] Heng Guo, Mark Jerrum. Hard Disks

[3] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovasz local
lemma. In STOC, 342–355, 2017.

[4] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovasz Local Lemma. J. ACM, 58(6):28:1, 2011

[5] Jincheng Liu, Pinyan Lu. FPTAS for Counting Monotone CNF. In SODA 1531–1548.
2015.

[6] Chengyu Lin, Jingcheng Liu, Pinyan Lu. A Simple FPTAS for Counting Edge Covers. In
SODA, 922–940, 2012.

[7] Robin A. Moser and Gabor Tardos. A constructive proof of the general Lovasz Local
Lemma. In J. ACM, 57(2), 2010.

[8] James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Struct. Algorithms, 9(1-2):223–252, 1996.

22

	Introduction
	w-free string sampling
	H-free subgraph sampling

	Extremal partial rejection sampling
	Sampling w-free strings: extremal case
	Sampling H-free subgraphs: extremal case

	General partial rejection sampling
	w-free strings
	Sampling H-free graphs
	Triangle-free subgraphs of the triangular grid
	Square-free subgraphs of the square grid

	Conjectures and Future Work
	w-free strings
	H-free subgraphs

	Acknowledgments

