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Abstract. It is known that irreducible components of a two-row type Springer fiber are iterated
CP1 bundles. In this paper, we prove that their pair-wise intersections are isomorphic to some
irreducible components of other two-row type Springer fibers. In particular, the intersections are
iterated CP1 bundles, as conjectured by Fung ([1]). We relate the irreducible components with
lattice paths and give an combinatorial algorithm to determine their intersections. For any two-
row type Springer fiber, we prove that its singular locus is equidimensional. We find a bound
on the number of components of this singular locus and investigate its topology. We make some
speculations here, including that the singular locus is a union of Springer fibers of two-row type.

1. Introduction

Let n be a positive integer, and let N be a nilpotent map Cn → Cn, in the sense that N b = 0
for some positive integer b. A flag is a chain of subspaces 0 ⊂ F1 ⊂ F2 · · · ⊂ Fn = Cn, such that
dimFi = i for each i. We say that N fixes such a flag if NFi ⊂ Fi−1 for all 1 ≤ i ≤ n. The Springer
fiber of N is the set of flags fixed by N , and is denoted by BN . It is a projective variety.

The Springer theory says the top homology of BN is an irreducible representation of Sn, the n-th
symmetric group. This theory has proven to be successful in understanding the representations
of Sn. In particular, Kazhdan and Lusztig ([2]) have a topological construction of basis for each
irreducible representation. However, except the existence of such distinguished basis, there is only
a few papers studying the topology of Springer fibers and that of their singular loci.

Fung has studied the topology of hook type and two-row type Springer fibers (see Definition 2.1),
and relates the pair-wise intersections of irreducible components with inner products of Kazdan-
Lusztig basis. He proves that each irreducible component is an iterated fiber bundle, which is
therefore smooth. For the hook type Springer fiber, he proved that the pair-wise intersections of
irreducible components are also iterated fiber bundles. However, his proof strongly depends on the
simple characterization of irreducible components of hook type. His method can not be applied to
general case, and not even to two-row type. For two-row type Springer fibers, he proves that each
irreducible component is an iterated CP1 bundle, and conjectures that their pair-wise intersections
are also iterated CP1 bundles.

In this paper, we start by proving Fung’s conjecture and aim to understand the topology of
intersections better. Since Fung has proven that irreducible components are smooth, the union of
their pair-wise intersections is equal to the singular locus of the Springer fiber. Our study is focused
on the topology of this singular locus, and the main theorem is

Theorem 1.1. For a two-row type Springer fiber, its singular locus is equidimensional. Each
component of the singular locus is isomorphic to some irreducible component of a two-row type
Springer fiber. The singular locus is connected if the length of the second row is greater than 1.
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Based on these observations, we conjecture that the singular locus is a union of two-row type
Springer fibers.

The paper is organized as following: We prove the conjecture of Fung in section 3. For any two
irreducible components, we will combine the defining conditions for each of them and give a unified
set of conditions on the subspaces of flags. This new set of defining conditions is similar to that
of an irreducible component. Indeed, we eventually prove that each intersection is isomorphic to
some irreducible component of other two-row type Springer fiber. In particular, the intersection is
an iterated CP1 bundle.

In section 4, we classify the case when two irreducible components have a codimension 1 in-
tersection, and prove that the singular locus is equidimensional. We then bound the number of
components of the singular locus and prove its connectedness. In section 5, we give two theorems
that may be useful in computing intersections, especially in counting the dimensions.

2. Preliminaries

2.1. Irreducible Components of Springer Fibers. From the definition, it is clear that BN
is determined by the conjugacy class of N . So we can always assume N is in its Jordan normal
form. Since N is nilpotent, the diagonal of N is zero everywhere. The Jordan blocks of N gives a
partition of n = b1 + b2 · · · bk, with b1 ≥ b2 ≥ · · · bk ≥ 1. The Young Shape of N is the shape from
this partition, i.e. the first row has b1 boxes, and the second row has b2 boxes · · ·

Definition 2.1. We say that the Springer fiber BN is of two-row type if the Young shape of N has
two-rows. In particular, we say that the Springer fiber is of type (b, a) if the Young shape of N has
two-rows and the length of the rows are b, a respectively, with b ≥ a.

A standard tableau on the Young shape of N is a filling of numbers 1, 2, · · · , n into the boxes, such
that the number is decreasing in each row and each column. There is a one to one correspondence
between standard tableaux and irreducible components of BN , which is the following theorem
proved by Vargas and Spaltenstein:

Theorem 2.1. (Vargas [5], Spaltenstein [4]) Let N be a nilpotent map. Then given a standard
tableau A on the Young shape of N , we have a locally closed subset SV (A) of the Springer fiber

BN ; whose closure SV (A) is an irreducible component of BN : We have a partition BN =
⋃

A SV (A)
of the Springer fiber into disjoint locally closed subsets. Thus the number of irreducible components
of BN is equal to the number of standard tableaux on the Young shape of N . In addition, the
components are all of the same dimension. In fact, if the lengths of the columns of the Young shape
of N are a1, a2, · · · , ak then the dimension of each component is

(2.1)

k∑
i=1

ai(ai − 1)

2
.

This is a general theorem for all type of nilpotent maps N . For Springer fibers of two-row type,
Fung gives an explicit defining condition on the irreducible components of BN . For a standard
tableau A, we use the notation K(A) to denote the corresponding component.

Theorem 2.2. (Fung [1]) Let N be a nilpotent matrix of two-row type, and let A be a standard
tableau on the Young shape of N , with the first row being n, ib−1, · · · , i1. Then K(A) of the Springer
fiber BN consists of all flags whose subspaces satisfy the following conditions

(2.2) Fi−1 ⊂ Fi ⊂ N−1(Fi−1)

for all 1 ≤ i ≤ n. And if i is on the top row of A and i− 1 is on the bottom row, then

(2.3) Fi = N−1(Fi−2).
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If i, i− 1 are both on the top row and Fi−1 = N−r(Fd), with d > 0, then

(2.4) Fi = N−r−1(Fd−1).

If i, i− 1 are both on the top row and Fi−1 = N−r(Im Nd), a ≤ d ≤ b then

(2.5) Fi = N−r(Im Nd−1).

Example 2.1. The irreducible component corresponding to

6 5 4
3 2 1 consists of flags

(2.6) 0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ N−1(F2) ⊂ N−2(F1) ⊂ C6.

and F1 ⊂ N−1(0), F2 ⊂ N−1(F1).

Seemingly complicated, Fung’s theorem says that those subspaces Fi with i in the second row of
A is independent, in the sense that Fi can be any subspaces such that Fi−1 ⊂ Fi ⊂ N−1(Fi). The
choice of such Fi is a CP1 because Fi/Fi−1 is a one dimensional subspace of the two dimensional
space N−1(Fi)/Fi.

Fung’s theorem implies that any other subspaces Fj can be uniquely determined. In particular,
this implies that the dimension of K(A) is equal to the length of the second row, which agrees with
Vargas and Spaltenstein’s theorem. In fact, Fung’s theorem implies that K(A) is an iterated CP1

bundle, in the following sense:

Definition 2.2. A space X1 is an iterated CP1 bundle if there exists X1, X2, · · · , Xn+1 = pt and
maps p1, · · · , pn such that pi : Xi → CP1 is a fiber bundle with typical fiber Xi+1.

Let j1 < j2 · · · < ja be the numbers in the second row of A. Then each irreducible component
is an iterated CP1 bundle by projecting to Fj1 , · · · , Fja successively. In particular, it is smooth.
From there and evidence from inner products of Kazhdan-Lusztig basis, Fung conjectures that the
pair-wise intersections of two irreducible components of BN are also iterated CP1 bundles.

2.2. Relation with Lattice Paths. Before we start to give a unified defining condition for inter-
sections of two irreducible components, we relate standard tableaux with lattice paths and restate
Theorem 2.2 so that the three situations are unified. In this section, we fix the Young shape to be
of (b, a) type.

A lattice path is a path by adjoining consecutive points (i, h(i)) such that |h(i) − h(i − 1)| = 1
for each i. For a standard tableau A, we define a lattice path in the following way:

(1) h(i) = i,−(b− a) ≤ i ≤ 0.
(2) If i is on the top row of A, then h(i) = h(i − 1) − 1. If i is in the bottom row, then

h(i) = h(i− 1) + 1.

Example 2.2. The following lattice paths are those of

6 5 4
3 2 1 and

6 4 2
5 3 1 respectively.
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We call h(i) the height of i. Clearly, h(i) ≥ −(b − a) for each i. And for any lattice path, we can
get a standard tableau by adding numbers to the Young shape: if h(i) − h(i − 1) = 1, then add i
to the bottom row, otherwise add it to the top row. This is a standard tableau if h(i) ≥ −(b− a)
for each i.

So there is a one to one correspondence between standard tableaux on Young shape (b, a), and
lattice paths starting from 0, with length b+a, and always above −(b−a). From now on, we don’t
distinguish a standard tableau and its corresponding lattice path.

Definition 2.3. For a lattice path L, we say i is independent if h(i) − h(i − 1) = 1. We say j
depends on i, if the horizontal line from j to the left, intersecting L at i at the first time. (See the
picture below).

Theorem 2.2 can be restated as following:

Theorem 2.3. (Theorem 2.2 restated) Let A be a standard tableau on the Young shape of N , which
is of (b, a) type. Let F−i = Im N b−i. Then the irreducible component K(A) consists of all the flags
such that

(1) Fi−1 ⊂ Fi ⊂ N−1(Fi−1).

(2) If j depends on i, then Fj = N−d(Fi) with d = j−|i|
2 .

It is part of the theorem that the defining conditions are also symmetric: if Fj depends on Fi

and Fj = N−d(Fi), then Fi = NdFj .

3. Intersections as Irreducible Components

In this section, we prove that for any two-row type Springer fiber BN , the pair-wise intersections
of its irreducible components are also irreducible components of other two-row type Springer fiber.

3.1. A Unified Condition for Intersections. In this section, N will be a fixed nilpotent matrix
of (b, a) type, b ≥ a. All the lattice paths mentioned will also correspond to a standard tableau on
Young shape (b, a). In other words, they are always above the level −(b− a).

First, we define a graph G(A) which represents all the dependences.

Definition 3.1. For any lattice path A, we define a graph G(A): Its vertices are numbers −(b −
a),−(b− a) + 1, · · · , b+ a. And (i, j) is an edge if j depends on i. (see Definition 2.3)

Similarly, we define a graph for many components:

Definition 3.2. For lattice paths A1, · · · , An, we define G(A1, · · · , An) =
⋃n

i=1G(Ai) in the sense
that vertices are the same and the set of edges of G(A1, A2, · · · , An) are the union of edges of
G(Ai).

Example 3.1. The graphs of standard tableaux in Example 2.2 and the graph of their intersection
are drawn below.

4



We imitate Theorem 2.3 and give a set of defining conditions for
⋂n

i=1K(Ai) in terms of
G(A1, · · · , An). Notice that Fi (i ≤ 0) are fixed spaces in Theorem 2.3. It is thus convenient
to distinguish them with independent spaces.

Definition 3.3. For a connected component of G, we say it is positive if any number in that
component is positive.

So Theorem 2.3 says that for every positive connected component, the subspaces are uniquely
determined by Fi, such that i is the smallest number in that component. The next theorem
generalizes this to intersection of two components.

Theorem 3.1. For any two standard tableaux A,B, let F−i = Im N b−i for b − a ≥ i ≥ 0. If any
connected component of G(A,B) contains at least two non-positive numbers, then K(A)∩K(B) = ∅.
Otherwise K(A) ∩K(B) 6= ∅ and it consists of all the flags satisfying conditions:

(1) Fi−1 ⊂ Fi ⊂ N−1(Fi−1), if i > 0 and is the smallest number of some connected component.
We call these Fi, i independent.

(2) If j and i are in the same connected component, then Fj = N−d(Fi), d = |j|−|i|
2 .

Proof. First, we prove that (2) is necessary by doing induction on the distance between j and i (in
the graph G(A,B)). If the distance is 1, then both j, i must be in the same component of graph
G(A) or G(B). So (2) holds by Theorem 2.3.

Assume (2) holds when distance is not greater than k. Consider a shortest path between j and
i: (i, i1, · · · , ik, j). Clearly ik and j are in the same connected component in either G(A) or G(B).

Therefore Fj = N−
|j|−|ik|

2 Fik . By induction assumption, Fik = N−
|ik|−|i|

2 Fi. Notice that Fi has

dimension |i|. If |ik| > |i|, then we have a chain of spaces Fik ⊃ NFik ⊃ · · · ⊃ N
|ik|−|i|

2 Fik = Fi.
Since N is of two-row type, kerN is 2 dimensional. So each step in the chain decreases the dimension

by 2. Therefore, NaN bFik = Na+bFik if 0 ≤ a, b, a+ b ≤ |ik|−|i|2 . This is true for the chain between
Fj , Fik . Thus we always have

(3.1) Fj = N−
|j|−|ik|

2 Fik = N−
|j|−|ik|

2 N−
|ik|−|i|

2 Fi = N−
|j|−|i|

2 Fi.

Notice that each connected component of G(A) has at most one non-positive number. If there exists
a connected component of G(A,B) that has at least two non-positive numbers, say −(b − a) ≤
x < y ≤ 0, then Fx = N−

|x|−|y|
2 Fy. This cannot be true because Fx = Span{e1, · · · , e|x|} and

Fy = Span{e1, · · · , e|y|}, |y| ≤ |x| ≤ b− a. Whenever we take the inverse image, there will be basis
element eb+1. So K(A) ∩K(B) = ∅ if any connected component of G(A,B) contains at least two
non-positive numbers.

Clearly a flag satisfying both (1) and (2) is contained in K(A) ∩K(B). �

The theorem can be easily generalized to intersections of many components.
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Example 3.2. Consider the intersection of irreducible components

6 5 4
3 2 1 and

6 4 2
5 3 1 . The

graph of intersection determines connected components {0, 2, 4, 6}, {1, 5}, {3}. So the intersection
consists all the flags

(3.2) 0 ⊂ F1 ⊂ N−1(0) ⊂ F3 ⊂ N−2(0) ⊂ N−2(F1) ⊂ N−3(0) = C6.

3.2. Intersections as Irreducible Components. In this section, we prove that the intersection
of two irreducible components, if non-empty, is isomorphic to some irreducible component of other
two-row type Springer fiber. We will first construct a lattice path for the intersection and then
prove that its corresponding irreducible component is indeed isomorphic to the intersection.

3.2.1. Construction of lattice Path. Suppose A,B are two standard tableaux on the Young shape
of N . We will construct a new lattice path P (A,B) of shorter length.

First, we can assume K(A) ∩ K(B) 6= ∅. Theorem 3.1 gives a set of defining conditions for
K(A) ∩K(B). Let X be the set of independent indices. They form some disjoint intervals. (An
interval is a set of numbers {i, i+1, · · · , i+k}). Label the intervals from small to big, by α1, · · · , αl.
Let (0 <)i1 < · · · < il be the first numbers in each interval. Let lk be the length of the interval αk.
We construct the lattice path P (A,B) through the following steps:

Step 1 For all it, by definition it − 1 doesn’t belong to X. So Fit−1 depends on a subspace with
index in X, or it depends on some F−i, i ≥ 0. We pick out all the numbers it, such that
it − 1 depends on subspaces with non-positive indices. Starting from 0, we add a triangle
with side length lt for each such it. (It means going upward lt times then going downward
back to the axis.) Note that there is at least one such triangle. The order of triangles
doesn’t matter. Suppose the intervals in this step are β1, β2, · · · , βu. There is an obvious
correspondence between the upward endings and elements in β1, β2, · · · , βu.

Step 2 Suppose there are remaining intervals. Consider those it such that it−1 depends on numbers
in β1. If exists, we can let Y be the set of all such it. For it ∈ Y , let jt be the number in
β1 that it − 1 depends on. We order the elements of X such that the corresponding jt is
decreasing. Suppose the corresponding intervals for elements in Y , are γ1, γ2, · · · , γv, with
the order we just defined. Suppose the corresponding jt are k1 ≥ k2 ≥ · · · ≥ kv. Then
we extend the triangle of β1: starting from the peak, go down until it reaches the same
height as k1, (using the correspondence defined in the previous step), then goes up by l(γ1)
steps, then goes down until reach the same height as k2, and then go up by l(γ2) steps...
Eventually, it goes up l(γv) step, and goes back to the axis.

If X = ∅, do nothing to the triangle. Do the same for all other βi in the first step. Notice
that after this step, each interval appeared in the lattice path except those βi, is a left leg
of some peak, and after the peak, it will go down to a place lower than where it starts.

If none of the it−1 depends on intervals βi (i ≤ l), then there are no remaining intervals.
So the lattice path is done.
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Step 3 If there are remaining intervals, then those it − 1 cannot depends on intervals in the first
step. Consider those it − 1 that depends on intervals in the second step. For each interval
γ in the second step, repeat the process before.

Clearly eventually we can exhaust all the intervals and get a lattice path P (A,B). P (A,B) starts
from (0, 0), and ends at (2|X|, 0). It is always above the axis.

3.2.2. Proof of Isomorphism. The proof is based on the observation that up to isomorphism, K(A)∩
K(B) is determined by defining conditions for those Fit−1. And since the lattice path we constructed
has the same dependence for those, the independent spaces only differ by span of standard basis.

Theorem 3.2. K(A)∩K(B) is isomorphic to the irreducible component corresponding to P (A,B).

Proof. Let m = |X|. Let N ′ be a 2m × 2m nilpotent matrix. It has two Jordan blocks, each is
m×m. The construction of P (A,B) gives an obvious map from X to the upward ends of P (A,B).
Let f be this map. We order the elements of X such that their image under f is increasing order:
x1, · · · , xm. Let yi = f(xi). From the construction, y1 = 1 and we know that if yi − 1 depends
on yk, then xi − 1 depends on xk. If yi − 1 depends on 0, then xi − 1 depends on a non-positive
number.

Without loss of generalization, we assume only y1 − 1 depends on 0.
K(A) ∩K(B) is an iterated CP1 bundle, by first projecting to Fx1 , and the fiber projecting to

Fx2 · · · (for each flag F )Let K(A,B) be the irreducible component corresponding to P (A,B). It
is also an iterated CP1 bundle, by first projecting to Gy1 , then the fiber projecting to Gy2 · · · (for
each flag G)

In K(A) ∩ K(B), Fx1−1 is a known space, spanned by standard basis elements, because it is
N−d(Im Nk), for some d, k. It must be of the form Span{e1, e2, · · · , ed+k, eb+1, eb+2, · · · , eb+d}.

If s ≥ 0, consider the operator D(s) : C2m → C∞, such that for 1 ≤ i ≤ m, ei 7→ ed+k+s+i. For
m < i ≤ 2m, ei 7→ eb+d+s+i.

Consider the operator E(s) on subspaces of C2m:

(3.3) C2m ⊃ V 7→ Span{e1, e2, · · · , ed+k+s, eb+1, eb+2, · · · , eb+d+s} ⊕D(s)V

If −m < s < 0, we define F (s) : C2m → C2m, such that for −s < i ≤ m or m − s < i ≤ 2m,
ei 7→ ei+s, and ei 7→ 0 for all other i. Define E(s):

(3.4) C2m ⊃ V 7→ Span{e1, e2, · · · , ed+k, eb+1, eb+2, · · · , eb+d} ⊕D(0)F (s)V

From the construction, xi−yi−(2d+k) is an even number. Let si = 1
2(xi−yi−2d−k). Consider

the map

(3.5) (Gy1 , · · · , Gym)→ (E(s1)Gy1 , · · · , E(sm)Gym).

It gives an isomorphism between allowable choices (Gy1 , · · · , Gym) and (Fx1 , · · · , Fxm). This gives
an isomorphism between the two iterated CP1 bundle. �

Corollary 3.3. For any two standard tableaux A,B, the intersection K(A) ∩K(B) is an iterated
CP1 bundle. And the dimension of this intersection is the number of positive connected component
of G(A,B).

Example 3.3. Consider Example 3.2. Here X = {1, 3}. And 2 is in the connected component
{0, 2, 4, 6}. So the lattice path for the intersection is completed after step 1. It is drawn below.
This is CP1 × CP1, which is isomorphic to the intersection according to the description given by
(3.2).
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3.3. Finitude of Irreducible Components. Generically, there can be infinitely many iterated
CP1 bundles of fixed dimension. The problem is that the dimension of each component is equal to
the length of the second row, but the length of the first row can be arbitrary.

For dimK(A) = 2, Fung ([1]) and Lorist ([3]) show that K(A) is either CP1 × CP1, or is a
nontrivial CP1 bundle over CP1 which comes from the line bundle O(2). We will generalize this
statement.

Theorem 3.4. For any positive integer n, there are only finitely many n dimensional irreducible
components of springer fibers of two-row type.

Proof. Let A be a standard tableau of two-row type. Assume dimK(A) = n. Then the second row
of the Young shape has length n.

Consider the lattice path of A. We pick a set of non-negative numbers X = {i1, i2, · · · , ik}, such
that

h(it) = min
0≤j≤it

h(j)(3.6)

h(it + 1) = h(it) + 1.(3.7)

Clearly X 6= ∅. For each element it ∈ X, let jt > it be the first index such that h(jt) = h(it). Such
jt exist because h(n) is lowest.

From the definition of jt, jt − it is an even integer. And by definition of it, Fit is N−d(F−l) for

some non-negative integer l. Also Fjt = N−d−dt(F−l), where dt = jt−it
2 . From the lattice path

and Theorem 2.3, the part of the flag Fit ⊂ Fit+1 ⊂ · · · ⊂ Fjt is independent of other subspaces,
because for any s ∈ (it, jt), it is either free or depends on a subspace with index in [it, jt]. This
means K(A) can be written as product of M × L for some L.

Let M be the variety of all the chains Fit ⊂ Fit+1 ⊂ · · · ⊂ Fjt satisfying the defining conditions
for A. We claim that M is isomorphic to a irreducible component with Young shape (dt, dt). The
part of lattice path from it to jt can be seen as a lattice path from 0 to 2dt, and always above the
axis. Let B be the corresponding standard tableau, with two-row Young shape(dt, dt). Let N ′ be
the nilpotent matrix with 2 Jordan blocks, each block is dt × dt.

Consider the map φ : M → K(B), by taking quotients over Fit , i.e.

(3.8) φ : Fit ⊂ Fit+1 ⊂ · · · ⊂ Fjt 7→ 0 ⊂ Fit+1/Fit ⊂ · · · ⊂ Fjt/Fit .

Then the defining conditions NFj ⊂ Fj−1 becomes N ′φ(F )j−it ⊂ φ(F )j−it−1. And Fi = N−d(Fj)

becomes φ(F )i−it = N ′−d(φ(F )j−jt). So M and K(B) are isomorphic.
According to the previous discussion, K(A) is a product of iterated P1 bundles. Each factor is

isomorphic to some irreducible component, also with lattice path always above the axis. So there
are finitely many possibilities. �

Corollary 3.5. The number of different irreducible components of two-row type, with fixed di-
mension n is not greater than the number of lattice paths from 0 to 2n that never cross the axis.
Therefore, the number of different irreducible component is at most 1

n+1

(
2n
n

)
, the n-th Catalan

number.

Proof. Theorem 3.4 essentially gives an isomorphism between any (b, a) type irreducible component
and (a, a) type irreducible component. (See the picture below)
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Since we have shown that intersections are isomorphic to irreducible components, Theorem 3.4
also shows the finitude of intersections of fixed dimension.

4. Properties of the Singular Locus

For a two-row type Springer fiber, we know that each of its irreducible components is an iterated
CP1 bundle. In particular, each component is smooth. Thus the singular locus of the Springer fiber
is just the union of intersections of components. In this section, we analyze the topology of this
singular locus. We will assume the Springer fiber is of (b, a) type, unless otherwise mentioned.

4.1. Codimension 1 Intersections. We will prove that the singular locus is equidimensional. In
this context, it means any intersection of two irreducible components is contained in a codimension
1 intersection. We first classify the case when codim K(A) ∩ K(B) = 1. Let S(A) be the set
of numbers in the bottom row of A. Then S(A) is exactly the set of independent indices of
G(A). According to Theorem 3.3, dimK(A) ∩ K(B) ≤ |S(A) ∩ S(B)|. Therefore, we must have
|S(A)∩S(B)| = a−1. If we draw the lattice paths of A,B, their lattice path must differ by a band
of length 1. (See picture below.)

There are two elements in S(A) ∪ S(B)− S(A) ∩ S(B). Suppose the two elements are x, y, and
x ∈ A, y ∈ B. Then we say that the band is balanced if x− 1, y have the same height in the lattice
path of A, and the part of the lattice path between x − 1, y is always above the height of x − 1.
Equivalently, this is to say that x, y− 1 have the same height in the lattice path of B, and the part
of lattice path of B between x, y − 1 is always above the level of x.

Theorem 4.1. K(A)∩K(B) has codimension 1 if and only if their lattice paths differ by a balanced
band.

Proof. Suppose the lattice paths of A,B differ by a balanced band. Assume the four ends of
the band is x − 1, x, y − 1, y, and A is on the top. It is clear from the definition that the only
difference between G(A), G(B) is the dependence of x, y. Suppose x depends on u in B. Then the
G(A,B) is obtained by adding a line between x, u in G(A). Both x, u are the smallest numbers
in the corresponding equivalence classes (u may not be positive). So the number of connected
components is decreased by 1.

On the other hand, suppose codim K(A) ∩ K(B) = 1. Then the lattice path must differ by a
band. We need to show that it is balanced. If the lattice path of A between x− 1, y is not always
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above the level of x − 1. (See the picture above.) On the lattice path of A, consider the first
point to the right of x − 1 that is lower than h(x − 1). Suppose this is at position z ∈ [x + 1, y].
The segment from z − 1 to z is downward. Suppose z depends on u1 in A, and u2 in B, then
u1, u2 ≤ x− 1, and u1, u2 are in different connected components of A. However, in G(A,B), there
are edges (z, u1), (z, u2). If both u1, u2 are non-positive, then K(A)∩K(B) = ∅. Otherwise, u1, u2
are in the same connected component. In G(A,B), comparing to G(A), the connected components
of x and that of one of u1, u2 are combined intro others. So the number of positive connected
components will decrease by at least 2. This means codim K(A) ∩K(B) ≥ 2.

If the the path of A between x − 1, y is not always above the level of y. The paths coincide at
and after y. Since they eventually goes to the lowest point (b+ a,−(b− a)). There is a first time
after y, that both path reach the height of y − 1 in B. Suppose this is k. Suppose k depends on
u1, u2 in A,B respectively. Then by assumption x− 1 ≤ u1 < u2. Therefore u2 > x, since u2 − u1
is even. In G(A,B), comparing to G(A) the connected components of u2, x of A disappears. So
codim K(A) ∩K(B) ≥ 2. �

Example 4.1. Compare the lattice paths in Example 2.2, we already known that their intersection
is CP1 × CP1, which is of codimenion 1.

On the other hand, consider the intersection of

6 5 4
3 2 1 and

6 5 2
4 3 1 . Although the second

row has two numbers in common, their intersection is

(4.1) 0 ⊂ F1 ⊂ N−1(0) ⊂ N−1(F1) ⊂ N−2(0) ⊂ N−2(F1) ⊂ C6.

So it is one dimensional, and therefore has codimension 2.

For convenience, we define the following graph G for a Springer fiber.

Definition 4.1. For a Springer fiber of type (b, a), we define a graph G(b, a): The vertices are
irreducible components of the Springer fiber. For two components A,B, there is an directed edge
A→ B if codim K(A) ∩K(B) = 1 and lattice path of A is above that of B.

4.2. Equidimensionality of the Singular Locus. We use G instead of G(b, a), whenever there
is no ambiguity. We will see that G also gives information on intersection of any two different
components. First, we have

Theorem 4.2. For any irreducible components K(A),K(B), there is a chain C0 → C1 → · · ·Ct ←
Ct+1 · · · ← Ck, such that C0 = K(A), Ck = K(B), and K(A) ∩K(B) = C0 ∩ C1 ∩ · · ·Ck.

Proof. Consider the pair (A,B). Find the first point x where lattice paths of A,B diverge. Suppose
A goes up after x, and B goes down. Suppose y is the first point after x such that its height is the
same as that of x, in A. We construct a lattice path A1. A1 agrees with A before x, and goes down
after x, then imitate the graph of A, until y − 1. Then go up one step and close the band. After
y, A1 agrees with A. (See the picture below.)

From the construction, A → A1. Notice that the graph of intersection G(A,A1) is obtained
from G(A), by adding a line adjoining x+ 1 and u, which is the smallest number in the connected
components of x + 1, in G(B). For G(A,B), (x + 1, u) is one of the lines needed to be added on
G(A). So G(A,A1) is a subgraph of G(A,B). Thus K(A)∩K(B) ⊂ K(A)∩K(A1). In particular,
K(A) ∩K(B) ⊂ K(A1) ∩K(B).

Consider the new pair (A1, B1 = B). Continue this procedure above. The first time these two
lattice paths diverge is greater than x. Each time we replace either A or B by another lattice
path. The intersection of this pair is always larger. Eventually, the two path coincide. The chain is
obtained by first taking all different A’s in the pair, then going backward and take all the different
B’s. (See the picture below.)
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Example 4.2. Consider the intersection of

6 5 4
3 2 1 and

6 5 2
4 3 1 . The chain is drawn in the

following picture.

Corollary 4.3. G is connected.

Corollary 4.4. The singular locus of the any Springer fiber of two-row type is equidimensional.

Proof. For any intersection K(A)∩K(B), take a chain as in the theorem. We know K(A)∩K(B) ⊂
C0∩C1. So K(A)∩K(B) is contained in a codimension 1 intersection. This implies that the singular
locus is equidimensional. �

4.3. Number of Components of the Singular Locus. We will see that G also gives a bound
on the number of components of the singular locus.

Lemma 4.1. For each vertex A of G, the number of edges going outward from A is deg+(A) ≤ a.

Proof. Any balanced band below A must start from a point x, where (x, x+1) is an upward segment
in the path of A. Clearly, for any such x, there is a unique balanced band. Because it must end at
the first point after x that has the same height as x (on the path of A). �

Theorem 4.5. Each edge in G stands for a unique codimension 1 intersection.

Proof. We need to prove that two edges cannot represent the same intersection. In fact, if K(A)∩
K(B) = K(C) ∩ K(D) and both have codimension 1. If A,B,C,D are different. Then K(A) ∩
K(B) ∩K(C) ∩K(D) = K(A) ∩K(B). So K(A) ∩K(B) = K(A) ∩K(C). So it suffice to prove
the case when D = A.

Case 1 A→ B,A→ C. Consider first point x where A,B are different, and the first point y where
A,B are different. Since B 6= C, x 6= y. Consider the graph G(A,B,C), comparing to
G(A), the connected component of x, y disappears. So codim K(A) ∩K(B) ∩K(C) = 2.
Contradiction!

Case 2 A → B,C → A. Suppose the band of A,B starts and ends at u, v respectively, and the
band of C,A starts and ends at x, y respectively. Then the graph G(A,B), comparing
tG(A), loses a connected component of u+ 1. Similarly, the graph of K(A)∩K(C) loses a
connected component of y. So we must have y = u+ 1. (See the picture below.)

Suppose y depends on c in C, and b in B, then A,B,C coincide at c, b. And c, b has
different height, which implies c 6= b and are in different connected component in G(A).

11



If both c, d are non-positive, then K(A) ∩ K(B) ∩ K(C) = ∅, contradiction! Otherwise
G(A,B,C) comparing to G(A), loses two of the three connected components corresponding
to c, b, y. Contradiction!

Case 3 B → A,C → A. This is almost the same as in Case 1, because above A, for any y, there is
at most one balanced band ending at y.

�

Corollary 4.6. The number of components of the singular locus is the number of edges of G. So
the number of components is at most a ·#standard tableaux of (b, a) type.

4.4. Connectedness of the Singular Locus. In this section, we prove the connectedness of the
Springer fiber and its singular locus.

Theorem 4.7. Any Springer fiber of two-row type is connected.

Proof. This can be seen from the connectedness of G. �

Theorem 4.8. For a Springer fiber of type (b, a), with a > 1, its singular locus is connected.

Proof. Assume a > 1. Since the singular locus is equidimensional, we only need to show that
the codimension 1 intersections are connected to each other, maybe through a chain. According
to the proof of Theorem 4.5, any two edges A → B,A → C, has a codimension 2 intersection
K(A) ∩K(B) ∩K(C). So K(A) ∩K(B) ∩K(C) 6= ∅. This means the intersections K(A) ∩K(B)
and K(A) ∩K(C) are connected to each other.

We call x a peak of A, if (x − 1, x) is upward, and (x, x + 1) is downward. Then for any peak
x, we can always “delete” it by making (x− 1, x) downward, and (x, x+ 1) upward. Suppose this
new lattice path is A′, then A→ A′.

Now for any edge A→ B, from the above observation, it is connected with some edge A→ A′,
where A′ is obtained by deleting a peak in the band of A,B. Suppose the peak deleted is x. If A′ is
not the lowest path (see the picture below), then we can always find a peak of A′, delete it and get
A′ → A′′. According to the proof of Theorem 4.5, K(A) ∩K(A′) ∩K(A′′) is possible to be empty
if and only if the new peak is x + 1. However, unless, a = 1, we can always find a peak not equal
to x+ 1.

So every codimension 1 intersection is connected (through a chain) with some intersection A→ B,
where B is the lowest path. And again from the proof of Theorem 4.5, any A → B,C → B has
non-empty intersection. So the singular locus is connected if a > 1. �

Example 4.3. The singular locus of (3, 2) type Springer fiber and (4, 2) type Springer fiber
is drawn below. Each line stands for a CP1 and labeled points are intersections of some two
irreducible components. The intersections of these CP1 are exactly the common points they have
in the following picture.

12



Conjecture 4.1. Based on the connectedness and equidimensionality, and the analysis of compo-
nents of the singular locus, we conjecture that the singular locus of the Springer fiber of (b, a) type
is covered by Springer fibers of (b − 1, a − 1) type. Recall that we already proved each component
of the singular locus is an irreducible component of the Springer fiber of (b − 1, a − 1) type. So it
remains find for each codimension 1 intersection, a set of codimension 1 intersections such that
their union is a (b− 1, a− 1) Springer fiber.

Example 4.4. The (b, 1) Springer fiber is a chain of b CP1’s, such that only consecutive CP1’s has
non-empty intersection: a point. As seen from Example 4.3, the singular locus of (3, 2) Springer
fiber can be written as a union of length 2 chains. The singular locus of (4, 2) Springer fiber can
be written as a union of length 3 chains.

5. Simplifying the Intersection

5.1. G and Dimensions of Intersections. The main idea is that dimensions of any intersection
can be read from the graph G. In fact, if the intersection is non-empty, we will see that the
codimension is the distance between the two components, in graph G.

Theorem 5.1. If K(A)∩K(B) 6= ∅, then there is a chain of irreducible components C0, C1, . . . , Ck

such that

(1) C0 = K(A), Ck = K(B) and K(A) ∩K(B) = C0 ∩ C1 ∩ · · ·Ck.
(2) codim Ci ∩ Ci+1 ∩ · · ·Ci+r = r, for any r ≥ 0 and 0 ≤ i ≤ i+ r ≤ k.
(3) Ci ∩ Ci+r = Ci ∩ Ci+1 ∩ · · ·Ci+r, for any r ≥ 0 and 0 ≤ i ≤ i+ r ≤ k.

In particular, the length of the chain is the codimension of K(A) ∩K(B).

Eventually, we will show that the chain constructed in Theorem 4.2 is one that satisfies all the
conditions. Before proving the general case, consider the situation when a = b. So the lattice
path of any standard tableau is actually a Dyck path, with length 2b. Let l be the vertical line at
position b. Let R represent the operation of taking the reflection with respect to l. For any Dyck
path A, clearly RA is also a Dyck path of length 2b.

Theorem 5.2. For (b, b) type Springer fiber, and two different Dyck paths A,B.

(1) K(A) ∩K(B) 6= ∅.
(2) The length of the chain constructed in the Theorem 4.2 for A,B is codim K(A) ∩K(B).

Proof. The first statement is obvious, because there is only one non-positive vertex in G(A,B).
Thus each connected component has at most one non-positive integer.

Using the algorithm in Theorem 4.2, we have a chain C0 → C1 → · · ·Ct ← Ct+1 · · · ← Ck for
RA,RB. That is C0 = RA,Ck = RB. Let Di = RCi. Then we have chain D : D0 → D1 →
· · ·Dt ← Dt+1 · · · ← Dk, and D0 = A,Dk = B.

We claim that k = codim K(A) ∩K(B). Use induction on the length of D. If the length of D
is 0, 1, (2) is satisfied. Let l(D) denote the length of D.
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Suppose we have proven the case for l(D) = k. Then suppose l(D) = k + 1. According to our
construction, either D1, D2, · · · , Dk+1 comes from the algorithm for D1, Dk+1 or D0, D1 · · · , Dk

comes from D0, Dk. Without loss of generalization, assume we are in the former case. Suppose
D1, Dk+1 agree on part [x, 2b] but not at x − 1. Then all D1, D2, · · · , Dk+1 agree on part [x, 2b].
And the band of D0, D1 ends at some y ∈ [x+ 1, 2b]. (y− 1, y) must be an upward segment in D1.

Consider the graph G(D1, D2, · · · , Dk+1), comparing to G(D1), since D1, D2, · · · , Dk+1 agree on
part [x, 2b], any connected components with least number in [x, 2b] is not changed. By intersecting
this with D0, the graph is added by a segment between y and some other smaller number. So the
number of connected component is decreased by 1. By induction, codim D0 ∩ D1 · · · ∩ Dk+1 =
codim D1 ∩D2 · · ·Dk+1 + 1 = k + 1.

Notice that in the (b, b) type springer fiber, dependence of subspaces are symmetric: In previous
sections, we labeled each connected component using the least number in each of them, and call
these number independent. We can equivalently label them using the largest number in each
component. And the set of free spaces are Fi, for i is the largest number in its connected component.
Other spaces are determined uniquely from these spaces, by taking the images of N for properly
many times. The space F2b = C2n.

In this manner, the above analysis for D now is equivalent to saying that the chain C constructed
for A,B in Theorem 4.2 also has the property that codim C0 ∩ C1 · · · ∩ Ck = k. �

In general, if the Springer fiber is of type (b, a), we add an upward line of length b− a adjoining
0, to make any lattice path a Dyck path of length 2b. (See the picture below.) Let this map be f :
irreducible components of type (b, a)→ irreducible components of type (b, b). Below is an example
of the effect of f .

For any type (b, a) lattice path A, the graph G(fA) is obtained from G(A) by adding each number
b−a. So the graphs of intersections also have this correspondence. In particular, ifK(A)∩K(B) 6= ∅,
as components of type (b, a), then each connected component contains at most one non-positive
number between −(b− a), 0. So in the graph for K(fA)∩K(fB), each 0, 1, 2, · · · , b− a stands for
a connected components. The number of positive connected components in G(A,B) is the number
of connected components greater than b− a, in the graph for G(fA, fB). Therefore,

Theorem 5.3. If K(A) ∩K(B) 6= ∅, then codim K(A) ∩K(B) = codim K(fA) ∩K(fB).

Notice that if A → B, then fA → fB. So G(b, a) is a subgraph of G(b, b). Also f respects the
algorithm we defined in Theorem 4.2. Therefore

Theorem 5.4. In (b, a) type Springer fiber, if K(A) ∩ K(B) 6= ∅, then the length of the chain
constructed in Theorem 4.2 is codim K(A) ∩K(B).

Before proving the second condition of the main theorem, we have the following lemma:

Lemma 5.1. If C0, C1, · · · , Cl+1 is a chain of lattice paths, such that codim K(Ci)∩K(Ci+1) = 1
for i > 0, then codim C0 ∩ C1 · · · ∩ Cl+1 ≤ codim C0 ∩ C1 + l.

Proof. We prove by induction. The lemma is correct when l = 0. Suppose it is true for l = k.
Then for a chain C0, · · · , Ck+2. We know by induction codim C0 ∩ · · ·Ck+1 ≤ codim C0 ∩ C1 + k.
By intersecting Ck+2, since codim K(Ck+1) ∩K(Ck+2) = 1, the graph G(C0, · · · , Ck+1) is added
by one edge. So the number of positive connected components is at most decreased by 1. So

(5.1) codim C0 ∩ · · ·Ck ∩ Ck+1 ≤ codim C0 ∩ · · · ∩ Ck + 1 ≤ codim C0 ∩ C1 + k + 1.

�
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Now we are able to prove the main theorem.

Proof. Let C0, · · · , Ck be the chain for A,B. We only need to check the conditions 2, 3. We already
know that codim C0 ∩ · · ·Ck = k. Notice that by Theorem 4.2,

(5.2) C0 ∩ Ck = C0 ∩ C1 · · · ∩ Ck.

So we have

(5.3)
⋂

j∈[0,k]

Cj =
⋂

j∈[0,i]∪[i+r,k]

Cj .

Using Lemma 5.1 we have

(5.4) k = codim
⋂

j∈[0,k]

Cj = codim
⋂

j∈[0,i]∪[i+r,k]

Cj ≤ codim Ci ∩ Ci+r + (k − r).

So codim Ci ∩ Ci+r ≥ r. But since Ci ∩ Ci+r ⊃ Ci ∩ Ci+1 · · · ∩ Ci+r, the lemma says

(5.5) codim Ci ∩ Cj ≤ codim Ci ∩ Ci+1 · · · ∩ Ci+r ≤ r.
So every equality is hold. In particular, the second and third condition of the main theorem is
hold. �

In fact, the main theorem also implies that k is the distance between A,B in graph G. And the
chain constructed from Theorem 4.2 is one of the shortest path from A to B.

Theorem 5.5. For two irreducible components A,B of the (b, a) type Springer fiber, if A∩B 6= ∅,
then codim A ∩B = dist(A,B) in G.

Proof. Since G(b, a) is a subgraph of G(b, b), we only need to prove the theorem for (b, b) type
Springer fiber. In this context, any two irreducible components have non-empty intersection. Sup-
pose A = C0, C1, · · · , Cl = B is a chain in G(b, b) (not necessarily directional), then from Lemma
5.1, and C0 ∩ Cl ⊃ C0 ∩ C1 ∩ · · · ∩ Cl, we have

(5.6) codim C0 ∩ Cl = codim C0 ∩ C1 ∩ · · · ∩ Cl ≤ l
By Theorem 5.1, there exists a chain of length codim C0 ∩ Cl. So the distance between C0 =
A,Cl = B is exactly codim A ∩B. �

5.2. Simplification of Lattice Paths. In general, when we consider the intersection of two irre-
ducible components, their lattice path can cross each other many times. In this section, we prove
that we can replace the two lattice paths by another pair, such that one is above is other.

For two lattice paths A,B, let A + B represent the union of line segments of A,B, including
repetition. Let t(A,B) be the upper boundary A + B, and b(A,B) be the lower boundary. Then
t(A,B), b(A,B) are lattice paths and t(A,B) + b(A,B) = A+B.

Theorem 5.6. For any two lattice path A,B, K(A) ∩K(B) = K(t(A,B)) ∩K(b(A,B)). (see the
picture below)

Proof. Use induction on the area between t(A,B) and b(A,B). If the area is 1, then {t(A,B), b(A,B)} =
{A,B}. The theorem obviously holds. Suppose we have proven the case for area not greater than
k.

Suppose A,B are lattice paths such that the area between t(A,B), b(A,B) is k + 1. Then the
area is separated by some parts lying in consecutive intersections of A,B. Let C be the left most
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part. C lies in between x, y, which are intersections of A,B. (See the picture below.) Suppose in
this part, the top boundary is from A, and the bottom boundary is from B.

If x is lower than y, then we have a band below A that ends at y, and completely lying in C. If x
is higher than or at the same level of y, then there is a band below A starting at x and completely
lying in C. In each case, we have a A→ A′, such that the band of A,A′ is contained in C.

From the construction, b(A′, B) = b(A,B). And A ∩ B = A ∩ A′ ∩ B, t(A,B) ∩ b(A,B) =
t(A,B) ∩ t(A′, B) ∩ b(A′, B). The band between A and A′, t(A,B) and t(A′, B) are the same.
Comparing to G(A,B), G(A,A′, B) has one more segment. Comparing to G(t(A′, B), b(A′, B)),
G(t(A,B), t(A′, B), b(A′, B)) also has one more segment. The two additional segments are the
same.

By induction, K(A′) ∩K(B) = K(t(A′, B)) ∩K(b(A′, B)), so G(A,B) and G(t(A′, B), b(A′, B))
determine the same connected components. So after adding a same segment, the new connected
components are also the same. Therefore K(A) ∩K(B) = K(t(A,B)) ∩K(b(A,B)). �

Corollary 5.7. For any k lattice paths A1, A2, · · · , Ak. There exists B1, B2, · · · , Bk, such that

(1) A1 +A2 · · ·+An = B1 +B2 · · ·+Bn

(2) Bi is above Bi+1, for 1 ≤ i ≤ k − 1.

(3)
⋂k

i=1K(Ai) =
⋂k

i=1K(Bi).

Conjecture 5.1. Based on the simplification above and (3) in Theorem 5.1, we conjecture that
the intersection of any number of components is an intersection of two components. It suffices to
prove that any intersection of three irreducible components is equal to the intersection of some two
irreducible components.
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