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Abstract. When X is an associative H-space, the bar spectral sequence computes the homology
of the delooping, H∗(BX). If X is an n-fold loop space for n ≥ 2 this is a spectral sequence of Hopf
algebras. Using machinery by Sugawara and Clark, we show that the spectral sequence filtration
respects the Browder bracket structure on H∗(BX), and so it is moreover a spectral sequence of
Poisson algebras. Through the bracket on the spectral sequence, we establish a connection between
the degree n − 1 bracket on H∗(X) and the degree n − 2 bracket on H∗(BX). This generalizes a
result of Browder and puts it in a computation-ready context.

1. Introduction

For an associative H-space G, the Milnor-Dold-Lashof construction builds the delooping BG.
The algebraic analogue is the bar construction, and this relationship gives rise to the bar spectral
sequence (also known as the Rothenberg-Steenrod spectral sequence) which computes H∗(BG) from
H∗(G). The case where G is an infinite loop space has been extensively studied: working at a prime
p, Ligaard and Madsen [5] showed that there is a Dyer-Lashof action on the spectral sequence
compatible with the ones on H∗(G) and H∗(BG).

Here, we will instead consider spaces ΩnX where n is finite, and we will work over an arbitrary
field. Sn−1 parametrizes the multiplications on ΩnX, producing Browder’s bracket in homology—
this process is reviewed in §2.3. This bracket shifts degree by n − 1 and is an obstruction to ΩnX
being an (n+ 1)-fold loop space. Likewise, H∗(Ωn−1X) has a bracket of degree n− 2.

Our main result is that the bar spectral sequence relating H∗(ΩnX) and H∗(Ω
n−1X) respects

these bracket structures.

Theorem. The bar spectral sequence

E2
∗∗
∼= Tor

H∗(ΩnX)
∗,∗ (k, k)⇒ H∗(Ω

n−1X)

is a spectral sequence of Poisson algebras, converging to its target as a Poisson algebra. The bracket
in the spectral sequence shifts bidegree by (−1, n− 1).

Moreover, we will explicitly describe the bracket in the spectral sequence in terms of the one on
H∗(Ω

nX). It is responsible for the vertical shift of n− 1. Because of the horizontal shift of −1, the
bracket has total degree n− 2, which matches the one on H∗(Ωn−1X).

In §2 we review the relevant definitions and constructions. Then, in §3 we set up and prove the
theorem stated above, relating the brackets on H∗(ΩnX) and H∗(Ωn−1X) through the bar spectral
sequence. We obtain Theorem 2-1 of [1] as a special case. For technical reasons, we consider n = 2
separately from n ≥ 3.

This machinery can be used to infer properties of the bracket on H∗(Ω
nX) from the one on

H∗(Ω
n−1X). In some cases it determines it completely; H∗(ΩnSk;Q) is such an example, and the

reader is invited to compute it. There also appears to be related phenomena in the topological
Hochschild homology of En ring spectra.
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2. Background

Given a space X, the loop space ΩX is typically modeled as the space of all paths I → X sending
{0, 1} 7→ ∗ ∈ X, the basepoint. This model has a deficit: the multiplication (given by concatenation
and doubling the speed) is only unital and associative up to homotopy. To remedy this, we instead
adopt the following homotopy equivalent model, called the “Moore loops” of X after J. C. Moore
[8].

Definition 2.1 (Moore Loops). Given a space X with basepoint ∗, let ΩX be the subspace of
XR×R≥0 consisting of pairs (α, l) such that α(t) = ∗ if t ≤ 0 or t ≥ l. That is, ΩX consists of loops
inX together with their lengths. ΩX is itself a pointed space, with basepoint the constant path c∗ at
∗ ∈ X of length 0, and moreover it is an H-space with the multiplication (α, lα)(β, lβ) = (ω, lα + lβ)
where

ω(t) =

{
α(t) if t ≤ lα, and
β(t− lα) if lα ≤ t.

The benefit of this model is that ΩX is a strictly associative H-space with unit c∗. Let C∗
denote the normalized singular chain complex, which is the singular chain complex modded out by
degenerate chains. The complex C∗(ΩX) is a differential graded algebra (henceforth abbreviated
DGA) with the multiplication

C∗(ΩX)⊗ C∗(ΩX)
EZ−−→ C∗(ΩX × ΩX)→ C∗(ΩX)

where the first map is the Eilenberg-Zilber map and the latter is induced by the multiplication on
ΩX. In turn, this induces a multiplication on H∗(ΩX)—the Pontryagin product.

Remark (Notation). Throughout, we will consider only connected spaces. Coefficients are taken in
a field k to ensure that the Künneth map is an isomorphism. As such, this condition can be relaxed
to k a commutative ring and H∗(ΩnX; k) flat.

If x is an element of a (bi)graded object, then we take |x| to mean its total degree. “Commutative”
will mean “commutative in the graded sense” so that xy = (−1)|x||y|yx.

2.1. The bar construction. The following is a brief summary of the bar construction. For more
details than what is provided here, see [4] and [6]. We begin in a purely algebraic context and
then specialize to the case of topological interest at the end of §2.2. Consider a DGA (A, dA) with
augmentation ε : A → k.

Definition 2.2. Let A = ker ε. The (normalized) bar construction B∗,∗(A) is a bigraded k-module
with

Bs,∗(A) = A⊗ · · · ⊗ A︸ ︷︷ ︸
s times

of which the component in degree t is denoted Bs,t(A). We call s the external degree, and t the
internal degree, and s + t the (total) degree. It is conventional to write α1 ⊗ · · · ⊗ αs ∈ Bs,∗(A) as
[α1| · · · |αs]. The bar construction is a double complex with an internal differential d of bidegree
(0,−1) and an external differential δ of bidegree (−1, 0), defined as

d[α1| · · · |αs] =
s∑
i=1

(−1)σ(i−1)[α1| · · · |dAαi| · · · |αs],

δ[α1| · · · |αs] =
s−1∑
i=1

(−1)σ(i)[α1| · · · |αiαi+1| · · · |αs],

where the sign is given by σ(i) = deg[α1| · · · |αi]. We will often use d to denote both the differential
on A and the internal differential in B∗,∗(A), as there is no risk of ambiguity.
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Figure 2.1. A pictorial representation of the term ±[x1⊗1|1⊗y1|1⊗y2|x2⊗1|x3⊗1]
in the shuffle of [x1|x2|x3] and [y1|y2]. The sign is determined by the blocks under
the walk.

The homology of the total complex with differential D = d+ δ computes TorA∗ (k, k):

(2.1) H∗(tot B∗,∗(A)) ∼= TorA∗ (k, k).

The bar construction has a natural comultiplication ∆: B∗,∗(A)→ B∗,∗(A)⊗ B∗,∗(A) sending

∆[α1| · · · |αs] =
s∑
i=0

[α1| · · · |αi]⊗ [αi+1| · · · |αs]

which gives TorA∗ (k, k) a coalgebra structure.

Definition 2.3. Call ϕ a (p, q)-shuffle if it is a permutation of {1, . . . , p+ q} such that ϕ(a) < ϕ(b)
if 1 ≤ a < b ≤ p or if p + 1 ≤ a < b ≤ p + q. If A and A′ are DGAs, the shuffle product maps
B∗,∗(A)⊗ B∗,∗(A′)→ B∗,∗(A⊗A′), and is defined as

[α1| · · · |αp]⊗ [α′1| · · · |α′q] 7→
∑

(p,q)-shuffles ϕ

(−1)σ(ϕ)[aϕ−1(1)| · · · |aϕ−1(p+q)],

where

ai =

{
αi ⊗ 1 if i ≤ p,
1⊗ α′i−p if i > q,

σ(ϕ) =
∑

ϕ(i)>ϕ(j+p)

(|αi|+ 1)(|α′j |+ 1).

The shuffle product was introduced by Eilenberg and Mac Lane in [4].
A shuffle can be thought of as a walk from (0, 0) to (p, q) that goes rightwards or upwards at

each step—see Figure 2.1. The identity shuffle is the walk that goes through (p, 0), and deviation
from this shuffle incurs the usual signs from moving elements past each other. Note that [αi] has
bidegree (1, |αi|) and thus total degree |αi|+ 1.

In the case A is commutative, its multiplication is an algebra map A ⊗ A → A, and the bar
construction receives a commutative multiplication via the composite

B∗,∗(A)⊗ B∗,∗(A)
EZ−−→ B∗,∗(A⊗A)→ B∗,∗(A)

where the first map is the shuffle product and the second is induced by the multiplication on A.
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2.2. The bar spectral sequence. Since the preceding gives TorA∗ (k, k) as the total homology of
a first-quadrant double complex, we receive a strongly convergent spectral sequence by filtering the
total complex by external degree s:

Fs (tot B∗,∗(A))n =
⊕
p+q=n
p≤s

Bp,q(A).

The associated graded of this filtration is

E0
s,t = grs (tot B∗,∗(A))s+t = Bs,t(A)

and the differentials on the first two pages are given by d0 = d, d1 = δ as in Definition 2.2. By the
Künneth formula, H∗(Bs,∗(A)) ∼= Bs,∗(H∗(A)) and the E1

∗,∗ page is the bar complex on H∗(A) if
we treat it as a DGA with trivial differential. Therefore our spectral sequence has the form

(2.2) E2
∗,∗
∼= Tor

H∗(A)
∗,∗ (k, k)⇒ TorA∗ (k, k).

The topological significance of this construction stems from the fact that, if G is an associative
H-space, there is a chain equivalence

(2.3) tot B∗,∗(C∗(G))
'−→ C∗(BG)

inducing the homology isomorphism

(2.4) Tor
C∗(G)
∗ (k, k) ∼= H∗(BG; k).

In general, the spectral sequence and (2.4) are of coalgebras [7]. Even if A itself is not strictly
commutative, it may still be possible to grant the total complex tot B∗,∗(A) a multiplication—this
is the case when A = C∗(ΩG). We will return to this point in §3.1. In this case, the spectral
sequence and (2.4) are of Hopf algebras [2].

2.3. Browder’s bracket. Browder [1] inductively defines1 a map φ̃ : Sn−1 ×ΩnX ×ΩnX → ΩnX
where Sn−1 parametrizes the choice of multiplication on ΩnX.

The map φ̃1 : S0 × ΩX × ΩX → ΩX sends φ̃(1, a, b) = ab and φ̃(−1, a, b) = ba, where multipli-
cation is concatenation of loops.

Given φ̃n : Sn−1 ×G×G→ G, define a map Sn−1 × [−1, 1]× ΩG× ΩG→ ΩG by

(u, t, a, b) 7→

{
φ̃n(u, c(l(b)t)a, b) if t ≥ 0,

φ̃n(u, a, c(l(a) |t|)b) if t ≤ 0,

where l(a) denotes the length of a and c(t) is a constant loop of length t at the basepoint. This
map factors through

Sn−1 × [−1, 1]

Sn−1 × {−1} ∪ Sn−1 × {1}
× ΩG× ΩG ∼= Sn × ΩG× ΩG→ ΩG

which we take to be φ̃n+1.
Instead of φ̃ : Sn−1 × ΩnX × ΩnX → ΩnX, we will write the map as

φ : ΩnX × Sn−1 × ΩnX → ΩnX

to avoid signs in the following definition.

1We have opted to use the Moore loops model of ΩX for its benefit of strict associativity. If one instead uses the
non-associative model where elements of ΩX are maps (I, ∂I)→ (X, ∗), the little cubes operad gives a map

φ̃ : Cn(2)× ΩnX × ΩnX → ΩnX

where Cn(2) ' Sn−1.
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Definition 2.4. Let γ ∈ Hn−1(Sn−1) be a generator. Then H∗(ΩnX) has a bracket2 of degree n−1

[−,−] : Hp(Ω
nX)⊗Hq(Ω

nX)→ Hp+q+n−1(ΩnX),

[x, y] = φ∗(x⊗ γ ⊗ y).

We will write φ∗ both for the map induced on chains and for the map induced on homology.
The sign difference between our bracket and Browder’s ψ is given by [x, y] = (−1)(n−1)|x|ψ(x, y).
In [3], Cohen showed that H∗(ΩnX) is a Poisson n-algebra with this bracket. That is to say, the

bracket is:
• antisymmetric:

[x, y] = −(−1)(|x|+n−1)(|y|+n−1)[y, x],

• (Poisson identity) a derivation with respect to the multiplication:

[x, yz] = [x, y]z + (−1)|y|(|x|+n−1)y[x, z],

• (Jacobi identity) and a derivation with respect to itself:

[x, [y, z]] = [[x, y], z] + (−1)(|x|+n−1)(|y|+n−1)[y, [x, z]].

3. The bracket on the bar spectral sequence

3.1. Further structure in the total bar complex. As mentioned in §2.1, B∗,∗(A) has a multi-
plication when A is commutative. However, A = C∗(ΩG) is not commutative, so the multiplication
A ⊗A → A is not an algebra map. Nonetheless, the multiplication on G induces a multiplication
on BΩG which translates through (2.3) to a multiplication on tot B∗,∗(A), as follows.

Looping the multiplication G×G→ G gives a map Ω(G×G)→ ΩG. Note that with the Moore
loops model of ΩG, we have ΩG×ΩG 6∼= Ω(G×G). To get a multiplication on BΩG, we would like
to deloop the composite

M0 : ΩG× ΩG
ζ−→ Ω(G×G)→ ΩG

where ζ((ω1, l1), (ω2, l2)) = ((ω1, ω2),max{l1, l2}). In general, Sugawara [9] shows that a map
M0 : Y1 → Y2 of associative H-spaces induces a map BY1 → BY2 if for n ≥ 1 there exist homotopies

Mn : Y1 × I × Y1 × I × · · · × I × Y1︸ ︷︷ ︸
n copies of I

→ Y2

satisfying

Mn(y1, t1, . . . , tn, yn+1) =

{
Mn−1(y1, t1, . . . , ti−1, yi ×1 yi+1, ti+1, . . . , tn, yn+1) if ti = 0,

Mi−1(y1, t1, . . . , ti−1, yi)×2 Mn−i(yi+1, ti+1, . . . , tn, yn+1) if ti = 1,

where ×1 and ×2 denote the multiplications on Y1 and Y2 respectively.
Clark [2] shows that ζ satisfies the above conditions, so our M0 can be delooped. We give a

summary below.
Since G is an H-space, X = ΩG has an outer multiplication ×1 which concatenates two loops and

an inner “pointwise” multiplication ×2 using the multiplication on G. If l(a) denotes the length of
a and c(t) denotes the constant path of length t at the basepoint of G, then explicitly M1 is defined
as

M1((a1, b1), t, (a2, b2)) = (a1 ×1 c (t(max{l(a1), l(b1)} − l(a1)))×1 a2)

×2 (b1 ×1 c (t(max{l(a1), l(b1)} − l(b1)))×1 b2) .

This is illustrated in Figure 3.1, where the dotted segments represent constant paths at the base-
point, and the total upper and lower loops are multiplied pointwise.

2Unfortunately, there are a multitude of square brackets appearing in this work—and all of them are conventional
notation.
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Figure 3.1. The homotopy M1 on ((a1, b1), t, (a2, b2)) at t = 0, 1.

The reader is referred to Proposition 1.6 in [2] for inductive definitions of higher Mn, but we will
only need M1 for now. These Mn are used to construct the delooped map B(ΩG× ΩG)→ BΩG.

We describe the corresponding map totB∗,∗(A ⊗ A) → totB∗,∗(A). At the chain level, Mn

induces a map
hn : (A⊗A)⊗(n+1) → A

by taking the 1-chain given by the identity on I in each appearance of C∗(I). Thus the map hn has
degree n. These assemble into the map

[x1 ⊗ y1| · · · |xn ⊗ yn] 7→
∑

i1+···+ik=n
i1,...,ik≥0

[hi1−1(x1 ⊗ y1| · · · |xi1 ⊗ yi1)|

hi2−1(xi1+1 ⊗ yi1+1| · · · |xi1+i2 ⊗ yi1+i2)| · · ·
· · · |hik−1(xn−ik+1 ⊗ yn−ik+1| · · · |xn ⊗ yn)]

which defines the second map in the composite

Bp,q(A)⊗ Bs,t(A)
EZ−−→ Bp+s,q+t(A⊗A)→

⊕
m+n=p+q+s+t

m≤p+s

Bm,n(A)(3.1)

= Fp+s(tot B∗,∗(A))p+q+s+t

where the first is the shuffle product. This extends to a multiplication on tot B∗,∗(A).

3.2. The case n = 2. Browder’s bracket on H∗(ΩX) has degree 0; it is just the commutator
[x, y] = xy−(−1)|x||y|yx. We consider the commutator on the bar complex and show that it induces
a bracket on the spectral sequence, converging to the one on H∗(ΩX) by (2.4). The portion of (3.1)
landing in Bp+s,q+t(A) is the shuffle product, which is commutative. Hence that portion vanishes
in the commutator, which is therefore a map with a −1 shift in filtration degree.

Proposition 3.1. The bar spectral sequence

E2
∗,∗
∼= Tor

H∗(Ω2X)
∗,∗ (k, k)⇒ Tor

C∗(Ω2X)
∗ (k, k)

has a bracket of bidegree (−1, 1).

Proof. Because the multiplication respects the differential D on the total complex, the commutator
does also:

D[x, y] = [Dx, y] + (−1)|x|[x,Dy].(3.2)

Abbreviate tot B∗,∗(A) as A. The bracket is a map FpA ⊗ FsA → Fp+s−1A. We check that it
induces a bracket on the spectral sequence of the form E∗p,q ⊗ E∗s,t → E∗p+s−1,q+t+1. Take

x ∈ Zrp,q = FpAp+q ∩D−1(Fp−rAp+q−1)

y ∈ Zrs,t = FsAs+t ∩D−1(Fs−rAs+t−1)

representing classes in Erp,q and Ers,t, respectively. Then (3.2) implies

[x, y] ∈ Fp+s−1Ap+q+s+t ∩D−1(Fp+s−r−1Ap+q+s+t−1) = Zrp+s−1,q+t+1.



THE BRACKET IN THE BAR SPECTRAL SEQUENCE FOR A FINITE-FOLD LOOP SPACE 7

Figure 3.2. The term ±[[x1, y1]|y2|x2|x3] in the bracket [[x1|x2|x3], [y1|y2]].

Moreover, bracketing an element Dz ∈ Br
p,q = FpAp+q ∩D(Fp+rAp+q+1) with y gives an element of

Br
p+s−1,q+t+1, again by (3.2): D[z, y] = [Dz, y], where [z, y] ∈ Fp+s+r−1Ap+q+s+t+1. Thus we get a

bracket of the form E∗p,q ⊗ E∗s,t → E∗p+s−1,q+t+1 as desired.
The bracket on each page of the spectral sequence is induced by the one on A, so they are always

compatible. In particular, on the E∞∗,∗ page, the bracket is the one induced on gr∗H∗(A). �

Now that we know the bracket is well-behaved in the spectral sequence, we explicitly compute it
on the E1

∗,∗ page to see how it relates to the degree 1 bracket on H∗(Ω2X).

Theorem 3.1. For x, y ∈ H∗(Ω2X), let [x, y] denote their degree 1 bracket. Then on E1
∗,∗ in the

bar spectral sequence converging to H∗(ΩX), the bracket [[x1| · · · |xp], [y1| · · · |yq]] is given by (using
the notation of Definition 2.3)∑

(p,q)-shuffles ϕ

∑
ϕ−1(i)≤p
ϕ−1(i+1)>p

(−1)σ(ϕ)[aϕ−1(1)| · · · |[aϕ−1(i), aϕ−1(i+1)]| · · · |aϕ−1(p+q)]

ai =

{
xi if i ≤ p,
yi−p if i > p.

If one thinks of a shuffle as a path traveling up and right from (0, 0) to (p, q), then the terms in
the above are such paths with a single bracket inserted on a lower-right corner. See Figure 3.2.

Proof. Let x = [x1| · · · |xp],y = [y1| · · · |yq] ∈ E0
∗,∗. In the spectral sequence, only the portion of

the bracket lying in filtration Fm+n−1 is visible. Consider the terms contributed by xy in the
commutator—by (3.1), these are shuffles with one h1 operation thrown in. They have one of four
forms:

(1) [· · · |h1((x⊗ 1)⊗ (x′ ⊗ 1))| · · · ]
(2) [· · · |h1((x⊗ 1)⊗ (1⊗ y))| · · · ]
(3) [· · · |h1((1⊗ y)⊗ (x⊗ 1))| · · · ]
(4) [· · · |h1((1⊗ y)⊗ (1⊗ y′))| · · · ]

where x, x′ are arbitrary xi and likewise for y, y′. However, h1((x⊗ 1)⊗ (x′ ⊗ 1)) and h1((1⊗ y)⊗
(1⊗ y′)) are degenerate, and thus terms of the first and fourth types vanish.

Fix x ∈ {xi} and y ∈ {yi}, as well as the shuffle hidden by the “· · · ” in the bar expression, and
consider the term of the second form [· · · |h1((x ⊗ 1) ⊗ (1 ⊗ y))| · · · ]. Without loss of generality,
assume that this shuffle has positive sign in xy. In the following, we refer to Figure 3.3. Let
inAB : I → S1 cover the quarter-circle sending 0 7→ A and 1 7→ B. We then have the commutative
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Figure 3.3. The map φ : Ω2X×S1×Ω2X → Ω2X, illustrated for (x, t, y) as t ∈ S1

varies. x and y are visualized as “mounds” of points in X, where their outlines are
mapped to the basepoint. The outer concatenation on Ω2X is depicted horizontally
and the inner (pointwise) concatenation is depicted vertically.

diagram

Ω2X × ∗ × I × ∗ × Ω2X

Ω2X × Ω2X × I × Ω2X × Ω2X Ω2X × S1 × Ω2X

Ω2X

inAB

M1 φ

If we let iAB ∈ C1(S1) denote the 1-chain given by inAB, it follows that

φ∗(x⊗ iAB ⊗ y) = h1((x⊗ 1)⊗ (1⊗ y)).

Now consider [· · · |h1((1⊗ y)⊗ (x⊗ 1))| · · · ], which has sign (−1)(|x|+1)(|y|+1) in xy. One similarly
finds that

h1((1⊗ y)⊗ (x⊗ 1)) = (−1)|x||y|+|x|+|y|φ∗(x⊗ iAD ⊗ y)

= (−1)(|x|+1)(|y|+1)φ∗(x⊗−iAD ⊗ y)

where the sign (−1)|x||y|+|x|+|y| comes from interchanging x and y across a 1-chain. Hence this
contributes the term [· · · |φ∗(x⊗−iAD ⊗ y)| · · · ].

Likewise, we consider the terms that arise in −(−1)|x||y|xy. One is [· · · |h1((1⊗x)⊗ (y⊗1))| · · · ],
which has sign (−1)|x||y| in yx and thus negative sign in the commutator. But

h1((1⊗ x)⊗ (y ⊗ 1)) = φ∗(x⊗ iCB ⊗ y)

so it ultimately contributes the term [· · · |φ∗(x⊗−iCB⊗y)| · · · ]. Lastly there is the term [· · · |h1((y⊗
1)⊗ (1⊗ x))| · · · ] with sign −(−1)(|x|+1)(|y|+1), and

h1((y ⊗ 1)⊗ (1⊗ x)) = (−1)|x||y|+|x|+|y|φ∗(x⊗ iCD ⊗ y),

so it results in the term [· · · |φ∗(x⊗ iCD ⊗ y)| · · · ].
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The sum γ = iAB − iCB + iCD − iAD represents a generator of H1(S1), and altogether the set
of four terms considered above in the commutator combine to give [· · · |φ∗(x ⊗ γ ⊗ y)| · · · ]. When
we pass to the E1

∗,∗ page, this becomes [· · · |[x, y]| · · · ] where [x, y] is the bracket on H∗(Ω
2X) as

defined in §2.3. �

3.3. The case n ≥ 3. We now turn to the case n ≥ 3, with the aim of relating the degree n − 1
bracket on H∗(ΩnX) to the degree n− 2 bracket on H∗(Ωn−1X) through the bar spectral sequence.
Our treatment will not be as explicit as in the n = 2 case.

We proceed similarly as in §3.1, except now we begin with φn−1 : Ωn−1X × Sn−2 × Ωn−1X →
Ωn−1X. Looping gives a map

M0 : ΩnX × ΩSn−2 × ΩnX
ζ−→ Ω(Ωn−1X × Sn−2 × Ωn−1X)→ ΩnX

which operates “pointwise” on loops, and there are homotopies

Mn : (ΩnX × ΩSn−2 × ΩnX)× I × · · · × I × (ΩnX × ΩSn−2 × ΩnX)︸ ︷︷ ︸
n copies of I

→ ΩnX

which are used to deloop M0. By taking the 1-chain given by the identity on each occurrence of I,
we obtain chain maps

hn : (C∗(Ω
nX)⊗ ΩSn−2 ⊗ C∗(ΩnX))⊗(n+1) → C∗(Ω

nX)

which have degree n.
In turn, we obtain a map

B∗,∗(C∗(Ω
nX))⊗ B∗,∗(C∗(ΩS

n−2))⊗ B∗,∗(C∗(Ω
nX))

EZ−−→ B∗,∗(C∗(Ω
nX)⊗ C∗(ΩSn−2)⊗ C∗(ΩnX))

→ tot B∗,∗(C∗(Ω
nX))

where the first map is the shuffle product on three terms and the second is as described in (3.1).
The bracket on the total bar complex is given by fixing [ξ] ∈ B∗,∗(C∗(ΩS

n−2)) in the above, where
ξ ∈ Cn−3(ΩSn−2) represents the generator in homology. If β ∈ Cn−3(Sn−3) represents a generator
of Hn−3(Sn−3) and η : Sn−3 → ΩSn−2 is the unit of the loop-suspension adjunction (see Figure 3.4),
then we can take ξ = η∗(β). Note that this only makes sense for n ≥ 3, which is why we considered
n = 2 separately.

Using η, define M̂n to be the composite

M̂n : (ΩnX × Sn−3 × ΩnX)× I × · · · × I × (ΩnX × Sn−3 × ΩnX)

→ (ΩnX × ΩSn−2 × ΩnX)× I × · · · × I × (ΩnX × ΩSn−2 × ΩnX)→ ΩnX

which at the chain level induces the degree n map

(3.3) ĥn : (C∗(Ω
nX)⊗ C∗(Sn−3)⊗ C∗(ΩnX))⊗(n+1) → C∗(Ω

nX).

Proposition 3.2. Let n ≥ 2. The bar spectral sequence

E2
∗,∗
∼= Tor

H∗(ΩnX)
∗,∗ (k, k)⇒ Tor

C∗(ΩnX)
∗ (k, k)

has a bracket of bidegree (−1, n− 1).

Proof. We have already proved it for n = 2 so let n ≥ 3. A priori, the degree n − 2 bracket on
A = B̄∗(C∗(X)) maps [−,−] : FpA⊗FqA→ Fp+q+1A. The task is to show that the bracket actually
lands in Fp+q−1A.

Each shuffle of [x1| · · · |xp], [ξ], and [y1| · · · |yq] contains terms xi ⊗ 1 ⊗ 1, 1 ⊗ 1 ⊗ yj , and one
instance of 1⊗ ξ ⊗ 1. However, note that h0(1⊗ ξ ⊗ 1) gives a degenerate chain, thus vanishing in
C∗(X). Hence the part of the bracket lying in Fp+q+1 vanishes.

The part of the bracket lying in Fp+q is given by inserting one h1 into each shuffle. If the h1 does
not touch 1 ⊗ ξ ⊗ 1, then the result vanishes by the preceding. But even if the h1 is inserted as
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Figure 3.4. The map η : Sn−3 → ΩSn−2 sending u to the loop mu, depicted for n = 4.

Figure 3.5. The homotopy M2 on ((a1,m1, b1), t1, (a2,m2, b2), t2, (a3,m3, b3)) as
(t1, t2) ∈ I2 varies.

h1((x⊗ 1⊗ 1)⊗ (1⊗ ξ⊗ 1)) for example, the result is still degenerate, since the role of ΩSn−2 is to
control the multiplication on elements of ΩnX. Thus the part of the bracket residing in Fp+q also
vanishes.

The remainder proceeds as in the proof of Proposition 3.1. �

The terms of the bracket landing in Fp+q−1 are given by shuffles with either one h2 inserted or
two h1s inserted, but by the same reasoning as in the above proof, shuffles with two h1s inserted
will vanish. As such, an understanding of the homotopy M2 is necessary. It is similar in spirit to
M1. In Figure 3.5, we offer a visual description of M2 which the reader should compare to Figure
3.1. An explicit definition can be constructed from Proposition 1.6 in [2].

Now we give a characterization of the bracket in the spectral sequence, which is our main result.

Theorem 3.2. Let n ≥ 2. For x, y ∈ H∗(ΩnX), let [x, y] denote their degree n − 1 bracket. Then
on E1

∗,∗ in the bar spectral sequence converging to H∗(Ωn−1X), the bracket [[x1| · · · |xp], [y1| · · · |yq]]



THE BRACKET IN THE BAR SPECTRAL SEQUENCE FOR A FINITE-FOLD LOOP SPACE 11

is given by (using the notation of Definition 2.3)∑
(p,q)-shuffles ϕ

∑
ϕ−1(i)≤p
ϕ−1(i+1)>p

(−1)σ(ϕ)[aϕ−1(1)| · · · |(−1)σ
′(ϕ,i)[aϕ−1(i), aϕ−1(i+1)]| · · · |aϕ−1(p+q)]

ai =

{
xi if i ≤ p,
yi−p if i > p,

where the sign (−1)σ
′(ϕ,i) is defined as

σ′(ϕ, i) = n

 ∑
ϕ(j)>i+1

(|xj |+ 1) +
∑
ϕ(j)<i

(|yj |+ 1)

 .

Proof. The sign (−1)σ
′(ϕ,i) appears only when n is odd, so when n = 2 this reduces to Theorem 3.1.

Let n ≥ 3. First we consider E0
∗,∗. The h2 inserted into a shuffle must take 1 ⊗ ξ ⊗ 1 as one of

its arguments, or the shuffle will vanish. If the other two arguments are both of the form x⊗ 1⊗ 1,
or both of the form 1 ⊗ 1 ⊗ y, then the result is again degenerate and vanishes. In light of these
considersations, if we fix the surrounding shuffle denoted by “· · · ” below, the bracket appears in sets
of 6 pieces (with β and ĥ2 as in the discussion preceding (3.3)):

(1) [· · · |ĥ2((1⊗ β ⊗ 1)⊗ (x⊗ 1⊗ 1)⊗ (1⊗ 1⊗ y))| · · · ]
(2) [· · · |ĥ2((x⊗ 1⊗ 1)⊗ (1⊗ β ⊗ 1)⊗ (1⊗ 1⊗ y))| · · · ]
(3) [· · · |ĥ2((x⊗ 1⊗ 1)⊗ (1⊗ 1⊗ y)⊗ (1⊗ β ⊗ 1))| · · · ]
(4) [· · · |ĥ2((1⊗ β ⊗ 1)⊗ (y ⊗ 1⊗ 1)⊗ (1⊗ 1⊗ x))| · · · ]
(5) [· · · |ĥ2((y ⊗ 1⊗ 1)⊗ (1⊗ β ⊗ 1)⊗ (1⊗ 1⊗ x))| · · · ]
(6) [· · · |ĥ2((y ⊗ 1⊗ 1)⊗ (1⊗ 1⊗ x)⊗ (1⊗ β ⊗ 1))| · · · ]

Each of the above ĥ2 expressions can be induced from a restriction of M̂2. For example, terms of
the second form are induced by the restriction of M̂2 to

F2 : (ΩnX × ∗ × ∗)× I × (∗ × Sn−3 × ∗)× I × (∗ × ∗ × ΩnX)→ ΩnX.

Define the restrictions Fi for i = 1, . . . , 6 analogously. These can be stitched together to be parts of
a larger map F : ΩnX × Sn−3 × I2 ×ΩnX → ΩnX, as illustrated in Figure 3.6. The table beneath
it shows how F acts at specific points. The loop mu ∈ ΩSn−2 controls the pointwise multiplication
of loops a, b ∈ ΩnX = Ω(Ωn−1X). The dotted segments denote constant paths at the basepoint.

Note that where mu does not interact with a or b, it produces constant paths at the basepoint.
For instance, evaluating F at the point labeled A gives: b, followed by a, followed by a constant
path (of length equal to that of mu). By removing all such extraneous constant paths, we obtain
another map F̃ : ΩnX × Sn−3 × I2 × ΩnX → ΩnX which is homotopic to F . However, F̃ on the
segment AH is the same as on DK, and F̃ is constant on AD as well as on HK. Making these
identifications, the depicted rectangle ADKH becomes S2. Moreover, the value of F̃ on AH = DK
is independent of mu, and when u = ∗ ∈ Sn−3, the value of F̃ does not depend on vertical position
in the rectangle ADKH (i.e. the picture in Figure 3.6 can be flattened to just the line AH = DK

for u = ∗). Thus F̃ factors through ΩnX × Sn−3 ∧ S2 × ΩnX ∼= ΩnX × Sn−1 × ΩnX.
Now we have a map F̃ : ΩnX × Sn−1 ×ΩnX → ΩnX, and in homology (the E1

∗,∗ page) the total
of the six terms listed at the beginning is [· · · |F̃∗(x, γ, y)| · · · ] for a generator γ ∈ Hn−1(Sn−1).

The map F̃ involves an unwanted “twisting” of a and b according to mu. This is remedied by the
“untwisting” homotopy Ht in Figure 3.7. Let

L =
L0 + l(mu)

Lh + l(mu)
Lh.
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Figure 3.6. The pieces Fi assembled into a single map F : ΩnX×Sn−3×I2×ΩnX →
ΩnX, with a, b ∈ ΩnX (thought of as loops in Ωn−1X) and u ∈ Sn−3. The map
u 7→ mu is as in Figure 3.4.

The homotopy multiplies a and b according to the bold path, which coincides with mu on the
interval [Lt, Lh(1− t) + Lt] and is extended by constant paths on both sides.

At t = 1 we obtain the desired φ : ΩnX × Sn−1 × ΩnX → ΩnX, and F̃∗(x, γ, y) = φ∗(x, γ, y) =
[x, y].

Lastly, the sign (−1)σ
′(ϕ,i) as defined in the theorem statement results from terms xj⊗1⊗1 being

shuffled after 1⊗ ξ⊗1 (which has total degree n−2 = n mod 2), and terms 1⊗1⊗yj being shuffled
before it—a sign which is not accounted for in the shuffle of [x1, . . . , xp] only with [y1, . . . , yq]. �

There is a point we have yet to address. To recap, we considered a bracket on tot B∗,∗(C∗(Ω
nX))

corresponding to the one on C∗(Ωn−1X). As it respects the differential and the filtration, it induces
a bracket on the spectral sequence, which converges to the one on H∗(Ωn−1X). However, while the
bracket on H∗(Ωn−1X) makes it a Poisson algebra, we have not yet shown that the bracket on the
spectral sequence has this property.
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Figure 3.7. The homotopy Ht : ΩnX × Sn−1 ×ΩnX → ΩnX, t ∈ I. (Although L0

as drawn is positive, it can be in the interval [−l(mu), Lh].)

Theorem 3.3. The bracket as described in Theorem 3.2 endows the bar spectral sequence with a
Poisson algebra structure from the E1

∗∗ page onwards.

Figure 3.8. Brackets appearing in terms in (3.4).

Proof. The axioms listed at the end of §2.3 can be checked combinatorially using Theorem 3.2 and
Definition 2.3. We check the Poisson identity as an example, in the case n is even. Since the bracket
has even total degree n− 2, the Poisson identity states

(3.4) [x,yz]− [x,y]z− (−1)|y||x|y[x, z] = 0

where

x = [x1| · · · |xp]
y = [y1| · · · |yq]
z = [z1| · · · |zr].

In the same manner as Figure 2.1, a 3-way shuffle of x, y, and z can be thought of as a walk from
(0, 0, 0) to (p, q, r). Terms appearing in (3.4) are walks with a single bracket (see Figure 3.2), which
may be one of the two types in Figure 3.8.

Consider a walk with a diagonal of the first type. It appears in [x,yz] and [x,y]z with the same
sign and thus disappears in (3.4).

Otherwise, the walk has a diagonal of the second type. It appears in [x,yz] and y[x, z], but there
is a sign difference of (−1)|y||x| because of the interchanged shuffle order of x and y. Hence it also
vanishes in (3.4).

The case with n odd is similar, but there is an additional sign to keep track of (see Theorem 3.2).
The antisymmetry condition is straightforward to verify; it reduces to the antisymmetry condition
for the bracket on H∗(Ω

nX). The Jacobi identity is a bit more work, but it also reduces to the
Jacobi identity for the bracket on H∗(ΩnX). We leave the details to the reader. �



THE BRACKET IN THE BAR SPECTRAL SEQUENCE FOR A FINITE-FOLD LOOP SPACE 14

Theorem 3.2 has a simpler description on E1
1,∗.

Corollary 3.1. If x, y ∈ H∗(ΩnX), then

(3.5) [[x], [y]] = [[x, y]]

where [x], [y] ∈ E1
1,∗, [[x], [y]] denotes the bracket in the spectral sequence, and [x, y] denotes the

bracket in H∗(ΩnX).

This corollary implies Theorem 2-1 in [1], as the spectral sequence has an edge homomor-
phism E1

1,∗ → H∗(Ω
n−1X) which sends [x] with x ∈ H∗(ΩnX) to the homology suspension σx ∈

H∗(Ω
n−1X).
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