
A Correspondence between Generic Alcoved Polytopes and

Subdivisions of the Root Polytope of Lie Type A

SPUR Final Paper, Summer 2016

YiYu Zhang
Mentor: Pavel Galashin

Project suggested by Alexander Postnikov

August 3, 2016

Abstract

Alcoved polytopes of Lie type A are polytopes whose facets are orthognal to the
roots of root system An−1. An alcoved polytope of type An−1 is generic if it has two
facets orthogonal to each root in An−1. In this paper, we prove that there is one-to-one
correspondence between equivalence classes of generic alcoved polytopes of type An−1

and regular central subdivisions of the root polytope of An−1. We apply this result to
give an explicit classification for small n.
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1 Introduction

The notion of alcoved polytopes arises from affine Coexter arrangements of irreducible
crystallographic root systems. Alcoved polytopes and their combinatorial properties were
first introduced in [2] and [3]. Here we restrict to the root system An−1 defined as the
collection of vectors {ei−ej |i, j ∈ [n]}, where [n] = {1, 2, . . . , n}. The root polytope Qn−1 of
An−1 is the convex hull of the roots of An−1, which lies in the hyperplane x1 + . . .+xn = 0.

A convex polytope P is an alcoved polytope of Lie type An−1 if each top-dimensional
face of P is orthogonal to some root in An−1. In other words, the polytope P is bounded
by the affine hyperplanes Hij = {x ∈ Rn|xi − xj = cij}. If P has a top-dimensional face
contained in each Hij , then P is said to be generic.

One may easily see that there is only one combinatorial type of generic alcoved polytopes
of type A2, namely the equiangular hexagon. However, it is not immediately clear which
tool one may apply to study type A3 and beyond.

In this paper, we show that there is a correspondence between generic alcoved polytopes
of type An−1 and regular central subdivisions of Qn−1. Here we say that a subdivision of
a polytope P is regular if it can be obtained by lifting the vertices of P and projecting
the lower boundary. A subdivision of P is central if each cell of the subdivision contains
the origin and the restriction of the subdivision to the boundary ∂P is a subdivision of
∂P . Using this correspondence, we give an explicit classification for the case A3 up to
combinatorial equivalence.

In Section 3, we give a description of the combinatorial structure of generic alcoved
polytopes. The faces of a generic alcoved polytope P of type An−1 can be represented by
face labels, which are directed graphs on [n]. Let Fij be the top-dimensional face of P that
lies in the hyperplane Hij . A face F =

⋂
Fij⊃F Fij is associated with the face label whose

edges are (i→ j) for all F ⊆ Fij . It turns out that each node in a face label is either a source,
a sink, or an isolated point. Hence the face labels of P can be viewed as directed graphs
on partitions of [n] into sources, sinks, and isolated points. We examine the conditions on
the compatibility of face labels and explain the connection with triangulations of the root
polytope of a complete bipartite graph, which is studied in [4, Sec 12]. In particular, a
simplex in such a triangulation can be represented by a bipartite graph on [n] whose edges,
regarded as roots, are the vertices of this simplex.

We define two alcoved polytopes P1, P2 of type An−1 to be label-equivalent if they have
the same collection of face labels. In other words, we can obtain P2 by moving the facets
of P1 parallel to themselves without changing the face structure. If the face lattices of two
alcoved polytopes are isomorphic, then they are combinatorially equivalent. In Section 4,
we prove the main result of the paper:

Theorem 1.1. There is a one-to-one correspondence between label-equivalence classes of
generic alcoved polytopes of type An−1 and regular central subdivisions of the labeled root
polytope Qn−1.

More explicitly, given a face F =
⋂

(ij) Fij of a generic alcoved polytope P , there is a
cell τF = conv{0; ei − ej |F ⊆ Fij} ⊂ Qn−1. We show that the collection τ = {τF } forms a
regular central subdivision of Qn−1.
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Finally, we construct a bijection between combinatorial equivalence classes of generic
alcoved polytopes of type A3 and partial acyclic orientations of a hexagon modulo rotations,
reflections, and the action of a swap map. Here a partial orientation is not acyclic if after
contracting all undirected edges, we get a loop or a directed cycle. The swap map acts on
an oriented hexagon by first reversing the orientations of a pair of opposite edges that have
different orientations and then exchanging these two edges while preserving their clockwise
or counterclockwise orientation. In Figure 1, for example, the swap map acts on the blue
edge and the red edge.

swap map

Figure 1: Example of the action of swap map.

In particular, Theorem 1.1 says that some of the 26 = 64 central triangulations of a
labeled Q3 correspond to label-equivalence classes of maximal generic alcoved polytopes of
type A3 in the sense they have maximal number of vertices. By encoding generic alcoved
polytopes with oriented hexagons and applying the swap map, we are able to show that
there are only six combinatorial equivalence classes of maximal generic alcoved polytopes
of type A3.

Figure 2: The six combinatorial equivalence classes of maximal types, encoded by orbits of
oriented hexagons under the action of the swap map.

2 Preliminaries

This section serves as a more systematic formulation of the various concepts mentioned in
the Introduction.
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Recall that a (convex) polytope P ⊂ Rn is a bounded convex set of points in Rn.
Equivalently, it is the convex hull of all its vertices. A face of P is a set F of points in P
such that there exists a linear function y ∈ (Rn)∗ on P that is maximized exactly at all
points in F . In particular, if F is a top-dimensional face of P , then we call it a facet.

2.1 Alcoved Polytopes of Lie Type A

Definition 2.1. A root system Φ ⊂ V is a collection of nonzero vectors called roots that
satisfies the following conditions, cf. [1]:

i). The only scalar multiples of any root α in Φ are α and −α.
ii). The set Φ is closed under reflection through the hyperplane orthogonal to any α ∈ Φ.
An alcoved polytope is a convex polytope bounded by some integer affine translations of

the hyperplanes Hα = {x ∈ Rn|(x, α) = 0}, α ∈ Φ. An alcoved polytope is generic if it has
two facets orthogonal to each root α ∈ Φ.

The root system An−1 is the collection of vectors {ei− ej |i 6= j ∈ [n]}, where {ei} is the
standard basis for Rn. A generic alcoved polytope of (Lie type) An−1 can be defined as the
point set

P = {x ∈ Rn|xi − xj ≤ cij , cij ∈ Z, 1 ≤ i 6= j ≤ n}.

Since the span of the roots in An−1 is the hyperplane H0 = {x ∈ Rn|x1 + · · ·+ xn = 0}, we
will not distinguish between P and its intersection with H0.

In this paper we only consider top-dimensional alcoved polytopes that contain the origin.
Hence we assume that cij > 0 for all i, j.

We define an equivalence relation on alcoved polytopes as follows.

Definition 2.2. Given an alcoved polytope P of An−1, we label each face F by the roots
corresponding to the hyperplanes that contain F . Define the labeled face lattice of P to be
the face lattice of P with each element labeled. An alcoved polytopes of An−1 are said to
be label-equivalent if and only if they have the same labeled face lattice. If their unlabeled
face lattices are isomorphic, then the two alcoved polytopes are combinatorially equivalent.

2.2 Subdivisions of Polytopes

Definition 2.3. A subdivision of a finite point configuration A ⊂ Rn is a collection τ of
subsets Ai ( A such that

i). The union of all conv(Ai) in τ is conv(A);
ii). The intersection of any two convex hulls is a common face of both, which is an

element of τ .
We call the elements of τ its cells. A triangulation of A is a subdivision whose cells are

simplicies.

In particular, a subdivision τ of A is a (polytopal) subdivision of the polytope P =
conv(A) using the point set A. We define the intersection lattice L(τ) of the subdivision τ
to be the poset on τ ∪{conv(A)} ordered by inclusion. It is known that this poset is indeed
a lattice.
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Let P be a polytope that contains the origin. We say that a subdivision τ of a polytope
P is central if there is a subdivision τ̃ of ∂P such that each cell of τ is the convex hull of
the origin and a unique cell of τ̃ .

Another important class of polytopal subdivisons is regular subdivisions.

Definition 2.4. (cf. [6]) A subdivision τ of a polytope P ⊂ Rn−1 is regular if and only if
there exists a polytope P̃ ⊂ Rn whose lower facets are in bijection with the top-dimensional
cells of τ via the canonical projection p : (x1, . . . , xn) 7→ (x1, . . . , xn−1). Here a lower facet
of P̃ refers to a facet that maximizes some linear function y ∈ (Rn)∗ with yn < 0.

In other words, we can lift each vertex of P such that the projections of faces on the
lower boundary of the lifted polytope P̃ coincide with cells of τ .

More generally, we define the regular subdivision of a polytope P that lies in some
hyperplane Hα = {x ∈ Rn|(x, α) = 0}, α ∈ Rn by replacing the projection p with the
orthogonal projection onto Hα.

3 Face Lattices of Generic Alcoved Polytopes

In this section, we provide a description of the combinatorial structure of generic alcoved
polytopes of type An−1 using directed bipartite graphs on the vertex set [n]. This charac-
terization gives us a clearer view of the face lattices of generic alcoved polytopes. It also
helps us unveil the connection with subdivisions of the root polytope Qn−1.

First, we describe a representation of a point in a generic alcoved polytope P of type
An−1. We then provide a necessary and sufficient condition for an alcoved polytope of type
An−1 to be generic. Both results were communicated to us by Alexander Postnikov.

Proposition 3.1. Let x ∈ P be any point. We associate with x a directed graph Gx on the
point set [n] such that (i→ j) is an edge of Gx if and only if xi − xj = cij.

i). For any i, j, k ∈ [b], at most one of (i→ j) and (j → k) can be an edge of Gx.
ii). If x is a vertex, then the underlying undirected graph of Gx contains a spanning tree

of the complete graph Kn.

Proof. If both (i→ j) and (j → k) are edges of Gx, then xi − xk = (xi − xj) + (xj − xk) =
cij + cjk > cik and thus x /∈ P , a contradiction.

Lemma 3.2. An alcoved polytope of type An−1 is generic if and only if the collection of
parameters {cij} satisfies the triangular inequality cik + ckj > cij for all i, j, k ∈ [n].

Proof. Suppose that P is a generic alcove polytope of type An−1 with parameters {cij}
and supporting hyperplanes Hij = {x ∈ Rn|xi − xj ≤ cij}. Suppose to the contrary that
cik + ckj ≤ cij for some k 6= i, j. Note that any point x ∈ P satisfies xi − xk ≤ cik and
xk − xj ≤ ckj . It follows that xi − xj = (xi − xj) + (xj − xk) ≤ cik + ckj ≤ cij . Therefore
the intersection P ∩Hij ⊆ Hik ∩Hjk has codimension greater than one, which implies that
Hij is not a facet of P , a contradiction. Hence the collection {cij} satisfies the triangular
inequalities.
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Suppose that {cij} satisfies all triangular inequalities. We can assume that cij > 0 for
all i, j by translating the origin suitably. We want to show that the intersection of H12 (or
any Hij) and P has dimension n− 2. Note that the point x1 ∈ H12 with x11 − x1k = c1k for
all k is a point in P since x1i − x1j = c1j − c1i < cij for all 1 < i 6= j ≤ n. Now we consider
the points xε = (x1−

∑n
i=3 εi, x2−

∑n
i=3 εi, x3 +2ε3, . . . , xn+2εn) ∈ H12. For small enough

εi, the point xε lies in P . The convex hull of all such xε is spanned by n− 2 vectors. Hence
P is generic.

3.1 A Characterization by Face Labels

Now we slightly abuse the standard terminology of graph theory. Let G,G′ be directed
bipartite graphs on [n]. We mean by subgraph of G the graph obtained by removing some
vertices of G and all their incident edges. The intersection G ∩ G′ is a directed bipartite
graph on [n] whose edges belong to the intersection of the edge sets of G and G′. Similarly
define the union G∪G′. We say that G spans [n] if G contains an undirected spanning tree
on the point set [n].

It follows from Proposition 3.1 that a node in the graph Gx associated with a vertex
x ∈ P is either a source or a sink, so Gx is a directed graph on a partition of [n] into sources
and sinks. We associate with each face F ⊂ P a graph GF =

⋂
Gx, where x ∈ F is a vertex

of P . Hence GF is a directed graph on a partition of [n] into sources, sinks, and isolated
points. We call the graph GF the face label of F .

As an example we will use face labels to show that there is only one combinatorial type
of generic alcoved polytope of type A2.

Example 3.3. Let P be a generic alcoved polytope of type A2. Since the collection {cij}
satisfies the triangular inequalities, the six directed complete bipartite graphs on [3] all
correspond to points in P . In particular, they represent the six vertices of P , as is shown in
Figure 3. On the other hand, the root system A2 consists of six roots, so a generic alcoved
polytope of type A2 has six top-dimensional faces (edges). Therefore P has to be a hexagon.

To sum up the previous discussions, we have the following proposition, which provides
a combinatorial description of the faces of P .

Proposition 3.4. The faces of P can be represented by face labels, which are directed
bipartite graphs on [n]. A vertex of P corresponds to a face label that spans [n]. The least
upper bound of two faces F1, F2 in L(P ) corresponds to the intersection of the face labels of
F1 and F2. The dimension of a face F is equal to the number of isolated points in the face
label of F .

3.2 Conditions on Face Labels of a Generic Alcoved Polytope

Now we want to investigate the conditions that determine whether a directed graph appears
as a face label in a given generic alcoved polytope of type An−1.

Given a face label G, any two points i, j in a connected component of G are either in
a cycle or connected by a path. Since G is a directed bipartite graph, it cannot have a
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Figure 3: Labeled face lattice of a generic alcoved polytope of type A2.

directed cycle of odd length. If {a1 → a2 ← a3 → a4 ← . . .← a2k−1 → a2k ← a1} is a cycle
of length 2k in G with k ≥ 2, then the collection of parameters {cij} satisfies the equation

ca1a2 + ca3a4 + · · ·+ ca2k−1a2k = ca3a2 + ca5a4 + · · ·+ ca1,a2k .

If G contains the alternating path on any (2k+1)-tuple (a1, a2, . . . , a2k+1) with k ≥ 2, which
is the directed graph {a1 → a2 ← a3 → a4 ← . . . ← a2k−1 → a2k ← a2k+1}, then {cij}
satisfies the inequality

ca1a2 + ca3a4 + · · ·+ ca2k−1a2k < ca3a2 + ca5a4 + · · ·+ ca2k−1a−2k + ca2k+1a2k + ca1a2k+1
.

Similarly, we define the alternating path on (a1, a2, . . . , a2k). If G contains the alternating
path on (a1, a2, . . . , a2k), then {cij} satisfies

ca1a2 + ca3a4 + · · ·+ ca2k−1a2k < ca3a2 + ca5a4 + · · ·+ ca1a2k .

Next, we examine the relation among face labels of the same generic alcoved polytope.

Proposition 3.5. Suppose G is the face label of a face F of P . Then any subgraph G′ ⊂ G
is the face label of a face F ′ ⊃ F . In other words, if the collection {cij} satisfies the
inequalities corresponding to G, then {cij} also satisfies the inequalities corresponding to G′.
Furthermore, the generic polytope P is determined by the collection of even-term inequalities
(or equalities) between ca1,a2 + ca3,a4 + · · · + ca2k−1,a2k and ca3,a2 + ca5,a4 + · · · + ca1,a2k for
all 2k-tuples (a1, . . . , a2k), where k ≤ n/2.

Proof. First let us consider the subgraphs with even number of vertices. The problem can
be reduced to the cases where G and G′ are the alternating paths on [n] and [2k] respectively
with 2k < n. Suppose to the contrary that {cij} satisfies the inequality c12 + c34 + · · · +
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c2k−1,2k ≥ c32+c54+· · ·+c2k−1,2k−2+c1,2k. Let x = (x1, . . . , xn) be the vertex corresponding
to G, then c12 − c32 + c34 − c54 + · · ·+ c2k−1,2k = x1 − x2 + x2 − x3 + · · ·+ x2k−1 − x2k =
x1 − x2k ≥ c1,2k. Therefore x /∈ P , a contradiction.

Then we want to show that any odd-term inequality can be deduced from some even-
term inequality and triangular inequality. Without loss of generality, suppose that the
alternating path on [2k + 1] is a face label of P . By the argument above, the subgraph on
[2k] is also a face label of P . Apply triangular inequality, we have c12 +c34 + · · ·+c2k−1,2k <
c32 + c54 + · · · + c2k−1,2k−2 + c1,2k < c32 + c54 + · · · + c2k−1,2k−2 + (c1,2k+1 + c2k+1,2k) as
needed.

Hence the case where the subgraphs have odd number of vertices follows.

Remark 3.6. It was suspected by Postnikov that the collection of deciding inequalities
determines a hyperplane arrangement {xa1,a2 + xa3,a4 + · · ·+ xa2k−1,a2k = xa3,a2 + xa5,a4 +

· · ·+xa1,a2k |(a1, a2, . . . , a2k) is any 2k-tuple in [n]} ⊂ Rn(n−1). The faces of this arrangement
are in bijection with label-equivalence classes of generic alcoved polytopes.

The following proposition serves as a criterion for deciding whether two face labels can
appear in the same alcoved polytope.

Let G be a directed graph on [n]. Define Gop to be the directed graph on [n] obtained
by reversing the direction of all edges in G.

Proposition 3.7. If two directed bipartite graphs G1, G2 on [n] are the face labels of a
generic alcoved polytope, then the union G1 ∪ Gop2 contains no directed cycle of length ≥ 4
except for those in G1 ∩Gop2 .

Proof. Suppose to the contrary that G1 ∪ Gop2 contains a minimal directed cycle of length
≥ 4 which is not contained in G1 ∩Gop2 . Without loss of generality, label the directed cycle
as C = {1 → 2 ← 3 → 4 ← · · · → 2k ← 1}. Set E1 = {1 → 2, 3 → 4, . . . , (2k − 1) → 2k}
and E2 = {1→ 2k, 3→ 2, . . . , (2k − 1)→ (2k − 2)}, then we have C = E1 ∪ Eop2 , E1 ⊆ G1

and E2 ⊆ G2. If E2 ⊆ G1, then c12+c34+· · ·+c2k−1,2k = c32+c45+· · ·+c1,2k, which implies
that E1 ⊆ G2. But then C = E1 ∪ Eop2 ⊆ G1 ∩ Gop2 , a contradiction to our assumption.
Suppose E2 * G1. Let x = (x1, . . . , x2k) be the vertex corresponding to G1. Then

c12 + c34 + · · ·+ c2k−1,2k =(x1 − x2) + (x3 − x4) + · · ·+ (x2k−1 − x2k)
=(x3 − x2) + (x5 − x4) + · · ·+ (x1 − x2k) < c32 + c54 + · · ·+ c1,2k.

Similarly, we have E1 * G2 and c12 + c34 + · · · + c2k−1,2k > c32 + c54 + · · · + c1,2k, which
leads to a contradiction.

At this point, one cannot help but notice the striking similarity of the criterion above
and the condition on compatibility of simplicies in a triangulation of the root polytope
QKm,n of the complete bipartite graph Km,n. Here QKm,n is defined to be the convex hull
conv{ei − ej |i ∈ [m], j ∈ [n]} ⊂ Rm+n.

As is shown in [4, Sec12], the simplices in a triangulation of QKm,n can be represented
by spanning trees of Km,n whose edges are oriented from [m] to [n]. Suppose that T is a
spanning tree of Km,n. Two simplices can appear in the same triangulation if and only if
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the corresponding trees T1 and T2 satisfy the condition that T1 ∩ T op2 has no directed cycle
of length greater than or equal to four.

Therefore, it is natural to ask if there is a connection between generic alcoved polytopes
of type An−1 and the subdivisions of the root polytope Qn−1, which is the union of root
polytopes QK|S|,|T | for all partitions (S, T ) of [n]. We address this question in the following
section.

4 Proof of the Main Theorem

Fix a labeling {(ij)} of the vertices of Qn−1. Let τ be a central subdivision of Qn−1. We
label a cell F of τ with a directed graph G on [n] as follows: the edge (i→ j) is an edge of
G if and only if (ij) is a vertex of F . We call G the cell label of F ∈ τ .

Theorem 4.1 (Restated). There is a one-to-one correspondence between label-equivalence
class [P ] of generic alcoved polytopes of type An−1, and regular central subdivisions τ of the
labeled Qn−1. Given a face F =

⋂
(ij) Fij of P , we take the cell τF = conv{0; ei−ej |F ⊆ Fij}.

The collection τP = {τF } is a regular central subdivision of Qn−1. Conversely, given a
regular central subdivision τ , the collection of cell labels is the collection of face labels of an
label-equivalence class [P ].

Proof. Pick any representative P of the label-equivalence class with parameters {cij}. Let
P̃ ⊂ Rn be the convex hull of vij = ei − ej + cij · (1, 1, . . . , 1) and 0 ∈ Rn. Let y′ ∈ (Rn)∗

be any linear function on P̃ such that (y′, (1, . . . , 1)) < 0. Since P contains the origin, we
can scale y′ so that y′ = y − d · (1, 1, . . . , 1), where y = (y1, . . . , yn) ∈ ∂P and d > 0. Recall
that a face F̃ of P̃ is a lower face if and only if there exists y′ that reaches its maximum
exactly on F̃ , in which case we set P̃y = F̃ . Let π be the orthogonal projection onto the
hyperplane x1 + · · ·+ xn = 0.

Suppose that d > 1, then (y′, vij) = yi − yj − cij · d < yi − yj − cij ≤ 0, so y′ reaches its
maximum 0 at 0 and π(P̃y) = {0}.

If d = 1, then (y′, vij) = yi − yj − cij ≤ 0. Hence y′ reaches its maximum exactly on
P̃y = conv{0; vij , y ∈ Hij = {xi − xj − cij = 0}}. We call a face of P̃ that contains the
origin a central face. If y is a vertex of P , then P̃y is a lower central facet of P̃ . If F is a
face of P , then P̃F =

⋂
y∈F P̃y is a lower central face of P̃ . Suppose F1, F2 are two faces of

P and F is the smallest face of P that contains both F1 and F2. In other words, F is the
greatest lower bound of F1 and F2 in the face lattice of P ∗. Then

P̃F1 ∩ P̃F2 = (
⋂
y∈F1

P̃y) ∩ (
⋂
y∈F2

P̃y) =
⋂

y∈F1∪F2

P̃y = P̃F .

Hence the central faces of P̃ are in bijection with faces of P . Furthermore, the cell labels
of the central cells of τ is in bijection with the face labels of P .

Suppose that d < 1. If y ∈ Hij , then (y′, vij) = yi − yj − cij · d > 0. Hence y′ is not
maximal at 0 , so y′ is maximized by some lower face that is not central.

We want to show that there exists a P ∈ [P ] such that P̃ has no lower facet that is not
central.
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Claim 4.2. Suppose that all lower facets of P̃ are central. Then all lower facets of the
polytope PM with parameters {cij +M} are central for all M ≥ 0.

Proof. Since a generic alcoved polytope of type An−1 is determined by even term inequali-
ties, the system of inequalities of PM is the same as that of P . Thus PM ∈ [P ]. The lifted
polytope P̃M is the convex hull of 0 and all v′ij = ei − ej + (cij +M) · (1, 1, . . . , 1). Denote

the subdivision determined by P̃M as τ ′.
Let F be a face of P̃ that is not central. Let y be any linear function that is maximized

on P̃ by F , i.e., for all vertex vij of F , we have

(y′, vij) = yi − yj − d · cij > (y′, vkl) = yk − yl − d · ckl

for all vkl /∈ F . Since

(y′, v′ij) = yi − yj − d · (cij +M) = (y′, vij)− d ·M,

(y′, v′ij) > (y′, vkl) − d ·M = (y′, v′kl) for all v′kl /∈ F ′. Hence y is maximized on P̃M by
the face F ′ = conv{v′ij , vij ∈ F} and π(F ′) = π(F ). Hence each noncentral cell of τ is a
noncentral cell of τ ′.

On the other hand, let z′ = z+(1/n, 1/n, . . . , 1/n) be a linear function on P̃M such that
z ∈ ∂PM . Then (z′, v′ij) = zi − zj − (cij + M) ≤ 0 and equality is achieved if and only if
z ∈ H ′ij . Therefore z′ is maximized by the central face conv{0, v′ij ∈ H ′ij}. Note that the

central faces of P̃M are in bijection with faces of PM , which are in bijection with faces of
P . Hence each central cell of τ is a central cell of τ ′, which means that τ ⊆ τ ′. But τ is a
subdivision already. Therefore τ = τ ′ and all lower facets of P̃M are central.

Claim 4.3. Suppose that not all lower facets of P are central. Then there exists M > 0
such that all lower facets of PM are central.

Proof. Set P ′ = conv{vij} to be the convex hull of all lifted vertices. Then a face of P̃ is
either central or a face of P ′. Let F be a face in P ′. A supporting hyperplane of F is the
orthogonal complement to some linear function y′ that is maximized by F . Note that there
is at least one supporting hyperplane HF that does not contain the origin, or F would be
central. Furthermore, since P̃ is convex, it lies entirely on one side of HF , say the half
space H+

F . Let v be the vector parallel to y′ that points from the origin to HF . Then
(v, y′) > 0 When we add M to each cij , we lift each vertex of P ′ by M in the direction of
(1, 1, . . . , 1). Thus P ′M and (HF )Mcan be obtained by lifting P ′ and HF in the direction of
(1, 1, . . . , 1). Hence (vM , y

′) = (v+M · (1, 1, . . . , 1), y′) = (v, y′) +M · y′ · (1, 1, . . . , 1). Since
y′ · (1, 1, . . . , 1) < 0, there exist an M such that (vM , y

′) < 0, which means that FM is not a
lower face of PM . Note that P ′ has finitely many faces, hence there is an M such that PM
has no lower face that is also in P ′M .

Therefore, given an equivalence class [P ], there exits a PM that corresponds to a regular
central subdivision τP of Qn−1 whose cell labels are in bijection with the face labels of PM
and thus P . In fact, the regular subdivision corresponding to any P ∈ [P ] is a refinement
of τP , so τP is unique.
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On the other hand, suppose that τ is a regular central subdivision of Qn−1. Let {cij}
be a lifting such that the projections of the lower faces of P̃ are in bijection with cells of
τ . We can add some large enough M to each cij such that the collection {cij} satisfies the
triangular inequalities. Hence {cij} determines a generic alcoved polytope. Furthermore,
the projection of PM remains unchanged by Claim 4.2.

Corollary 4.4. The maximum of the number of vertices of P is
(
2n−2
n−1

)
and the minimum

is 2n − 2. The maximum is achieved if and only L(P ∗) is isomorphic to τ , where τ is a
triangulation of Qn−1. The minimum is achieved if and only if L(P ∗) is isomorphic to
L(Qn−1).

Proof. By Lemma 12.5, [4], any triangulation of the root polytope QKm,n has
(
m+n−2
m−1

)
simplices. Since the set of facets of Qn−1 is a disjoint union of facets of all QKm,n , the
number of simplices in a triangulation of Qn−1 is∑

S∪T=[n],S∩T=∅

(
|S|+ |T | − 2

|T | − 1

)
=
∑
|S|

(
n

|S|

)(
n− 2

|T | − 1

)
=

(
2n− 2

n− 1

)
.

Remark 4.5. One may have noticed in the proof of Theorem 1.1 that the bijection between
faces of P and central cells of τP is independent of the nice properties of An−1. Let V =
{v1, . . . , vN} ⊂ Rn be a generic vector configuration whose convex hull Q contains the origin.
We define an alcoved polytope of type V to be the point set

P = {x ∈ Rn|(x, vi) = ci, ci ∈ Z+, i ∈ [N ]}.

Given a label-equivalence class [P ] of generic alcoved polytopes of type V, consider the
regular subdivision τ obtained by projecting the lower boundary of P̃ = conv{0, vi + ci ·
en+1|i ∈ [N ]}. The regular subdivision τ may not be central, but the cells of τ that contain
the origin are in bijection with the face labels of P .

It is clear that not every regular central subdivision of Q corresponds to a generic alcoved
polytope of type V. It would be interesting to see what kinds of vector configurations admit
the one-to-one correspondence.

5 Application to Explicit Classification

Now that we have established a bijection between label-equivalence classes of generic alcoved
polytopes of type An−1 and central regular subdivisions of labeled Qn−1, we wonder if
the result can be bettered to a classification of the combinatorial types of generic alcoved
polytopes. The classification of regular subdivisions remaining at large, we instead examine
the system of inequalities that gives rise to an alcoved polytope.

11



5.1 Classification for n=4

A generic alcoved polytope P of type A3 is determined by a system of four-term inequalities.
Since we can always add a sufficiently large positive integer to all cij without changing the
sign of any inequality, we assume that the triangular inequalities are satisfied automatically.
We claim that P can be encoded by an acyclic orientation on the boundary of a hexagon.

Lemma 5.1. The system of four-term inequalities on {cij} (shown below on the left) has a
solution if and only if the system of two-term inequalities obtained by removing the ci4 and
c4j in all four-term inequalities (shown below on the right) has a solution. Here εi ∈ {<,>
,=} for i = 1, 2, . . . , 6.

c12 + c34 ε1 c14 + c32 c12 ε1 c32

c14 + c23 ε2 c13 + c24 c23 ε2 c13

c13 + c42 ε3 c12 + c43 → c13 ε3 c12

c24 + c31 ε4 c21 + c34 c31 ε4 c21

c21 + c43 ε5 c23 + c41 c21 ε5 c23

c32 + c41 ε6 c31 + c42 c32 ε6 c31

Proof. If the system of two-term inequalities has a solution, then we can set c14 = c41 =
c24 = c42 = c34 = c43 and obtain a solution for the system of four-term inequalities.

Now we represent the two-term inequalities by a partial orientation on a hexagon with
vertices labeled by (ij) as follows: if cij < cik, then the edge between (ij) and (ik) points
towards (ik); if cji < cki, then the edge between (ji) and (ki) points towards (ki); if cji = cki,
then we will not orient the edge between (ji) and (ki).

Suppose that the system of two-term inequalities does not have a solution. Linear
extension tells us that a partial ordering cannot be extended to a total ordering on the
vertices of the oriented hexagon if and only if the partial ordering results in a directed
cycle.( [5, Sec 3.5]) Hence the orientation determined by the system of two-term inequalities
after contracting all undirected edges is cyclic. If we recover all deleted terms in the two-
term inequalities and add up all four-term inequalities, we get

∑
1≤i 6=j≤4 cij <

∑
1≤i 6=j≤4 cij .

Therefore the system of four-term inequalities does not admit a solution.

In fact, the oriented hexagon of P has a cyclic orientation if and only if all εi are <
(respectively >) or = with at least one < (respectively >).

It follows from Lemma 5.1 that P can be encoded by a acyclically partially oriented
hexagon in Q3. Similarly, we get three more oriented hexagons by deleting the terms with
subscript 1, 2 and 3 in the system of inequalities respectively. In fact, each oriented hexagon
is a copy of Q2 with an orientation. As is shown in Figure 4, the hexagons are naturally
embedded in the labeled root polytope Q3. Furthermore, the edge set of Q3 is a disjoint
union of the edge sets of the four hexagons. Hence we can assign an orientation to the edges
of Q3 that agrees with the four embedded oriented hexagons.
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Figure 4: The root polytope Q3 and the four embedded hexagons.

Remark 5.2. This phenomenon is not limited to A3. Suppose we have a system of inequal-
ities that determine a generic alcoved polytope of type An−1. It follows from Proposition
3.5 that if we restrict to the subsystem that does not involve the terms ci,n or cn,i for all
i, then we get a system of inequalities that determine a generic alcoved polytope of type
An−2. Hence the collection of faces of Qn−1 with codimension two can be decomposed into
n disjoint sets, which form n copies of Qn−2 embedded in Qn−1.

It is clear that the four oriented hexagons embedded in P encode the same system of
inequalities. The question now arises as to whether there is a way to decide if two arbitrary
oriented hexagons encode the same polytope. Observe that each square face of an oriented
Q3 represents a four-term inequality. Hence the orientation of one edge on a square decides
the orientation of the other three edges, as is shown in Figure 5. In particular, opposite
edges have opposite orientations and the two edges that share a vertex have the same
orientation. On the other hand, any square face of Q3 contains exactly one edge from each
hexagon. Hence given any oriented hexagon, we can reconstruct the orientated Q3 in which
this hexagon is embedded.

13

42

4312
c12 + c43 < c13 + c42

13

42

4312

Figure 5: Deciding the orientation of a square face of Q3.

Furthermore, we can give a combinatorial description of the operation, named swap
map, that sends one oriented hexagon to the others in an oriented Q3 up to reflection and
rotation. The action of the swap map is captured in Figure 1. For the interest of space,
we won’t give a rigorous proof here. The reader can quickly verify this operation by trying
out a few examples using the rightmost diagram in Figure 4. The underlying algebraic
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operation of the swap map is the following: it recovers the system of four-term inequalities,
deletes all terms whose subscripts involve a certain index i ∈ [n], and produces an oriented
hexagon according to the two-term inequalities.

It remains to be shown that two combinatorially equivalent generic alcoved polytopes
can be reduced to the same oriented hexagon modulo the action of swap map, reflections,
and rotations. Recall that two polytopes are combinatorially equivalent if the planar graphs
of their dual polytopes are isomorphic. Equivalently, we want to prove the following lemma:

Lemma 5.3. Given a planar graph P ∗ of the dual polytope of a generic alcoved polytope
P , there is a unique combinatorial equivalence class of oriented Q3 embedded in P ∗.

Proof. By Theorem 1.1, the faces of P ∗ are in bijection with the cells of a subdivision τ̃ of
∂Q3. In particular, if the system of inequalities corresponding to P contains an equality,
then τ̃ has a cell that is a square face. It follows that P ∗ has 4 edges that forms a square
face with no edges on its diagonal, which implies that they are the edges of a square face
on ∂Q3. Hence we can assume that the system of inequalities contains no equality.

In order to reconstruct the one-skeleton of Q3 contained in P ∗, it suffices to identify
an edge in P ∗ that is not an edge of Q3. We call such edges the extra edges in P ∗. Note
that each square face of the Q3 embedded in P ∗ should have exactly one extra edge. On
the other hand, each hexagon embedded in an oriented Q3 has at least one node that is a
source, while a node appears in three of the four oriented hexagons. Furthermore, if a node
is a source in one hexagon, then it is a source in the two other hexagons. Hence there are
at least two sources in an oriented Q3, which are vertices of degree six in the planar graph
P ∗.

Suppose that P ∗ has two degree six vertices connected by an edge. Then this edge has
to be an extra edge of P ∗, or the square face of Q3 containing these two vertices will have
two extra edges.

Suppose there exist two vertices of degree six such that the shortest path between
them has length three (i.e., the path contains three edges), then they are a pair of antipo-
dal(opposite) vertices of the Q3 (Figure 6 on the left). But the extra edges incident to these
two vertices form a path of length two between them, which is a contradiction. In fact, in
this case they are connected to two more degree six vertices by the incident extra edges.
By the previous case, we are done.

Figure 6: Vertices of degree six in Q3. The black edges are the “extra” edges.
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Otherwise, the shortest path between any pair of degree six vertices has length two. It
is not hard to see that there is only one such planar graph (Figure 6 on the right) and it
can be recovered uniquely to the one-skeleton of Q3 with six extra edges. This completes
the proof.

Combining all the ingredients above, we’ve proven the following theorem on classification
of generic alcoved polytopes of type A3.

Theorem 5.4. A combinatorial equivalence class of generic alcoved polytopes of type A3

is encoded by a unique acyclic partial orientations of the boundary of a hexagon modulo
the action of the swap map, reflections, and rotations. Conversely, given an acyclic partial
orientation of a hexagon, we can reconstruct a unique combinatorial equivalence class of
oriented Q3.

5.2 The Case n=5 and Beyond

Now we hope to generalize the techniques used in the case n = 4 to any n. Again we
delete the terms ci,n and cn,i in all the even-term inequalities corresponding to a generic
alcoved polytope of type An−1. It follows from Remark 5.2 that the resulting system of
inequalities contains a subsystem that determines a generic alcoved polytope of type An−2.
Furthermore, we obtain a collection of two-term inequalities of the form cij < cik and
cji < cki. In fact, we have the following proposition that has its counterpart in the case of
A3:

Proposition 5.5. A generic alcoved polytope of type An−1 corresponds to a regular central
subdivision of Qn−2 with an acyclic partial orientation on the edges of Qn−2, which are faces
of dimension two.

The idea of the proof is to recover the deleted terms in all the two-term inequalities of
a cycle and sum up the four-term inequalities, which will result in a contradiction of the
form S < S. The proposition follows from simple induction.

Note that given a regular central subdivision of Qn−2 with an orientation on the edges,
we can recover the system of inequalities uniquely and deduce the other n− 1 subdivisions
of Qn−2 with an orientation. Hence we can define the analog of the swap map for An−1.
It follows from the proposition that there is an injective map from label-equivalence classes
of generic alcoved polytopes of type An−1 to the set modulo swap map of regular central
subdivisions of Qn−2 with an acyclic partial orientation on the edges of Qn−2.

In the case of n = 5, we have the advantage that facets of Q4 are either tetrahedrons
or prisms, which are three-dimensional objects. Theorem 1.1 tells us that a generic alcoved
polytope of type A4 corresponds to a subdivision of ∂Q4. Hence we obtain one more
condition on the admissible orientation of Q4.

Notice that a subdivision of a prism is determined by the diagonals on the three square
faces and vice versa. A contradiction arises if and only if the three diagonals are not
connected, in which case they do not decide a subdivision. A prism with diagonals as such
corresponds to a configuration of a ”bad square” (shown below) on the labeld Q4 obtained
by deleting the terms with index 5 in the subscript.
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13 43

12 42
A contradictory set of diagonals Bad square

12 42

13 43

Orientation on Q4

It turns out that the swap map sends a bad square to a cycle of length three. Therefore
we have the following conjecture:

Conjecture 5.6. There is a one-to-one correspondence between label-equivalence classes of
generic alcoved polytopes of type A4 and orbits of the swap map which do not contain an
orientation of Q3 that has a directed cycle.
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