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Abstract. Laurent phenomenon sequences are sequences (xi)i∈N
such that there is a polynomial P with integer coefficients and
an integer N such that xn+Nxn = P (xn+1, ..., xn+N−1) and all
of whose terms are Laurent polynomials in x1, ..., xN . We study
Laurent phenomenon sequences that additionally satisfy a linear
recurrence whose coefficients depend on the initial values of the se-
quence. We study several Laurent phenomenon sequences that
were constructed by Alman, Cuenca, Huang, using period one
seeds in Laurent phenomenon algebras introduced by Lam and
Pylyavskyy. We prove that two such families of such sequences are
linearizable and give a conjectural necessary and sufficient condi-
tion for linearizability of sequences arising from period one seeds.
For a particular sequence xn+p+qxn = xn+pxn+q + 1, the cluster
algebra generated by the seed has an associated marked surface.
By studying triangulations of this surface, we give a combinato-
rial formula in terms of almost perfect matchings for the linear
recurrence coefficients.
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1. Introduction

For positive integer N and polynomial P ∈ Z[x1, x2, ..., xN−1] we say
that P generates a Laurent phenomenon sequence if all the terms of the
sequence (xi)i≥1 generated by xn+Nxn = P (xn+1, ..., xn+N−1) for n ≥ 1
are in Z[x±11 , ..., x±1n ].

For example, the polynomial P (x1, ..., xN−1) =
∑

1≤i≤N/2 xixN−i gen-
erates the well known Somos-N sequence when we set initial values
equal to 1. It is know that for 2 ≤ N ≤ 7, the polynomial generates a
Laurent phenomenon sequence.

We are interested in classifying those polynomials which generate
linearizable Laurent phenomenon sequences. An example of such a
polynomial is P (x1, x2, x3) = x1x3 + 1, which generates a sequence
satisfying the recurrence relation xn+6 −Kxn+3 + xn = 0, where

(1) K =
x1
x4

+
x4
x1

+
1

x1x2
+

1

x2x3
+

1

x3x4
.

Before we proceed, we describe two methods for generating Laurent
phenomenon sequences. The first method comes from cluster algebras
and quivers. A quiver is a directed graph with no 1 cycles or 2 cycles.
Given a quiver Q and vertex v of Q, we can mutate Q at v, to produce
another quiver on the same set of vertices, µv(Q). For now, we disregard
the details of mutation. They are covered in Section 3.

Now, given a quiver, Q, with vertices labelled 1, 2, ..., N , we may
assign to vertex i an initial variable xi. The pair (Q,x) is a labelled
seed. Given vertex k of Q, we may mutate the seed at k to obtain the
seed (µk(Q),x), where x, defined as follows. xi = x′i for i 6= k and

(2) x′kxk =
∏
j→k

xj +
∏
k→j

xj,

where the empty product is taken to be 1.
Thus, each time we mutate, we produce a new variable, related to the

old variables via the above exchange relation. The polynomial on the
right is called the exchange polynomial Iterating we can produce sev-
eral new variables, all of which can be expressed as rational functions
in terms of the initial variables x1, ..., xN . The remarkable property of
quivers discovered by Fomin and Zelevensky in [7] is that all the new
variables are in fact Laurent polynomials in x1, ..., xN . Now, for muta-
tion periodic quivers it is possible to perform a sequece of mutations,
producing variables xN+1, xN+2, ... such that the exchange polynomial
at each mutation is equal to some fixed polynomial P . Then, the se-
quence x1, x2, ... consists of Laurent polynomials in x1, x2, ..., xN and it
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also satisfies xn+Nxn = P (xn+1, ..., xn+N−1) for all n. We see that the
Laurent property of quivers implies that any exchange polynomial in
a mutation-periodic quiver generates a Laurent phenomenon sequence.
Such polynomials are studied in [9] and [8].

Note that the exchange polynomial is always a binomial, so mutation-
periodic quivers cannot explain all Laurent phenomenon sequences. For
example, the Somos-5 sequence is generated by a three term polyno-
mial. Another method for generating Laurent phenomenon sequences
is described by Alman, Cuenca, and Huang, in [1], based on period
one seeds of Laurent phenomenon algebras, a generalization of cluster
algebras discussed in [11]. This is the most general method known for
generating Laurent phenomenon sequences.

The following theorem lists several polynomials that are obtained
using these two methods.

Theorem 1.1. [8],[1] The following families of polynomials generate
Laurent phenomenon sequences.

(1) P (x1, x2, ..., xN−1) = xpxq + A, for A ∈ Z, p + q = N , and
gcd(p, q) = 1

(2) P (x1, x2, ..., xN−1) = xpxq +Axm, for A ∈ Z, p+ q = N = 2m,
and gcd(p,m) = 1

(3) P (x1, x2, ..., xN−1) = x1xN−1 + A
∑N−1

i=1 xi +B, for A,B ∈ Z
(4) P (x1, x2) = x1x2 + Ax1 − Ax2, for A ∈ Z
(5) P (x1, x2, ..., xN−1) = x2kxN−2k + Axk + AxN−k, for A ∈ Z

Note that the condition gcd(p, q) = 1 in polynomial (1) is because
when p and q have a common factor d, the sequence generated by P
splits into d simultaneous recurrences {(xi+dn)n∈N}di=1, all generated by
P (x1, ..., xN/d−1) = xp/dxq/d +A. Similar degeneracy occurs in polyno-
mial (2) when p and m have a common factor.

We will see that the first two families are examples of polynomials
corresponding to mutation-periodic quivers in [8] and the last three are
examples of polynomials corresponding to period one seeds in Laurent
phenomenon algebras. Because period one seeds are generalizations
of mutation-periodic quivers, all of these polynomials arise from some
period one seed in a Laurent phenomenon algebra.

In fact, more is known about these particular sequences. For poly-
nomials (1) and (2) it is known that the sequence they generate is
linearizable and in fact the form of the recurrence is known [8]. In
this paper, we further, show that the polynomials (3) and (4) generate
linearizable sequences and we show the form of the recurrence. Numer-
ical evidence suggests that polynomial (5) also generates a linearizable
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sequence. Based on these results we give the following conjectural con-
dition for when a Laurent phenomenon sequence generated by a period
one seed is linearizable.

Conjecture 1. Suppose P (x1, x2, ..., xN−1) is a polynomial with pos-
itive coefficients arising from a period one seed, then, P the Laurent
phenomenon sequence generated by P is linearizalble if and only if
P = xqxq + Q, where where p + q = N and Q has degree 1. Further,
the minimal recurrence has coefficients which are Laurent polynomials
in x1, ..., xN−1.

The justification of the necessity of the condition is as follows. We
can consider the recurrence polynomial as a polynomial whose coeffi-
cients are rational functions in x = (x1, x2, ..., xN). Then, suppose that
there is some open set U in CN such for that for x ∈ U , the recurrence
polynomial has unique root, λ(x) of maximal absolute value. Then for
all such x the sequence generated by P must asymptotically satisfy
xn = cλn. Then, If we let P0 be the polynomial obtained by drop-
ping all terms of P not of leading order, then asymptotically, we have
c2λ2n+N = P0(cλ

n, ..., cλn). Then, either λ can only take a finite set of
values x or because P0 has positive integer coefficients, P0 = xpxq for
some p+ q = N .

Recall that the sequence generated by x1x3 + 1, satisfies the recur-
rence xn+6−Kxn+3+xn = 0, with K given in Equation 1. In general, in
[8] it is shown that the recurrence generated by polynomial (1) in The-
orem 1.1 satisfies xn+2pq−Kxn+pq+xn = 0, for some K ∈ Q(x1, ..., xN).
Notice that in the case (p, q) = (1, 2) and A = 1 discussed above, we
see that K a Laurent polynomial with positive coefficients. It turns out
that this is true for general (p, q) and A > 0. We prove this by explicitly
giving a formula for K as a sum of several monomials corresponding to
almost perfect matchings of a particular graph. This is similar to the
formula given in [13] for terms of the octahedron recurrence and the
formula given by Lam in [10].

2. Summary of Results

We study the sequences presented in the Theorem 1.1 and prove
some special cases of our conjecture. Recall that in [8], it is shown that
the polynomials (1) and (2) in Theorem 1.1 satisfy a linear recurrence
and the form of the recurrence is given. We extend this by showing
that polynomials (3) and (4) also satisfy a linear recurrence and give its
form. We also improve on their result by giving a formula in terms of
almost perfect matchings for the recurrence coefficient of the sequence
generated by polynomial (1).
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Theorem 2.1. [8]
For gcd(p, q) = 1, polynomial (2) from Theorem 1.1 generates a

sequence which satisfies a linear recurrence,

xn+3pq −Kxn+2pq +Kxn+pq − xn = 0,

for some K ∈ Q(x1, ..., xN). For gcd(p, q) = 2, the polynomial satisfies
a linear recurrence

xn+3pq−K1xn+5pq/2+K2xn+2pq−K3xn+3pq/2+K2xn+pq−K3xn+pq/2 = 0,

for some K1,K2,K2 ∈ Q(x1, ..., xN).

This result is shown in [8] in the case where A = 1. The sequence
generated by xpxq + Axm is obtained for the sequence generated by
xpxq + xm when we multiply all terms by A, so the general result
follows easily.

We prove similar result for polynomial (3) and (4).

Theorem 2.2. Polynomial (3) from Theorem 1.1 generates a sequence
which satisfies a linear recurrence,

xn+3(N−1) −Kxn+2(N−1) +K′xn+N−1 − xn = 0,

K ∈ Q(x1, ..., xN).

In fact, based on computing the coefficients K and K′ for small values
of p, q it appears that K = K′ in general, although we do not prove this.

Theorem 2.3. Polynomial (4) from Theorem 1.1 generates a sequence
which satisfies the linear recurrence

xn+6 −Kxn+4 +Kxn+2 − xn = 0

for some K ∈ Q(x1, x2, x3).

From numerical computation of the recurrence coefficients in The-
orems 2.2 and 2.3, and it appears that they are in fact also Laurent
polynomials in x1, x2, ..., xN , supporting our main conjecture.

Now, before we state the theorem for polynomial (1), we define al-
most perfect matchings. Suppose we are given a planar graph G em-
bedded in a closed disk. Then, an almost perfect matching of G is
a matching in which every vertex not on the boundary of the disk is
matched. We denote by M ′(G) the set of almost perfect matchings of
G.

Now, the following theorem holds, where Gp,q is a graph defined in
Definition 5.2 and wt(m) is a weight function defined in Definition 5.3
that assigns to each almost perfect matching m ∈ M ′(Gp,q) a Laurent
monomial in x1, ..., xN . For example, G2,3, and all of its 10 perfect
matchings with their weights are illustrated in Figure 2.
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Theorem 2.4. Polynomial (1) from Theorem 1.1 generates a sequence
which satisfies the linear recurrence xn+2pq−Kxn+pq+xn = 0. K is given
by the formula

K =
∑

m∈M ′(Gp,q)

wt(m)

.

Corollary 2.5. The coefficient K from Theorem 2.4 is a Laurent poly-
nomial in x1, x2, ..., xN , A which is a sum of monomials which have
degree 1, 0, or −1 in each variable. The coefficients of this polynomial
are positive.

3. Generating Laurent Phenomenon Sequences

We describe different methods for generate Laurent Phenomenon
sequences from cluster algebras and LP algebras.

3.1. Quivers and Cluster Algebras. A quiver is a directed graph
with no 1 cycles or 2 cycles. Given a quiver Q and vertex v of Q, we
construct the mutation of Q at v, denoted µv(Q), as follows.

(1) For every pair of edges (i→ v, v → j) in Q, add the edge i→ j.
(2) Reverse all edges with an endpoint at v.
(3) If there are any vertices i, j, such that there are p vertices from

i to j and q vertices from j to i, with p ≥ q > 0, then remove q
vertices from i to j and j vertices from j to i.

The last step is simply to remove any 2 cycles that were created in
the first two steps.

Now, given a quiver, Q, with vertices labelled 1, 2, ..., N , we may
assign to vertex i an initial variable xi. The pair (Q,x) is a labelled
seed. Given vertex k of Q, we may mutate the seed at k to obtain the
seed (µk(Q),x), where x, defined as follows. xi = x′i for i 6= k and

(3) x′kxk =
∏
j→k

xj +
∏
k→j

xj,

where the empty product is taken to be 1.
Thus, each time we mutate, we produce a new variable, related to the

old variables via the above exchange relation. Iterating we can produce
several new variables, all of which can be expressed as rational functions
in terms of the initial variables x1, ..., xN . The remarkable property of
quivers, discovered by Fomin and Zelevensky in [7] is that all the new
variables are in fact Laurent polynomials in x1, ..., xN .
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Theorem 3.1. (Laurent Phenomenon, [7])
Given an initial seed (Q,x), any variable that can be produced by mu-

tating the initial seed is can be expressed as an element of Z[x±11 , ..., x±1N ]
by the exchange relations.

Now with this theorem in mind, we describe cluster algebras.

Definition 3.2. (Cluster Algebra) Given a labelled seed (Q,x) we
define the cluster algebra associated with Q, A, as the follows. Let
S be the set of all cluster variables that can be achieved by mutation
from the initial seed (Q,x). Then, A is the Z-algebra generated by S
along with the exchange relations.

Then, by Theorem 3.1, every new cluster variable produced can be
expressed as a Laurent polynomial in x1, ..., xN , so we may view A as
a subalgebra of Z[x±11 , ..., x±1N ].

There are many interesting properties related to the sequences dis-
cussed in this paper of cluster algebras. We return to them in Section
5.]

Now, we define a method for constructing Laurent phenomenon se-
quences using mutation periodic quivers.

Definition 3.3. Given quiversQ andQ′ on the same vertex set {1, 2, ..., N}
we say that Q′ is a rotation of Q if there is a (directed graph) isomor-
phism from Q to Q′ that maps vertex i to i + 1 for i = 1, 2..., N − 1
and vertex N to vertex 1.

We say that Q with vertices 1, 2, ..., N is mutation periodic if µ1(Q)
is a rotation of Q.

We say that a vertex v of Q is a sink if all edges with and endpoint
at v have their head at v. Similarly, we say vertex v of Q is a source
if all edges with and endpoint at v have their tail at v. If vertex 1 is a
sink we say Q be is of sink-type.

Now, given a mutation periodic quiver Q, then the we can generated
a Laurent phenomenon sequence as follows. Start with the seed (Q,x).
Then, let P (x2, ..., xN) be the exchange polynomial when we mutate at
1. Then, for i = 1, 2, ... at step i if we mutate Q at vertex i (reduced
modulo N), and call the cluster variable produced at i xi+N , then
the sequence (xi) satisfies xn+Nxn = P (xn+1, ..., xn+N−1) for n ∈ N.
Thus, by Theorem 3.1 the we see that the sequence (xi) is a Laurent
phenomenon sequence.

Now, we describe a class of mutation periodic called primitives.

Definition 3.4. For positive integer N and p < N , we define the

primitive quiver P
(p)
N as follows. P

(p)
N has vertices 1, 2, ..., N . For every
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Figure 1. Quiver P
(2)
5 on left and its mutation at 1

on right; note the mutation is obtained by rotating the
entire quiver clockwise

two vertices i, j with j = p+ i or i = p+ j −N , there is an edge from
j to i.

An examples is given in Figure 1.

Note that the undirected graph obtained from P
(p)
N is a union of dis-

joint cycles where each vertex i is adjacent to i+ p and i− p (vertices
taken modulo N) therefore symmetric under rotation. Further all di-

rected edges i → j in P
(p)
N have j < i. Note that vertex 1 is a sink,

so mutation at 1 simply reverses the arrows incident at 1; we see that

this rotates the entire quiver, so P
(p)
N is mutation periodic. It gives

the exchange polynomial P (x1, ..., xN) = xpxq + 1. We see that for
gcd(p, q) = 1 and A = 1 this gives polynomial (1) in Theorem 1.1. We
return to this sequence and primitives in Section 5.

3.2. Laurent Phenomenon Algebras and Period One Seeds. In
[11] a new type of seed (P,x) is presented, where P is a N dimensional
vector of polynomials in Z[x] that satisfy certain conditions. P directly
generalizes the structure of a quiver; each polynomial somehow repre-
sents an exchange relation at that vertex. These seeds (P,x) can then
be mutated by picking an index k ∈ {1, 2, ..., N} to generated a new
seed (P′,x′). The polynomials P all change but only the cluster vari-
able xk changes and x′k is related to x through some relations. There
is a theorem analogous to 3.1 for these types of seeds that says that
any cluster variable produced through some sequence of mutations is a
Laurent polynomial in x1, ..., xN . The algebra generated by all possible
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cluster variables that can arise form the initial seed (P,x) is then called
the Laurent phenomenon algebra. Then, we can define period one seeds
as seeds where if we mutate at 1 and rewrite the new polynomials P
in terms of the cluster variables x′, then we get the same polynomials
as x. These period one seeds generalize mutation-periodic quivers and
several such period one seeds are discussed in [1]. Some of these seeds
give rise to the polynomials (3),(4),(5) in Theorem 1.1. We do not
give further exposition on these period one seeds because they are not
needed for our results, but we refer the reader to [1] section 2.1, 2.3,
and Theorem 3.9.

4. Proofs of Linearizability

In this section we give proofs of Theorems 2.2, and 2.3.

4.1. Proof of Theorem 2.2. First, we state a well-known useful the-
orem from [2].

Theorem 4.1. Let M = (ai,j) be an N dimensional square matrix.
Then, let A be the matrix obtained by deleting the last row and last
column of M . Let B be the matrix obtained by deleting the last row and
first column of M . Let C be the matrix obtained by deleting the first row
and last column of M . Let D be the matrix obtained by deleting the first
row and first column of M . Finally, let X be the matrix obtained by
deleting the first and last rows and columns of M . Then, detMdetX =
detAdetD − detBdetC.

Let N be a positive integer and A,B ∈ Z. Then, let (xi)i∈N be
defined such that

(4) xn+Nxn = xn+N−1xn+1 + A

N−1∑
i=1

xn+i +B,

for all positive integer n.

Lemma 4.2. For all positive integer n, xn+2+xn+A
xn+1

= xn+1+N+xn+N−1+A

xn+N

Proof. If we consider Equation 4 with n = k and n = k + 1 and
subtract, we get that for all positive integer k, xk+N+1xk+1−xk+Nxk =
xk+Nxk+2 − xk+N−1xk+1 +A(xk+N − xk+1). Rearranging and factoring
gives, xk+1(xk+N+1 + xk+N−1 + A) = xk+N(xk + xk+2 + A). Dividing
through by xk+1xk+N gives the desired result. �
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Now, for positive integer n, let Mn = (ai,j)0≤i,j≤2, where ai,j =
xn+(N−1)i+j. We will show that detMn is constant. By Theorem 4.1
and Equation 4.

(5)

detMnxn+N = A2

(
N−1∑
i=1

xn+i

)(
2N−1∑
i=N+1

xn+i

)
−A2

(
N∑
i=2

xn+i

)(
2N−2∑
i=N

xn+i

)
Lettin U =

∑N−1
i=1 xn+i and V =

∑2N−2
i=N+1 xn+i, we have

(6)

A−2detMnxn+N = (xn+1 +U)(V +xn+2N−1)− (U +xn+N)(xn+N +V )

= xn+1V + xn+2N−1U + xn+1xn+2N−1 − xn+N(U + V + xn+N)

Now, from Equation 4, we may substitute U = A−1(xnxn+N −
xn+1xn+N−1 − Axn+1) and V = A−1(xn+Nxn+2N − xn+N+1xn+2N−1 −
Axn+2N−1) into the above, and collect terms with xn+N . Dividing
through by xn+N gives

(7)

A−2detMn = −

(
2N−2∑
i=2

xn+i

)
+A−1xn+1xn+2N−1xn+1

(xn+N−1 + xn+N+1 + A)

xn+N

= −

(
2N−2∑
i=2

xn+i

)
+ A−1xn+1xn+2N−1(xn + xn+2 + A).

The last step above follows from lemma 4.2. Now, plugging in n = k
and n = k + 1 into the above and subtracting, then applying Lemma
4.2 and equation 4 gives detMn+1−detMn = 0. It follows that detMn is
constant for positive integer n. Then, applying Dodgson condensation
to the matrix Jn = (ai,j)0≤i,j≤3, we get that detJn = 0. Now, because
Jn and Jn+1 share three rows in common, for all n, it follows that
J1, J2, ... all have a common vector in the null space. Normalize this
vector so its first entry is 1 and let it be v = (−1,K1,K2,K3)

t). It
follows that K3xn+3(N−1) +K2xn+2(N−1) +K1xn+N−1−xn = 0 for all n.
We can solve for K1,K2,K3 by solving Jnv = 0, which reduces to a 3
by 3 system of equations and use Cramer’s rule. Because all matrices
Mk have the same determinant, it follows that K1 = 1. Also K2,K3 are
rational functions in the entries of Jn, so they are rational functions in
x1, ..., xN , as desired.
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4.2. Proof of Theorem 2.3. We first prove the theorem for A = 1.
P generates the sequence (xi)i∈N, where xn+3xn = xn+1xn+2+xn+1−

xn+2. For postive integer n > 2, we then have the following

xn−2 =
−xnx2n+1 + xnxn+2 + x2n − xn + xn

xn+1xn+2

xn−1 =
xnxn+1 + xn − xn+1

xn + 2

xn+3 =
xn+1xn+2 + xn+1 − xn+2

xn

xn+4 =
xn+1x

2
n+2 + xnxn+2 − x2n+2 − xn+2 + xn+2

xnxn+1

xn+5 = (x2n+1x
3
n+2 + xnx

2
n+1xn+2 + x2n+1x

2
n+2 − 2xn+1x

3
n+2 + xnx

2
n+1

−x2nxn+2−x2n+1xn+2+x
3
n+2+xnxn+1−x2n+1−xnxn+2+2xn+1xn+2−x2n+2)(x

2
nxn+1xn+2)

−1

Then, by explicit computation we may verify that

xn+5 − xn−1
xn+3 − xn+1

=
xn+4 − xn−2
xn+2 − xn

This implies the theorem because then xn+4−xn−2

xn+2−xn is constant for all n.

We may explicitly compute K by plugging n = 3 into the RHS of the
above.

(8) K =
x1
x3

+
x3
x1

+
x1
x2x3

− x3
x1x2

+
1

x1x2
− 1

x1x3
+

1

x2x3
+ 1.

Now, the sequence generated by x1x2 + Ax1 − Ax2 is obtained for
the sequence generated by x1x2 + x1 − x2 when we multiply all terms
by A, so the general result follows easily. The coefficient K is obtained
by substituting Axi for xi in Equation 8.

5. Matching Formulas for Recurrence Coefficients

In this section we give proof Theorem 2.4. We use results relat-
ing surfaces and cluster algebras that follow from the theory of tensor
diagrams in [4] The [5], and [12].

But, first we define almost perfect matchings and the graph Gp,q.

Definition 5.1. (Planar Graphs in Disks and Almost Perfect Match-
ings) Let G be a planar graph embedded in a disk and let ∂G be the
set of vertices of G that lie on the boundary of the disk. An almost
perfect matching of G is a matching of G such that all the vertices of
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G not in ∂G are matched (some of the vertices in ∂G can be matched).
We let M ′(G) denote the set of almost perfect matchings of G.

Now, we define the graph Gp,q which is a planar graph embedded in
a disk.

Definition 5.2. If p ≤ q then, let Gp,q be the following planar graph,
G, embedded in a disk. G has p + q + 1 faces. One of the faces is
central face and the remaining p + q are boundary faces. The central
face is a 2p-gon and has all its vertices in the interior of the disk. The
boundary faces are labelled 1, 2, ..., p+q and each have one edge on the
boundary of the disk; the remaining vertices of each boundary face are
shared with the central face. The boundary face labelled i is adjacent
to the two boundary faces labelled i − p and i + p. The face labelled
i is a triangle if p < ai < q + 1 and is a quadrilateral otherwise; note
there are 2p quadrilateral boundary faces and N−2p triangle boundary
faces. If p > q, let Gp,q = Gq,p.

In particular notice that, two faces i, j are adjacent in G if and only

if vertex i and j are adjacent in P
(p)
N and face i is a quadrilateral if and

only if vertex i is a sink or source in P
(p)
N .

Now, we define the weight function wt(m) of a matching.

Definition 5.3. Given an almost perfect matching, m of Gp,q and a
non-central face, i, we define fi(m) as follows. Let m′ be the be the
matching of the face i induced by m (m′ consists of those edges in
m which are an edge of i) then, let α be the number of vertices of
i that are matched in m′ that don’t lie on the boundary of the disk
and let β be the number of vertices of i not matched m′ that don’t lie
on the boundary of the disk. Then, fi = 1 if (α, β) = (2, 0), fi = 0
if (α, β) = (1, 1) or (α, β) = 1, 0) and fi = −1 if (α, β) = (0, 2) or

(α, β) = (0, 1). Then, wt(m) =
∏N

i=1(A
1/2xi)

fi(m).

Note that the sequence produced by the polynomial xpxq + A is
obtained from the sequence produced by xpxq + 1 by multiplying each
term by A1/2; hence, it suffices to prove the theorem for A = 1. From
now on, we assume that A = 1.

5.1. Surfaces and Cluster Algebras. We begin with some basic
definitions.

Definition 5.4. (Bordered Marked Surface)
Let S be a bordered orientable surface and let M be a finite set of

marked points on the boundary of S. We call (S,M) a bordered marked
surface. Note that the boundary of S is divided into curves which have
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Figure 2. G2,3 and its 10 almost matchings and cor-
responding weight monomials for A = 1
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points of M has endpoints and whose interiors contain no points of M .
We call these curves boundary segments of (S,M).

Definition 5.5. (Arcs and Loops on Surfaces)
A ordinary arc in (S,M) is a non-self-intersecting curve in S whose

endpoints lie in M which does not intersect the boundary of S except
at the endpoints. A closed loop in (S,M) is a closed curve which does
not intersect the boundary of S. We say that two ordinary arcs, γ and
γ′ are isotopic if there is an isotopy of curves from γ to γ′ whose image
consists of ordinary arcs. In general, we consider ordinary arcs and
closed loop to up to isotopy.

Now, given two ordinary arcs, γ and γ′, we say that γ and γ′ are
compatible if there are ordinary arcs γ1 and γ′1 isotopic to γ and γ′, re-
spectively, such that γ1 and γ′1 do not intersect not the interior of S. A
triangulation of (S,M) is a maximal collection of pairwise nonequiva-
lent and compatible ordinary arcs. The ordinary arcs in a triangulation
along with the boundary segments cut S into several triangles.

Now, given a triangulation T of (S,M), we can pick two triangles
41 and 42 of T that share a side γ. Let the other sides of 41 be α1, β1
and let the other sides of 42 be α2, β2. Then, α1, β1, α2, β2 bound a
quadrilateral in (S,M) one of whose diagonals is γ. We call the other
diagonal of this quadrilateral the flip of γ in the triangulation T . We
call the triangulation obtained be replacing γ with its flip the flip of T
at γ.

Now, we see that flips allow us to mutate between different triangu-
lations of a marked bordered surface.

Now, we show how to generate a quiver from a triangulated surface.
We will see that mutation of this quiver corresponds to flipping arcs in
the triangulation.

Definition 5.6. (Surface Triangulations and Quivers)
Let (S,M) be a bordered marked surface. Given a triangulation T

and an enumeration τ1, ..., τN of the arcs we construct the quiver QT .
First, construct directed graph G as follows. Place a vertex on each
ordinary arc of T and each boundary segment of (S,M). Label the
vertices corresponding to τ1, ..., τN as vτ1 , vτ2 , ..., vτN . Then, for each
triangle, 4, in T , cyclically connect the vertices corresponding to the
three sides of T such that when these edges are drawn on S they are
in counter-clockwise orientation. Then, let QT be the subgraph of G
induced on vertices vτ1 , vτ2 , ..., vτN . Also, let xT = (xτ1 , xτ2 , ..., xτN ).
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Figure 3. Triangulation T of marked annulus; ordi-
nary arcs labelled 1, 2, 3, 4, 5 correspond to cluster vari-

ables at the vertices of the quiver Q = P
(2)
5 and the

dotted black arrows correspond to edges of Q;

Now, we are ready to state the theorem, based on work in [6] and [5]
that allows us to relate surfaces and cluster algebras. It is also stated
as Theorem 2.11 in [12].

Theorem 5.7. Given a bordered surface (S,M) and a triangulation
T , let A be the cluster algebra generated from the initial seed (QT ,xT ).
Then, the labelled seeds of A are in bijection with the labelled triangu-
lations of (S,M) and the cluster variables of A are in bijection with
the ordinary arcs in (S,M) that are not boundary segments. Further,
given seed (Q′,x′) of A and vertex v of Q′, mutating at v corresponds
to flip of the arc corresponding to the vertex v in the triangulation
corresponding to the quiver Q′.

To illustrate this theorem, we refer to Figure 3.
Now, because all seeds are related by mutation, the choice of initial

seed is arbitrary, so in fact, we can associate with each marked bordered
surface (S,M) a cluster algebra AS,M without picking an initial seed
for the algebra. Then, the cluster variables in AS,M correspond to the
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Figure 4. : Skein relations for product of intersecting curves

(classes of) ordinary arcs in (S,M) and unlabelled seeds correspond to
triangulations.

Now, in general the correspondence in Theorem 5.7 between ordinary
arcs and cluster variables can be extended to assign to each collection of
transversally intersecting curves (not necessarily ordinary arc or closed
loop) an element of A. Given a curve γ we will denote its corresponding
element of A by xγ. We can then use the following results introduced
in [3] to relate these elements to the cluster variables as follows.

Theorem 5.8. The following are true about curves in S and the cor-
responding elements of A.

(1) Superimposing two curves (ordinary arc or closed loop) corre-
sponds to multiplication of the corresponding of A

(2) (Skein Relation) Given two curves γ1 and γ2 that intersect transver-
sally, we have

xγ1xγ2 = xλ1xλ2 + xλ3xλ4 ,

where (λ1, λ2) and (λ3, λ4) are the two ways to resolve the
intersection as shown in Figure 4.

(3) Any curve contractible to a point in M corresponds to the ele-
ment 0 in A.

Note that if two curves intersect at t different points, then iterating
the skein relation we can write their product as sum of 2t terms, one
for each way to resolve all t intersections.

Now, we are ready to prove Theorem 2.4.

5.2. Proof of Theorem 2.4. Let p, q be positive integer such that
gcd(p, q) = 1 and p < q (we discard the case (p, q) = (1, 1); it can
be explicitly verified in a manner similar to Theorem 2.3). Consider
the bounded marked surface (S,M) where S is an annulus and that
M consists of p points on the inner boundary of the annulus and q
points on the outer boundary. We write A to denote AS,M . For any
curve (ordinary arc or closed loop) γ, we let xγ be the corresponding



LINEARIZABLE LAURENT PHENOMENON SEQUENCES 17

element of A. For any triangulation T of S, we let (Qt,xT ), denote the
corresponding seed of A.

Also, from now on, we will refer to ordinary arcs in S that have one
endpoint on each boundary of S as radial arcs

Label the marked points on the inner boundary u1, ..., up and the
points on the outer boundary w1, ..., wq both in clockwise order. From
now on, take the indices of the u-s modulo p and the indices of the w-s
modulo q. Let C denote the unique (up to isotopy) non contractible
non-self-intersecting closed loop contained in S.

Now, we define operators T1 and T2. Given a radial arc γ with one
endpoint, ui, on the inner boundary of S and one endpoint, wj, on
the outer boundary of S, we define T1γ and T2γ as follows. We may
continuously move the endpoint ui clockwise along the boundary of
S to ui+1. This, can be extended to an isotopy from γ to a curve γ′

with endpoints ui+1 and wj. We call this curve T1γ. Similarly, we may
continuously move the endpoint wj clockwise along the boundary of S
to wj+1. This, defines an isotopy from γ to a curve γ′′ with endpoints
ui and wj+1. We call this curve T2γ.

We see that T1 and T2 define bijections on the set of radial arcs. Note
that T1 and T2 commute and further, T p1 T

q
2 = I. In particular, we have

T p1 = T −q2 = D, where D denotes the Dehn twist. Further, given any
two radial curves we can get from one to the other by application of
T1, T2 and their inverses.

Now, we define an operation φ, which given a radial arc γ produces
a labelled triangulation, T , of (S,M) one of whose arcs is γ. We define
the radial arcs τ1, τ2, ..., τN as follows (take indices of the τ ’s modulo
N).

(1) Let τ1 = γ
(2) Then, for k = 1, 2, ..., N − 1 do the following.

(a) Let i, j ∈ {1, 2, ..., N} such that i ≡ 1 + (k− 1)p (mod N)
and j ≡ 1 + kp (mod N)

(b) If j < i then τj = T1τi and if i < j, then τi = T2τj
Note that in defining τ1, τ1+p, ..., τ1+(N−1)p, we have started from γ

and applied T1 and T2 several times. Note that modulo N , {1, 1 +
p, ..., 1 + (N − 2)p} = {1, 2, ..., N} \ {N + 1 − p}. Therefore, we have
applied T2 a total of N − p − 1 = q − 1 times and T1 a total of p
times. Thus, because there are q points on the outer boundary of S
and p points on the inner boundary of S, we have that τ1, ..., τN are
all distinct. Further, T2τ1+(N−1)p = T q1 T

p
2 τ1 = τ1. Thus, for each

k = 1, 2, ..., N , because τ1+(k−1)p and τ1+kp are related by either T1 or
T2, they from a triangle along with one of the boundary segments of S.
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Thus, The segments τ1, τ2, ..., τN form a triangulation of (S,M). Call
this triangulation T = (τ1, ..., τN).

We see by the construction of T that the following important prop-
erty holds.

Lemma 5.9. T = φγ is the unique triangulation τ1, ..., τN , consisting

of radial arcs, such that τ1 = γ and the quiver QT is isomorphic to P
(p)
N

if we send vτi to vertex i in P
(p)
N , for i = 1, 2, ..., N

Proof. Suppose T ′ = (τ ′1, ..., τ
′
N) with τ ′1 = γ is a triangulation, consist-

ing of radial arcs, such that QT ′ is isomorphic to P
(p)
N after sending vτ ′i

to vertex i in P
(p)
N . Because every vertex i of P

(p)
N is adjacent to only

vertex i+ p and i− p (taking vertex labels modulo N), it follows that
τ ′i is in a triangle with only τ ′i+p and τ ′i−p (taking indices modulo N).
Now, τ ′i is an edge in two triangles of T ′, and no triangle in T ′ can
consist of two boundary segments (because T ′ consists of radial arcs),
it follows that every triangle in T ′ consists of exactly one boundary
segment. Hence, τ ′i and τ ′i+p are related by either T1 or T2 for each, i.
Thus, it follows that for each i, we can determine, based on the direc-

tion of the edge between i and i+p in P
(p)
N whether we have τ ′i+p = T1τ ′i

or τ ′i+p = T −12 τ ′i or we have τ ′i+p = T2τ ′i or τ ′i+p = T −11 τ ′i . Then, by in-
duction, we see that the choice we make for τ ′i+p uniquely determines
τ ′i+2p, ..., τ

′
i+(N−1)p, because no two arcs in T ′ can cross. Finally, only

one of the choices for τ ′i+p will give valid triangulation, because the
other will apply T1 a total of q − 1 times and T2 a total of p times, so
τ ′i+(N−1)p, τ

′
1, no longer form a triangle, because p 6= q. �

Now, from the definition of φ, the following result is clear.

Lemma 5.10. For radial arc γ, we have φT1γ = T1φγ and φT2γ =
T2φγ, where T1 and T2 act on φγ by acting on each arc in the triangu-
lation φγ.

The result follows from the fact that T1 and T2 commute.
Now, we prove another important lemma that follows from the fact

that P
(p)
N is mutatation-periodic.

Lemma 5.11. There are integers a, b satisfying pb − qa = 1, such
that following holds: Let γ is an radial arc, let φγ = T = (τ1, ..., τN),
and let τN+1 is the flip τ1 with respect to T ; then, (τ2, ..., τN+1) =
T a1 T b2 (τ1, ..., τN).

Proof. We have defined T above, so that τ2 = T a1 T b2 τ1, for some positive
integer a, b with a ≤ p and b ≤ q. Let a, b be these integers. Now,
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(Qt,xT ), where xT = xτ1 , ..., xτN , be the seed in A corresponding to T .

Recall that Q is isomorphic to the mutation-periodic quiver P
(p)
N after

sending vτi to vertex i. Let (Q′,x′) be the mutation of this seed at vτ1 .
Because mutation of seeds corresponds to flip of diagonal, we may label
the vertices of Q′ (vτ2 , ..., vτN+1

) such that x′ = (xτ2 , ..., xτN+1
). Then,

Q′ is isomorphic to P
(p)
N after sending vτi to vertex i− 1 (take vertices

modulo N). Now, by the uniqueness property in Lemma 5.9, it must
follow that φτ2 = (τ2, ..., τN+1). Thus, (τ2, ..., τN+1) = T a1 T b2 (τ1, ..., τN)
follows from τ2 = T a1 T b2 τ1 and repeated application of 5.10.

It remains to show that pb − qa = 1. Consider the sequence J =
a0, ..., aN−1, where ak ≡ 1+kp and ak ∈ {1, 2, ..., N} for k = 0, 1, ..., N−
1. Let at = 2. Then, the number of a = #A and b = #B where A =
{ak−1 > ak : k ∈ {1, 2, ..., t}} and B = #{ak−1 < ak : k ∈ {1, 2, ..., t}}.
Thus,

(9)

pb−qa =
∑
A

(−q)+
∑
B

p =
∑
A

(ak−ak−1)+
∑
B

(ak−ak−1) = at−a0 = 1

�

Let a, b be as in the Lemma.
Now, let γ1 be an arbitrary radial arc and let T0 = φγ1 = (γ1, γ2, ..., γN).

Then, for k = N + 1, N + 2, ..., construct γk and Tk−N inductively as
follows

(1) Tk−N = (γk−N , ..., γk−1) is a triangulation of S, so flip γk−N with
respect to this triangulation to produce γk

(2) By Lemma 5.2, it follows that Tk−N+1 = (γk−N , ..., γk−1) is a
triangulation and it is obtained by applying T a1 T b2 to Tk−N

From this construction two properties follow. First, we see that γk =
T a1 T b2 γk−1 for positive integer k. Also, we see that because all Tk are
isomorphic to PN

(p) and we obtain Tk+1 by flipping the arc corresponding

to vertex 1, because PN
(p) is mutation periodic, by the correspondence in

Theorem 5.7, we have that the sequence cluster variables (xγn)n∈N sat-
isfies the same recurrence as the cluster variables produced by cyclically
mutating the quiver PN

(p); namely, xγn+N
xγn = xγn+pxγn+q + 1. Thus,

because T1 is a triangulation, the cluster variables xγ1 , ..., xγN are alge-
braically independent, so in fact it suffices to work with the sequence
(xγn)n∈N.

Now let n > pq. Suppose we superimpose the curves γn and C.
From the skein relations we have that xγnxC = Dxγn +D−1xγn , where,
recall, D = T p1 = T −q2 is the Dehn twist. Now, note that (T a1 T b2 )pq =
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Figure 5. One of the ways to resolve the intersections
that gives x1x2x3

T pqa−pqa1 T pqb−qab2 = T q2 = D−1 because T p1 T
q
2 = 1 and pb − qa = 1. It

follows that

(10) xCxγn = (xγn−pq + xγn+pq).

Thus, shown that proper form of the recurrence hold, it remains to
compute K. That is, we expand xC in terms of xT1 = (xγ1 , xγ2 , ..., xγN ).
Now, to simplify notation, we will, for the remainder of the proof, refer
to the arc γi as i, so that the cluster variable corresponding to arc i is
simply xi.

Now, superimpose the curve C on the triangulation T . Because,
the element of A corresponding to T is x1...xN , we may then expand
xCx1...xN using the skein relations, to get a formula for C. For (p, q)
this gives us a sum of 10 terms, one of which is shown in This is shown
in Figure 5 for (p, q) = (2, 3).

Note that for (p, q) = (2, 3), there 25 = 32 ways to resolve the inter-
section, but only 10 contribute to the expansion of xCx1...xN . Recall
from Theorem 5.8 we know that any curve contractible to a point in M
corresponds to 0. There are only 10 ways to revolve the intersections
such that no curve contracts to a point.

In general, what we want to show, that the product expands using
the skein relations
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Figure 6. efficient resolution of the intersection at arc i

(11) xCx1...xN =
∑

m∈M ′(Gp,q)

N∏
i=1

x
1+fi(m)
i .

We do this by showing a bijection between the almost perfect match-
ings of M ′(Gp,q) and the ways to resolve the intersection of C of T . We
will leave verifying that the weights 1 + fi(m) are in fact the correct
weights to the reader as the details are uninteresting and tedious.

Suppose we are given a resolution, R, of C and T such that no re-
sulting curves go to 0. We construct an almost perfect matching, m,
of Gp,q as follows. First, we say that arc i is sink or source if vertex i

is a sink or source, respectively, in P
(p)
N (i ≤ p or i > q, respectively).

For arc i that is a sink or source, we say that the efficient resolution of
the intersection at i is as in Figure 6. If arc i is a sink or source, then
face i in Gp,q is a quadrilateral with an edge on the center face. Call
this edge ei. The edge ei is in the matching m if and only if arc i is not
efficiently resolved in R. Now, it remains to define which of the edges
of Gp,q from the center face to the boundary are in m.

Suppose we have several adjacent arcs i, i + p, i + 2p, ..., i + kp in S
(indices are taken modulo N) such that i and i + kp are each either
a sink or a source and the remaining arcs are not (note i and i + kp
cannot both be sinks or both be sources). Note that of i and i + kp,
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Figure 7. If exactly one of the intersections v and w
is resolved efficiently then there is one way to resolve the
remaining intersections so that no curve contracts to the
boundary

at least one must be resolve efficiently, or the resolution R will have
a curve that contracts to 0. This corresponds to the fact that both ei
and ei+kp cannot be in the matching m because they have a common
vertex. Now, if exactly one of i and i+ kp are resolved efficiently, then
the resolutions at i + p, i + 2p, i + (k − 1)p are determined. This is
shown in Figure 7. If both i and i + kp are efficiently resolved, then
there are k ways to resolve the intersections at i + p, ..., i + (k − 1)p.
These correspond to the k different ways to match the common vertex
of ei and ei+kp in Gp,q. This correspondence is also shown in Figure 8.
Thus, we have shown how to construct the remainder of the matching
m from R.
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Figure 8. If both of the intersections a and d are re-
solved efficiently then there are 3 ways to resolve the re-
maining intersections; they correspond to the the three
ways to match the the common interior vertex of face a
and d
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