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Abstract

The Shafarevich conjecture (now a theorem of Faltings) guarantees
that for any genus g ≥ 1, there are only finitely many isomorphism classes
of curves over Q with good reduction outside any given finite set of primes.
For hyperelliptic curves, an effective bound is known, but it is too large
to enable an explicit enumeration even for single primes. N. P. Smart
has produced an explicit list of all genus 2 curves with good reduction
outside 2 by transforming the problem into the problem of solving S-unit
equations over a specific set of number fields. We adapt these methods
to the prime 3 and produce tighter bounds on the number of possible
hyperelliptic curves of genus 2 with good reduction outside 3 in a number
of cases, subject to the restriction that the curve must have a rational
Weierstrass point. We also list a few such curves.
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1 Introduction

By a curve over a number field K, we will mean a smooth, irreducible algebraic
variety of dimension 1 A hyperelliptic curve is a double cover of P1. An elliptic
curve is a hyperelliptic curve of genus 1 (and any genus 1 hyperelliptic curve with
a rational point is an elliptic curve). All curves of genus 2 are hyperelliptic, but
this is not true for higher genus. A genus 2 curve C has six distinguished points
over K, called Weierstrass points, corresponding to the ramification points of
the double cover P1 → C (or, equivalently, the fixed points of the hyperelliptic
involution exchanging sheets of the associated double cover).

The coordinates of the images in P1 of the Weierstrass points allow us to
write down a Weierstrass model for a genus 2 curve C, a defining equation of
the form

y2 + h(x)y = f(x), (1)

where f is a polynomial over K of degree 5 or 6 and h is a polynomial over
K of degree at most 3. One can write down explicilty the condition for two
Weierstrass models to correspond to isomorphic curves; see [1], Equation (2.1.2).

For a prime p of K, a hyperelliptic curve C is said to have good reduction at
p if there exists a Weierstrass model for C such that reducing the coefficients of
the Weierstrass model modulo p gives a smooth curve; a curve is said to have
good reduction outside a finite set S of primes if it has good reduction at each
p 6∈ S. A curve with a Weierstrass model whose discriminant is only divisible
by rational primes in some set T has good reduction outside T , so showing
that a curve has bad reduction at p requires finding a Weierstrass model that
is minimal with respect to p but still has a factor of p in its discriminant (i.e.
has the discriminant with the smallest exponent for p over all models, but still
a positive exponent).

For example, the Weierstrass models y2 = x6 − 6x3 + 3 has discriminant
27311, but the Weierstrass model y2 + (x3 + 1)y = −x6 − 2x3 has discriminant
311, despite defining an isomorphic curve. Since there is a Weierstrass model
wtih discriminant a power of 3, this curve is an example of a genus 2 curve with
good reduction outside {3}.

Lists of elliptic curves with good reduction outside given sets S of primes
have been found (see, for example [14] for the case S = {2}), and in fact such
lists can be computed for general S and general number fields [3].

The Shafarevich conjecture (now a theorem of Faltings) shows that for curves
of any genus greater than or equal to 1, there are only finitely many isomorphism
classes of curves over Q with good reduction outside a finite set of primes.
An effective proof is known for hyperelliptic curves [22], so there are effective
bounds on the number of curves of genus 2 with good reduction outside S. These
bounds are too high to be useful, though. For curves over Q and S = {3}, the
effective Shafarevich conjecture gives a bound on the logarithmic Weil height of
the Weierstrass model for curves of genus 2 with a rational Weierstrass point of
2144003738053600, which is completely impractical. The bound for curves without
a rational Weierstrass point is even larger; see Section 3 of [22].
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For curves with a rational Weierstrass point, Merriman and Smart [13] were
able to list all genus 2 curves over Q with a rational Weierstrass point and good
reduction outside 2 using fairly elementary Diophantine techniques. Smart[18]
was able to extend this to a list of all genus 2 curves over Q and good reduction
outside 2 by extending an effective finiteness result for binary forms of given
discriminant due to Evertse and Győry [5] to give an algorithm for classifying
binary forms with roots in given fields and degree at most 6.

An analogous computation was also done by Malmskog and Rasmussen [12]
for curves of genus 3 with models of the form y3 = f(x) with f(x) a quartic
(such curves are called Picard curves) and good reduction outisde {3}.

In this paper, we recall the techniques used in the case S = {2} and adapt
them to study the problem of finding all isomorphism classes of curves of genus
2 over Q with good reduction outside S = {3}. Section 2 discusses the rela-
tionships between the Weierstrass models for a curve and the places it has bad
reduction, transforming the problem into one of enumerating polynomials (or,
equivalently, binary forms) with prescribed discriminant and roots over certain
fields. Section 3 gives a method for enumerating some of the desired polyno-
mials by transforming the problem into S-unit equations over number fields.
Section 4 gives an outline of an algorithm for solving S-unit equations, which
is the central step both in the method described in Section 3 and in the more
general method of [18]. Finally, Section 5 gives a (very incomplete) table of
non-isomorphic curves of genus 2 with good reduction outside 3.

2 Geometric preliminaries

We will consider only Weierstrass models all of whose coefficients are in Q; such
a model exists for any curve defined over Q. To enumerate isomorphism classes
of curves, we will enumerate equivalence classes of Weierstrass models. We now
lay out the restrictions placed on Weierstrass models of curves with prescribed
reduction.

Proposition 1. Let S be a finite set of rational primes, and let C be a curve
of genus 2 over Q having good reduction outside S. The field extension Kwei/Q
containing all the Weierstrass points of C is an algebraic extension of degree at
most 6! which is unramified away from S ∪ {2}.

Proof. See [15], Proposition 2.

The Weierstrass points are permuted by Gal(Q/Q), so any individual Weier-
strass point lies in a (not necessarily Galois) algebraic extension of Q of degree
at most 6; the field Kwei may be isomorphic as a field extension of Q to a series
of extensions whose total degree is greater at most 6!. For example, the curve
with Weierstrsas model y2 = (x2 − 5)(x2 − 3)(x2 − 2) has all of its Weierstrass
points over one of the three quadratic extensions Q(

√
5), Q(

√
3), and Q(

√
2),

its corresponding field Kwei = Q(
√

2,
√

3,
√

5) is of degree 8 over Q.
There are several hundred fields of degree at most 6 unramified away from

{2, 3}, so as a proof of concept we consider only those curves of genus 2 whose
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Weierstrass points lie over fields in the family F of fields where 3 is the only
rational prime that ramifies. The main impediment to finding all curves of genus
2 with good reduction away from 3 is practical—the lack of an implementation
of an S-unit equation solver for general number fields—and not theoretical.

Corollary 1. If C is a genus 2 curve over Q with good reduction outside S = {3}
whose Weierstrass points lie over fields in the family F where 3 is the only
prime that ramifies, all of the Weierstrass points of C lie over either Q or one
of the algebraic extensions of Q given by adjoining a root of one of the following
polynomials:

x2− x+ 1, x3− 3, x3− 3x− 1, x6− x3 + 1, x6 + 3, x6− 3x3 + 3. (2)

Proof. Proposition 1 states that the field Kwei containing the Weierstrass points
of C is an extension of Q of degree at most 6 and unramified away from {2, 3}.
Restricting our attention to just the fields in F , a database of number fields
ramified only at prescribed primes is given by [9]; their database is proven correct
for the cases we need to check. Testing fields with all the possible degrees, we
find that the desired fieds are precisely the fields with minimal polynomials
given in Equation 2.

We now convert the problem of finding curves of good reduction outside 3
into a “diophantine” problem by considering polynomial models for curves of
genus 2. The following result, a rephrasing of [13], Theorem 4, provides this
link:

Proposition 2. Let C be a curve of genus 2 defined over Q, and let Kwei be
the extension of Q over which the Weierstrass points of C are defined. Let S
be a finite set of primes lying above the all the rational primes at which C does
not have good reduction, all the primes of Kwei lying above the rational prime
2, and such that the ring of S-integers, OS, is a principal ideal domain.

Then there exist S-integers a1, a2, a3, a4, a5, and a6 such that C has a
Weierstrass model.

f(x) = x6 + a1x
5 + a2x

4 + a3x
3 + a4x

2 + a5x+ a6 (3)

and such that disc(f), the discriminant of f , is an S-unit.
Suppose that C has a rational Weierstrass point P . Then there exist S-

integers a1, a2, a3, a4, and a5 such that C has a plane model

f(x) = x5 + a1x
4 + a− 2x3 + a3x

2 + a4x+ a5 (4)

and such that disc(f) is an S-unit. The Weierstrass point P corresponds to the
unique point at infinity on this model.

Further, suppose that the curve has another rational Weierstrass point, Q,
distinct from P . Then the equation 4 for the model can be chosen so that a5 = 0
and such that the Weierstrass point Q has coordinates (0, 0). In this case the
coefficient a4 is also an S-unit.
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Finding all curves of genus 2 defined over Q with good reduction outside {3},
Weierstrass points in a given Kwei, and at least one rational Weierstrass point
amounts to finding all monic quintic polynomials with roots in Kwei whose co-
efficients are in Z[1/2, 1/3] with discriminant of the form ±2a3b for nonnegative
integers a and b. Similarly, finding all curves of genus 2 defined over Q with
good reduction outside {3} and Weierstrass points in a given Kwei without a
rational Weierstrass point amounts to finding all monic sextic polynomials with
roots in Kwei whose coefficients are in Z[1/2, 1/3] with discriminant of the form
±2a3b for nonnegative integers a and b.

We cannot require that the curves have discriminant which is purely of the
form ±3b because the process of completeting the square used to transform
a general Weierstrass model into the form 3 cannot be done in characteristic
2. The Weierstrass models we will find of the form 3 are minimal for primes
outside {2, 3} in the sense that their discriminants have minimal valuations for
(i.e. 0) for those primes, but Proposition 2 does not minimize the valuation at
2. An example of such a model that is not minimal at p = 2 was given in the
introduction.

A complete characterization of possible curves of genus 2 with good reduction
at 2 is available [21]; the computer algebra system MAGMA [2] has a function
for p-minimal Weierstrass models that correctly handles the case of p = 2. Since
the above technique finds all curves with good reduction outside {2, 3} which
might have good reduction at 2, this enables us to filter our list of polynomials
with discriminant ±2a3b to find the curves with good reduction at 3 alone.

We now fix some notation, following that of [18]. Let α denote a root of
x2 − x + 1, β a root of x3 − 3, and γ a root of x3 − 3x − 1. Let θ1, θ2, and θ3
denote roots of the irreducible sextics x6 − x3 + 1, x6 + 3, and x6 − 3x3 + 3,
respectively.

Let K1 = Q(α), K2 = Q(β), and K3 = Q(β), and let L1, L2, and L3 denote
Q(θ1), Q(θ2), and Q(θ3), respectively.

For a binary form F (X,Z) over Q which factors into irreducible polynomials
as

F (X,Z) = F1(X,Z) · · ·Fm(X,Z),

define its field system (M1, . . . ,Mm) to be the sequence of fields Mi = Q(αi) for
which F (αi, 1) = 0 (when Fj = Z, set Mj = Q). For example, the field system
of

F (X,Z) = X(X2 − 3XZ + 3Z2)(X3 − 3X2Z + 3XZ2 − 4Z3)

is (Q,K1,K2). For a polynomial f(x) (or a curve with model y2 = f(x)) which
factors into irreducible factors as

f(x) = f1(x) · · · fm(x)

over Q[x], define the field system of f analogously.
We can thus Corollary 1 and Proposition 2 as follows:

Proposition 3. If C is a genus 2 curve over Q with good reduction outside
S = {3} and Kwei ∈ F , then it has a Weierstrass model of the form y2 = f(x),
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where disc(f) = ±2a, 3b for nonnegative integers a and b and f has one of the
field systems in the following table:

Number of rational Weierstrass points Field system
6 (Q,Q,Q,Q,Q,Q)
4 (Q,Q,Q,Q,K1)
3 (Q,Q,Q,K2)
3 (Q,Q,Q,K3)
2 (Q,Q,K1,K1)
1 (Q,K1,K2)
1 (Q,K1,K3)
0 (K1,K1,K1)
0 (K2,K2)
0 (K3,K3)
0 (K2,K3)
0 (L1)
0 (L2)
0 (L3)

3 Triangularly-connected decomposable form equa-
tions

We seek to find all polynomials of degree 5 or 6 with discriminant of the form
±2a3b and field system one of those given in Proposition 3.

The field system (Q,K1,K3) was handled by N. P. Smart in [17]. By testing
the 40 possible polynomials from the final table of that paper for good reduction
at 2, we find no examples of curves with good reduction outside 3.

We will focus in the following on the case of the field system (Q,K1,K2), fol-
lowing the plan of [17], Section 9. This example illustrates the general technique
for any field system of the form (Q,Q(ρ1),Q(ρ2)) where Q(ρ1) is a quadratic
extension of Q, Q(ρ2) is a cubic extension of Q, and Q(ρ1, ρ2) is Galois. Com-
putations were done using the Sage computer algebra system [4].

Fix S = {2, 3}. We will work over the field K = L2 = Q(θ2), where θ62 + 3 =
0. The minimal elements α and β of K1 and K2 are in L2 with α = θ32 and
β = θ22. This field is a Galois extension of Q, with Galois group G isomorphic
to S3. Let β = β(1), β(2), and β(3) denote the conjugates of β.

The S-unit group of K is isomorphic to C6 × Z6, with root of unity ζ =
1
2θ

3
1 + 1

2 , fundamental units η1 = 1
2θ

3
2 − θ22 + θ2− 1

2 and η2 = 1
2θ

5
2 + 1

2θ
4
2 + 1

2θ
3
2 +

1
2θ

2
2− 1

2θ2−
1
2 , three primes π1 = − 1

2θ
3
2− θ2 + 1

2 , π2 = 1
2θ

5
2 + 1

2θ
3
2 + 1

2θ
2
2 + 1

2 , and
π3 = 1

2θ
3
2 + θ2 + 1

2 lying above 2, and a prime π4 = −θ2 of ramification index 6
lying above 3.

If f(x) is the right-hand side of a Weierstrass model for a genus 2 curve with
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field system (Q,K1,K2), the five roots of f are given by

γ1 = a+ b

(
1 + α

2

)
γ2 = a+ b

(
1− α

2

)
γ2+i = c+ d

(
tβ(i) + v

(
β(i)
)2)

,

where 1 ≤ i ≤ 3 and a, c, t, and v are integers with (t, v) = 1 and b and d of
the form ±2λ3µ.

Since disc(f) = ±2a3b, we must have that each γi−γj with i 6= j must divide
±2a3b. In particular, 2(γi − γ2+j) must divide ±2a3b for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3.
So for j = 1, 2, 3, we have that

L2j−1 = 2a+ b− 2c+ bα− 2dtβ(j) − 2dv
(
β(j)

)2
L2j = 2a+ b− 2c− bα− 2dtβ(j) − 2dv

(
β(j)

)2
are both S-units. To simplify notation, let x1 = 2a+ b− 2c, x2 = b, x3 = −2dt,
and x4 = −2dv. Let L7 = 2x2α.

Consider the form

L(x1, x2, x3, x4) =

7∏
i=1

Li(x1, x2, x3, x4) (5)

For any i, j, k with 1 ≤ i < j < k ≤ 7, we can find algebraic integers αi, αj , αk
such that

αiLi + αjLj + αkLk = 0. (6)

Since we can factor L into a product of linear forms all satisfying 6, it is called
a triangularly-connected decomposable form.

The conditions that b and d are of the form ±2λ3µ, along with a restriction
on the pair (t, v) that is only checked implicitly at the very end (when curves
with bad reduction at some prime outside {2, 3} are thrown out), ensure that
(γ1−γ2)2 and (γ3−γ4)2(γ4−γ5)2(γ5−γ3)2 are S-units, so the equation disc f =
±2a3b can be solved by considering the triangularly-connected decomposable
form equation

L(x1, x2, x3, x4) = ±2e1332 , (7)

where the xi are not all 0 and the nonzero xi are relatively prime. For more on
triangularly-connected decomposable forms equations, see [20], Chapter 10.

To solve this equation, we consider the S-unit equation

L1

L7
− L2

L7
− 1 = 0. (8)

Letting σ be the degree 3 generator of G and let τ be the degree 2 generator of
G. We have

σ
(
β(1)

)
= β(3) σ (α) = α τ

(
β(1)

)
= β(1) τ (α) = −α. (9)

7



This means that G acts transitively on L1, . . . , L6. In particular, if we can solve
the S-unit equation

L1

L7
+ τσ

(
L1

L7

)
= 1, (10)

we can find the values of Li

L7
for all 1 ≤ i ≤ 6 because a solution of 10 is of the

form

L1

L7
= ζa0ηa11 ηa22 πa31 πa42 πa53 πa76 ,

and the action of G on the generators of the S-unit group of K lets us write
the other ratios Li

L7
explicitly. We can do solve 10 using the methods outlined in

Section 4 below, noting that because it is an equation of the form x+y = 1 where
y is completely determined by x, we have half as many exponential variables to
deal with.

We know x2 is of the form ±2λ3µ, so we have that

L7 = ζ3v+3(π1π2π3)λ+1π6µ+3
4 (11)

where either v = 0 or v = 1. From here, if we can find a bound on L7, we can
find the values of all the Li that satisfy 7.

Consider the matrix

A =


1 α β β2

1 σ(α) σ(β) σ
(
β2
)

1 τ(α) τ(β) τ
(
β2
)

1 στ(α) στ(β) στ
(
β2
)
 .

By [17], Lemma 7, we have that | ± 2λ+13µ|6 ≤ NK/Q(det(A))| ≤ 546. This
means that a′ ≤ 5 and a′′ ≤ 31, where a′ is the common exponent on π1, π2,
and π3 in L7 and a′′ is the exponent on π4 in L7.

For each solution (a0, a1, a2, a3, a4, a5, a6) of 10 and all possible values of a′

and a′′, we can compute all the forms Li. We can then symbolically solve the
equation 1 β(1)

(
β(1)

)2
1 β(3)

(
β(3)

)2
1 β(2)

(
β(2)

)2

x1x3
x4

 =

 L1 − x2α
στ(L1)− x2α
σ(L1)− x2α

 (12)

and recover the values of x1, x3, and x4 given a value of x2.
In fact, we can take x2 to be whatever we want without loss of generality, as

multiplying x2 scales L1 by the same factor and thus scales x1, x3, and x4 by
the same factor as well. Since in the application to finding Weierstrass models
of genus 2 curves, two solutions ~x = (x1, x2, x3, x4) and ~y = (y1, y2, y3, y4) with
~x = λ~y give isomorphic curves, we can fix x2 to be some constant to make
computations easier.

For each quadruple (x1, x2, x3, x4) so produced with x3 and x4 not both zero
(since such curves correspond to curves which have no Weierstrass points in K2)
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and any integer c and z = ±2e1ee2 , the curves with Weierstrass points given by

δ1 = z(x1 + x2α)/2 + c

δ2 = z(x1 − x2α)/2 + c

δ3 = z(−x3β(1) − x4β(1))/2 + c

δ4 = z(−x3β(2) − x4β(2))/2 + c

δ5 = z(−x3β(3) − x4β(3))/2 + c

and one Weierstrass point at infinity (corresponding to the rational Weierstrass
point) will have have good reduction outside {2, 3} and field system (Q,K1,K2).
Making a change of variables x→ x+c, we can assume without loss of generality
that the Weierstrass model is of the form

y2 =

5∏
i=1

(x− δi). (13)

Moreover, a rescaling of the form x → 22k32`x, y → 25k35`y means that
all isomorphism classes of such curves can be represented by those with z ∈
{±1,±2,±3,±6}.

Applying this procedure to some “small” solutions to the S-unit equation
10 (defined as those where −3 ≤ ai ≤ 3 for 1 ≤ i ≤ 6), we find four curves of
good reduction outside {2, 3}, none of which had good reduction at 2.

From a computational standpoint, the most intensive part of this process is
computing the solutions to the S-unit equation 10. Between Sage and MAGMA,
practical algorithms exist for all the computational tasks needed along the way
(finding S-unit groups, symbolically determining the curves from the S-unit
equation solutions, and checking the reduction type of the curves) except for
the solution of the S-unit equations. Since there is a practical algorithm for S-
unit equations over general number fields due to Wildanger [23] and Smart [19],
the above technique should generalize to field systems of the form (Q,K, L),
where [K : Q] = 2 and [L : Q] = 3.

Building the triangularly-connected decomposable form 7 depended heavily
on the degrees appearing in the field system. A more general approach to
classifying binary forms (and hence Weierstrass models for genus 2 curves) by
making use of the Galois group of the field extension containing all fields in a
field system appears in [18], where the classification of binary forms with given
field system is done by solving at most four S-unit equations involving certain
cross-ratios.

4 Solution of S-unit equations

We give an outline of an algorithm for solving S-unit equations over number
fields; the presentation closely follows that of [6].

Let K be a number field, and let Γ be the finitely-generated multiplicative
subgroup of K containing the units of OK and all primes of K lying above the
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elements of a finite set S of rational primes. Let ζ denote the generator of the
torsion subgroup of Γ and let ξ1, . . . , ξr be the generators of the infinite part.
We seek to solve the equation

ζb1,0
r∏
i=1

ξ
b1,i
i + ζb2,0

r∏
i=1

ξ
b2,i
i = 1. (14)

Note that in general the two terms can be drawn from different multiplicative
subgroups Γ1 and Γ2, and that the terms might have coefficients which are
algebraic integers in K, but this setting is enough for our purposes.

The general approach is to first find a large effective bound B on the expo-
nents bi,j , reduce it using lattice basis reduction techniques, and enumerate the
small solutions. The initial bounds can be larger than 1040 even for low-degree
fields, and the reduced bounds can still be in the thousands, which for equa-
tions with four or more exponential variables give too large a search space for a
brute-force search.

Let T denote the set of places (i.e. absolute values) of K consisting of all
the finite places corresponding to the primes above the rational primes in S as
well as all the infinite places (one corresponding to each real embedding K → R
and one corresponding to each pair of conjugate complex embeddings K → C).
At each phase, we will need to consider each place separately. For the bounding
phases, we always take the largest bound of any place in T .

For ease of exposition, we explain each of the steps for the case of an in-
finite real place v only. Fuller accounts of this algorithm can also be found
in [17], [18], [23], and [19].

4.1 Eliminating “large” solutions

While the finiteness of the number of solutions of 14 can be shown by Dio-
phantine approximation techniques alone, Baker’s theory of linear forms in log-
arithms enables us to write an effective bound for the exponents.

We can pick r places v1, . . . , vr of K such that the matrix

M =

log |ξ1,1|v1 · · · log |ξ1,r|v1
...

. . .
...

log |ξ1,1|vr · · · log |ξ1,r|vr


is invertible and thus that

M

b1,1...
b1,r

 =

log |x1|v1
...

log |x1|vr

 .

This means that
B ≤ c1| log |x1|vk |, (15)
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where c1 is the row norm of M−1 (the maximal L1-norm of a row of M−1) and
vk is the place for which | log |x1|vk | = maxv∈S | log |x2|vk |.

We note in passing that this constant c1, which will appear again later,
depends on the choice of basis for the group of S-units and the matrix M
selected. A basis of S-units that is optimal with respect to c1 can be computed
which can reduce the computation time needed in the final step significantly [8].

We can show that for the place vl where |x1|vl is minimal, |x1|vl ≤ exp(−c2B)
for some positive real number c2 <

1
c1(s−1) , where s = |T |. Let Λ = 1 − x2.

Then we have

|Λ|vl = |1− x2|vl =

∣∣∣∣∣1− ζb2,0
r∏
i=1

ξ
b2,i
i

∣∣∣∣∣
vl

≤ exp(−c2B). (16)

If |1− x2| < 0.75, then

log |x2| ≤ 2|1− x2| ≤ 2|λ|,

so that for

Σ = log |ζb2,0 |+
r∑
i=1

b2,i log
∣∣∣ξb2,ii

∣∣∣ ,
we have the upper bound

|Σ| ≤ 2|Λ| ≤ 2 exp(−c2B). (17)

Since Σ is a linear form in logarithms, we can compute constants H, c4, c5, c6
such that either

B ≤ h

c4
or

|Σ| > exp

(
−c5H log

(
c6B

H

))
.

Applying effective finiteness bounds for linear forms in logarithms as in [5], we
are able to find a constant c7 such that

B0(vl) = max

(
H

c4
, c7

)
. (18)

Applying these techniques (or their analogues for complex or finite places)
to all the possible places vl (since we don’t know a priori which place will have
the minimal absolute value for B1), we get an initial bound B0.

4.2 Eliminating “medium” solutions

We have inequalities of the form

|b1φ1 + · · ·+ btφt| < c′1 exp(−c′2B) (19)
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for given positive constants c′1 and c′2 (arising from the first step), B at most
the bound B0 derived above, φ1, . . . , φt logarithms of algebraic numbers, and
b1, . . . bt rational integers bounded in absolute value by B. Our goal is to reduce
the upper bound B0.

Consider the lattice generated by the matrix

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

C Re(φ1) C Re(φ2) · · · C Re(φt)
C Im(φ1) C Im(φ2) · · · C Im(φt)


(20)

for a large constant C (a good choice is to choose C ≈ Bt0).
Since the last two rows are much larger than the other rows of the lattice,

by applying the LLL algorithm [11], we expect to be able to find a lattice basis
with much smaller norms for the basis vectors. Let ~a1 denote the first vector of
this LLL-reduced basis.

Lemma 1 (Gaál and Pohst). In the setting 19 and ~a1 defined as above, if

||~a1|| ≥
√

(t+ 1)22−1B0,

then

B ≤ logC + log c′1 − logB0

c′2
.

Proof. See [6], Lemma 5.2.1.

For a relatively small cost in the extent to which B0 can be reduced at
each step, we can round the C Re(φi) and C Im(φi) entries of 20 to the nearest
integer and use the integer version of the LLL reduction algorithm to ensure
no floating point errors occur. A similar rounding-then-LLL procedure is done
in [16], Theorem 2.

Since these bounds for the exponents are still large, we will give a more
efficient algorithm for enumerating all solutions with maximal exponent less
than our new reduced bound BR.

Deriving and reducing a bound on the exponents for the S-unit equation 10
over L2 lets us bound the number of curves of genus 2 with a rational Weier-
strass point, field system (Q,K1,K2), and good reduction outside 3 in a tighter
way than the bound derived from [22]. Using Sage code by Koutsianas [10]
implementing this method, we are able to reduce the bounds on the exponents
to |bi,j | ≤ 231345, so that there are a total of 6 · 2313456 < 1033 possible so-
lutions to the S-unit equation. The techniques of Section 3 tell us that each
such solution can correspond to at most 8 curves of genus 2 with good reduction
away from 3, so there are at most 8 · 1033 curves of genus 2 with good reduction
outside 3 and field system (Q,K1,K2).
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By applying this method to the S-unit equations arising from the other
allowed field systems and developing a systematic way to map S-unit equation
solutions to polynomials, we could produce a bound for the number of curves
of genus 2 with good reduction away from 3.

4.3 Enumerating “small” solutions

In cases like the S-unit equation 10 and more generally the S-unit equations
arising from the method of [18], we have a linear relationship

L~b1 = R~b2, (21)

where L andR are integer matrices and~b1 = (b1,0, . . . , b1,r) and~b2 = (b2,0, . . . , b2,r).
This relationship enables the use of a sieving technique to find additional con-
gruence relations on the exponents (until the search space is small enough to be
searched with brute force).

A much faster method is to partition the reduced search space into nice
subsets and then enumerate the solutions in those subsets using the Fincke-
Pohst algorithm for finding lattice points in an ellipsoid [7].

Define

〈〈H,S〉〉 =

{
α ∈ K| 1

H
≤ |α|v ≤ H for all v ∈ S

}
. (22)

Let C be the set of solutions to the S-unit equation, CB the set of solutions
with maximal exponent at most B, and CB((H) the set of solutions with x1 ∈
〈〈H,S〉〉.

Given our reduced bound BR from the previous step, we can find a constant
H0 in terms of the ξ1,i such that C = CBR

(H0).

Given an Hk we choose Hk+1 < Hk. In practice, Hk+1 = H
1/2
k often works

for large Hk.
Define the sets

T1,v(Bk, Hk, Hk+1) =

{
(x1, x2) ∈ CBk

(Hk)
∣∣|x1 − 1|v <

1

1 +Hk+1

}
T2,v(Bk, Hk, Hk+1) =

{
(x1, x2) ∈ CBk

(Hk)
∣∣| 1

x1
− 1|v <

1

1 +Hk+1

}
T3,v(Bk, Hk, Hk+1) =

{
(x1, x2) ∈ CBk

(Hk)
∣∣|x2 − 1|v <

1

Hk+1
, x2 ∈ 〈〈1 +Hk, S〉〉

}
T4,v(Bk, Hk, Hk+1) =

{
(x1, x2) ∈ CBk

(Hk)
∣∣| − x2

x1
− 1|v <

1

Hk+1

x2
x1
∈ 〈〈1 +Hk, S〉〉

}
Ti(Bk, Hk, Hk+1) =

⋃
v∈S
Ti,v(Bk, Hk, Hk+1).

At each step of this final enumeration process, we can further reduce our bound
Bk as long as we also enumerate the “remaining” solutions in the Ti(Bk, Hk, Hk+1),
as the following lemma shows.
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Lemma 2. Letting c1 be the constant from 15 and Bk+1 = c1 log(Hk+1 + 1),
we have

CBk
(Hk) = CBk+1

(Hk+1)

4⋃
j=1

Tj(Bk, Hk, Hk+1). (23)

Proof. See [6], Lemma 5.3.1.

In practice, especially for large Bk and Hk, these sets Tj(Bk, Hk, Hk+1) are
often empty. Since the sets Tj,v(Bk, Hk, Hk+1) are balls of the form |u− 1|v < ε
and where u is expressed as a product of powers of ξi,k, considering balls of the
form

| log |u|v| ≤ log
1

1− ε
(24)

enables us to find the vectors of exponents ~bi. We also are guaranteed that there
is some H with

1

H
≤ |x|vk ≤ H (25)

for all places vk. Considering the matrix M whose entries are mi,k = log |ξk|vi
for 1 ≤ i ≤ s and vi 6= v and 1 ≤ k ≤ r, mi,(r+1) = 0 for 1 ≤ i ≤ s, mi′,k =

1
log 1/(1−ε) log |ξk|v for the row i′ with vi′ = v, andms+1,k = 1

cos−1(
√
1−ε) Arg(ξk)(i

′),

where the notation ξ
(i′)
k denotes the conjugate of ξk corresponding to v. Letting

N = 1
logHM and using the restrictions 24 and 25, we have that

||N~b|| ≤ s+ 1 (26)

for an integer-valued vector ~b corresponding to a solution u.
Using the Fincke-Pohst algorithm (making use of LLL reduction to speed

up the computation), we can efficiently enumerate all the solutions to 26, and
thus find the elements of Tj,v.

For large triples (Bk, Hk, Hk+1), we might run into floating-point errors in
employing the Fincke-Pohst algorithm. The techniques of [19], Section 3 enable
us to rule out many of the sets Ti,v(Bk, Hk, Hk+1) without needing to run the
Fincke-Pohst algorithm.

On older hardware, Smart was able to solve S-unit equations over octic
number fields in minutes using this algorithm, compared to hours and even
machine-years using earlier sieving-based techniques. An implementation of
this algorithm in a CAS like Sage or Magma would be a helpful direction for
future work, as many classes of Diophantine problems can be stated in terms of
S-unit equations (see [6], Chapters 9 and 10 for examples).

5 Some curves of genus 2 with good reduction
outside {3}

In the following table, the curves are given by the coefficients of the polynomial
f(x) = a0x

6 + a1x
5 + a2x

4 + a3x
5 + a4x

2 + a5x + a6 in a Weierstrass model
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y2 = f(x). Note that the second curve has Weierstrass points over a field not
in F .

a0 a1 a2 a3 a4 a5 a6 Field System
0 -12 21 -22 15 -6 1 (Q,K1,K2)
1 0 0 6 0 0 -3 (Q(ξ)), ξ6 + 6ξ3 − 3 = 0
-3 0 0 6 0 0 9 (Q,K1,K2)
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