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Abstract. Subgroups H1 and H2 of a group G are said to be locally conjugate if there is
a bijection f : H1 → H2 such that h and f(h) are conjugate in G. We study local conjugacy
among subgroups of GL2(Z/p2Z), where p is an odd prime, building on Andrew Sutherland’s
categorizations of subgroups of GL2(Z/pZ) and local conjugacy among them. We obtain
a classification of locally conjugate subgroups of GL2(Z/p2Z) in the kernel of the natural
map φ : GL2(Z/p2Z) → GL2(Z/pZ). We further inspect local conjugacy among subgroups
of GL2(Z/p2Z) using this classification.
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1. Introduction

Sutherland was led to consider subgroups of GL2(Z/pZ) which are locally conjugate but
not necessarily conjugate as he was developing an algorithm to compute the images of Galois
representation given by the Galois action on p-torsion points of elliptic curves. In his paper,
Sutherland fully identifies nontrivially locally conjugate subgroups of GL2(Z/pZ) (see Theo-
rem 2), where p is an odd prime. Our hope is to understand local conjugacy in GL2(Z/pkZ)
where k ≥ 2 and also in the projective limit GL2(Zp). In this paper, we work with the case
when k = 2. We eventually eliminate some pairs of subgroups of GL2(Z/p2Z) that cannot
be nontrivially locally conjugate (see Corollary 3, Remark 8). Sutherland’s result with k = 1
and our observations with k = 2 and p = 3 lead us to believe that locally conjugate subgroups
of GL2(Z/pkZ) come in pairs up to conjugacy and that the subgroups are isomorphic.

2. Notation

Throughout this paper, p is an odd prime. ϵ is taken to be a nonsquare of Z/pZ.
For a group G and g ∈ G, we take gG to be the conjugacy class of g in G. Furthermore,

for S ⊆ G, SG =
∪

s∈S s
G.

Definition 1. Given 2×2 matrices M1 and M2, we say that they are diagonally swapped
or that they are diagonal swaps if M2 is obtained by switching the diagonal entries of M1.
Moreover, given groups of matrices H1 and H2, we say that they are diagonally swapped if
the elements of H2 are diagonal swaps of elements of H1.

2.1. Groups. GL2(R), SL2(R) and PGL2(R) denote the general, special and projective lin-
ear groups of 2× 2 matrices over a ring R. In particular, we define the following subgroups
of GL2(Z/pZ):

Definition 2.

Z(p) =

{(
w 0
0 w

)
∈ GL2(Z/p2Z)

}
Cs(p) =

{(
w 0
0 z

)
∈ GL2(Z/p2Z)

}
Cns(p) =

{(
w ϵy
y w

)
∈ GL2(Z/p2Z)

}
B(p) =

{(
w x
0 z

)
∈ GL2(Z/p2Z)

}
,

are called the center, Cartan-split subgroup, Cartan-nonsplit subgroup and Borel
subgroup of GL2(Z/pZ) respectively. For H ≤ GL2(Z/pZ), let N(H) denote the normalizer
of H in GL2(Z/pZ). In particular,

N(Cs(p)) = Cs(p) ∪
(
0 1
1 0

)
Cs(p)

N(Cns(p)) = Cns(p) ∪
(
1 0
0 −1

)
Cns(p).
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3. Properties of Locally Conjugate Subgroups

In this section, we define locally conjugate subgroups and discuss some properties of local
conjugacy.

Definition 3. Let G be a group and H1, H2 ≤ G. (G,H1, H2) is a Gassman triple if there
is a bijection f : H1 → H2 such that h and f(h) are conjugate in G for all h ∈ H1. We also
say that H1 and H2 are locally conjugate in G. If H1 and H2 are conjugate in G, then
they are also locally conjugate in G, in which case we say that they are trivially locally
conjugate.

Note that local conjugacy between subgroups H1 and H2 of G is determined not only by
H1 and H2, but also by G. For example, we will see later that the kernel of the natural
homomorphism φ : GL2(Z/p2Z) → GL2(Z/pZ) has subgroups that are nontrivially locally
conjugate with respect to GL2(Z/p2Z). However, such subgroups are not locally conjugate
with respect to kerφ because kerφ is abelian, in which case locally conjugate subgroups are
always equal.

Proposition 1. Let G be a group and H1, H2 ≤ G. H1 and H2 are locally conjugate in G if
and only if |H1 ∩ C| = |H2 ∩ C| for all conjugacy classes C of G.

Proof. Suppose H1 and H2 are locally conjugate in G via f : H1 → H2. For every conjugacy
class C of G, f |H1∩C maps into H2 ∩ C. Likewise, f−1 |H2∩C maps into H1 ∩ C and is the
inverse of f |H1∩C . Thus, |H1 ∩ C| = |H2 ∩ C|.

Conversely, suppose |H1 ∩ C| = |H2 ∩ C| for every conjugacy class C of G. Choose some
bijections fC : H1 ∩ C → H2 ∩ C and define f : H1 → H2 as f(h) = fhG(h). f is a well
defined bijection because the conjugacy classes of G partition G. Moreover, h and f(h) are
in the same conjugacy class for every h ∈ H1, so H1 and H2 are locally conjugate. �

Proposition 2. Let G be a group, H1, H2 ≤ G and N ▹ G. If H1 and H2 are locally
conjugate in G, then H1 ∩N and H2 ∩N are locally conjugate in G.

Proof. N is the disjoint union of some conjugacy classes of G. Let C be a conjugacy class
of G. If C ⊆ N , then |(Hi ∩N) ∩C| = |Hi ∩C| for i = 1, 2. Otherwise, |(Hi ∩N) ∩C| = 0.
H1 ∩N and H2 ∩N are therefore locally conjugate in G by Proposition 1 �

Proposition 3. Let G,G′ be finite groups, H1, H2 ≤ G and φ : G → G′ a surjective
homomorphism. If H1 and H2 are locally conjugate in G, then φ(H1) and φ(H2) are locally
conjugate in G′.

Proof. Let C ′ be any conjugacy class of G′ and let U =
∪

x∈C′(φ−1(x))G. We claim that
φ−1(C ′) = U . If d ∈ φ−1(C ′), then φ(d) ∈ C ′, in which case φ(d) ∈ (φ−1(φ(d))G ⊆ U .
Therefore, φ−1(C ′) ⊆ U . Conversely, if d ∈ (φ−1(x))G for some x ∈ C ′, then d = gyg−1

for some g ∈ G and y ∈ φ−1(x). It follows that φ(d) = φ(g)φ(y)φ(g)−1 = φ(g)xφ(g)−1,
and so d ∈ φ−1(C ′). Hence, U ⊆ φ−1(C ′), as desired. In particular, φ−1(C ′) is the union of
conjugacy classes of G.

kerφ is the union of conjugacy classes of G because it is normal in G. Moreover, since H1

and H2 are locally conjugate, |H1 ∩ kerφ| = |H2 ∩ kerφ|. Similarly, |H1 ∩ φ−1(C ′)| = |H2 ∩
φ−1(C ′)|. Note that φ(Hi)∩C ′ = φ(Hi∩φ−1(C ′)), so |φ(Hi∩C ′)| = |Hi∩φ−1(C ′)|/|Hi∩kerφ|
for i = 1, 2. Thus, |φ(H1) ∩ C ′| = |φ(H2) ∩ C ′|. �

3



Lemma 1. Let G be a finite group and H1, H2 ≤ G with H1 and H2 locally conjugate in G.
If H1 is cyclic, then so is H2 and H1 and H2 are conjugate.

Proof. Say that h1 generates H1. There is some h2 ∈ H2 that is conjugate to h1. h1 and h2
have the same order, which is |H1| = |H2|, so h2 generates H2. �

4. Subgroups of the Kernel of the Homomorphism GL2(Z/p2Z) → GL2(Z/pZ)

For the rest of the paper, φ denotes the natural homomorphism GL2(Z/p2Z) → GL2(Z/pZ)
unless stated otherwise. Elements of kerφ are of the form I +Ap, where we may identify A
as an element of Mat2(Z/pZ). kerφ ≃ (Z/pZ)4 because (I+A1p)(I+A2p) = I+(A1+A2)p.
Therefore, kerφ is a Z/pZ vector space of dimension 4.

By Propositions 2 and 3, H1 ∩ kerφ and H2 ∩ kerφ are locally conjugate in GL2(Z/p2Z)
and φ(H1) and φ(H2) are locally conjugate in GL2(Z/pZ) if H1 and H2 are locally conjugate
in GL2(Z/p2Z). Sutherland fully identifies local conjugacy in GL2(Z/pZ) (see Theorem 2).
In this section, we determine local conjugacy between subgroups of kerφ with respect to
GL2(Z/p2Z) up to conjugacy. To categorize the subgroups of kerφ up to conjugacy, we
conjugate the subgroups to pick some generators to be of desired form. To determine local
conjugacy among the subgroups, we apply Lemma 3 below.

Lemma 2. Fix I + Ap ∈ kerφ and let g ∈ GL2(Z/pZ). The conjugation g(I + Ap)g−1

depends only on φ(g) or equivalently, on g modulo p.

Proof. For any B ∈ Mat2(Z/pZ), (g −Bp)−1 = g−1 − g−1Bg−1. Therefore,

(g +Bp)(I + Ap)(g −Bp)−1 = (g +Bp)(I + Ap)(g−1 − g−1Bg−1p)

= I + (−gIg−1Bg−1 + gAg−1 +BIg−1)p

= I + gAg−1p.

�
Remark 1. The conjugacy classes of GL2(Z/p2Z) in kerφ corresponds to the orbits of
Mat2(Z/pZ) under conjugation by elements of GL2(Z/pZ): the conjugacy class of I + Ap
corresponds to the orbit of A.

4.1. Orbits of Mat2(Z/pZ) under conjugation by elements of GL2(Z/pZ). Sutherland
gives representatives for all the distinct conjugacy classes of GL2(Z/pZ), see [3, Table 3.1].
We extend his table with Table 4.1 to include representatives of zero determinant.

Table 1. Representatives of Orbits of Mat2(Z/pZ) Under Conjugation by GL2(Z/pZ)

Representative det trace χ(
w 0
0 w

)
0 ≤ w < p w2 2w 0(

w 1
0 w

)
0 ≤ w < p w2 2w 0(

w 0
0 z

)
0 ≤ w < z < p wz w + z 1(

w ϵy
y w

)
0 < y ≤ p− 1/2 w2 − ϵy2 2w −1
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We show that the representatives in Table 4.1 represent distinct conjugacy classes. Define

χ as the quadratic character χ(g) =
(

trace(g)2−4 det(g)
p

)
for g ∈ Mat2(Z/pZ). It is 1, 0,−1 when

g has exactly 2, 1, 0 eigenvalues in Z/pZ respectively. Since the trace and determinant of a
matrix are fixed under conjugation, χ is also fixed under conjugation. Matrices of the first
and second types, matrices of the third type and matrices of the fourth type are therefore
not conjugate to one another. Furthermore, matrices of the first type are not conjugate to
those of the second type because the former are conjugate only to themselves. Comparing
the trace and determinant among matrices of the same type shows that distinct matrices in
the table are not conjugate.

We also explain why the representatives exhaust all of the orbits. We start with g ∈
Mat2(Z/pZ). If it diagonalizes over Z/pZ, then g is conjugate to a matrix of the first or
third type. If g diagonalizes over Fp, then g is conjugate over Fp to a matrix of the form(
w +

√
ϵy 0

0 w −
√
ϵy

)
, which is conjugate to

(
w ϵy
y w

)
via

(
−
√
ϵ −ϵ

−
√
ϵ ϵ

)−1

. One can check

that g and

(
w ϵy
y w

)
are conjugate over Z/pZ. If g does not diagonalize, then it has a double

eigenvalue, in which case it is conjugate to a matrix of the second type.

Remark 2. The orbit of an element g ∈ Mat2(Z/pZ) that is not of the form

(
w 0
0 w

)
is

completely determined by the trace and determinant of g.

4.2. Subgroups in a Subgroup of kerφ Up to Conjugacy by GL2(Z/p2Z).

Definition 4. Let k = I + Ap ∈ kerφ. We call A the p-part of k and denote A by p(k).

Define T = {k ∈ kerφ | trace(p(k)) = 0}. T is generated by I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p

and I +

(
0 0
1 0

)
p, so T has dimension 3. Moreover, T is normal in GL2(Z/p2Z). We

determine local conjugacy between subgroups of T with respect to GL2(Z/p2Z).

Definition 5. Let Z =

{
I +

(
a 0
0 a

)
p | a ∈ Z/pZ

}
and H ≤ kerφ. For t, d ∈ Z/pZ, denote

χ(H, t, d) as the number of elements h ∈ H \Z such that trace(p(h)) = t and det(p(h)) = d.

Lemma 3. Let H1, H2 ≤ kerφ. H1 and H2 are locally conjugate in GL2(Z/p2Z) if and only
if H1 ∩ Z = H2 ∩ Z and χ(H1, t, d) = χ(H2, t, d) for all t, d ∈ Z/pZ.

Proof. This is because the orbit of an element of Mat2(Z/pZ) which is not of the form

(
a 0
0 a

)
is determined by the element’s trace and determinant and matrices of the form

(
a 0
0 a

)
are

in their own orbit. �

Lemma 4. Two locally conjugate subgroups of GL2(Z/p2Z) in kerφ must have equal dimen-
sion.

Proof. Any two locally conjugate subgroups are bijective. �
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T has exactly one subgroup of dimension 0 and exactly one subgroup of dimension 3: they
are ⟨I⟩ and T , respectively. We categorize the subgroups of dimensions 1 and 2 of T below.

Proposition 4. The subgroups of T of dimension 1 are conjugate in GL2(Z/p2Z) to one of
the following:

(1)

⟨
I +

(
0 1
0 0

)
p

⟩
(2)

⟨
I +

(
1 0
0 −1

)
p

⟩
(3)

⟨
I +

(
0 ϵ
1 0

)
p

⟩
No two distinct subgroups among these are locally conjugate.

Proof. A cyclic subgroup is determined, up to conjugacy, by a generator’s conjugacy class.
We choose a generator so that its p-part is a representative listed in Table 4.1. By Lemma
1, No two of these subgroups are locally conjugate because they are not conjugate. �
Proposition 5. The subgroups of T of dimension 2 are conjugate in GL2(Z/p2Z) to one of
the following:

(1)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p

⟩
(2)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
1 0

)
p

⟩
(3)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 ϵ
1 0

)
p

⟩
Proof. If H ≤ T has dimension 2, then we now show that we can replace H with a conjugate

so that H has I +

(
1 0
0 −1

)
p. Suppose first that det(p(h)) = −a2 where a ̸= 0 for some

h ∈ H that is not I. h is conjugate to h′ = I +

(
a 0
0 −a

)
p, so we can replace H with a

conjugate so that h′ is in H. Since a is nonzero, some power of h′ is I +

(
1 0
0 −1

)
p.

Now assume that det(p(h)) ̸= −a2 for any nonidentity h ∈ H and nonzero a ∈ Z/pZ.

Suppose that det(p(h)) = 0 for some nonidentity h ∈ H. h is conjugate to u1 = I+

(
0 1
0 0

)
p,

so replace H with a conjugate containing u1. Choose u2 ∈ H so that (u1, u2) is a basis of

H and u2 = I +

(
a 0
c −a

)
p for some a, c ∈ Z/pZ. a must be 0 because u2 ̸= I and

det(p(u2)) = −a2. Thus, c is nonzero, in which case H =

⟨
I +

(
0 1
0 0

)
p, I +

(
0 0
1 0

)
p

⟩
.

However, I +

(
0 1
1 0

)
p, whose p-part has determinant −1, is in H, which is a contradiction.

Hence, this case does not occur.
We now assume that det(p(h)) ̸= 0,−a2 for every h ∈ H and nonzero a. − det(p(h))/ϵ is

then a nonzero square for any nonidentity h ∈ H. h is thus conjugate to v1 = I+

(
0 ϵy
y 0

)
p,
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where y ∈ Z/pZ is nonzero. We choose v2 ∈ H so that (v1, v2) is a basis of H and v2 is of

the form I +

(
a 0
c −a

)
p. However, det(p(v2)) = −a2, which is a contradiction. Hence, this

case does not occur either, and so H must contain w1 = I +

(
1 0
0 −1

)
p up to conjugation.

Choose w2 ∈ H so that (w1, w2) is a basis of H and w2 is of the form I +

(
0 b
c 0

)
p. If

c = 0, then b ̸= 0, in which case H is subgroup 1. Similarly, if b = 0, then c ̸= 0, in which

case H is conjugate to subgroup 1 via

(
0 1
1 0

)
. Otherwise, bc ̸= 0. If bc is a square, then

H is conjugate to subgroup 2 via

(
1 0

0
√
b/c

)
. If bc is a nonsquare, then H is conjugate to

subgroup 3 via

(
1 0

0
√
b/(cϵ)

)
. Subgroups of T of dimension 2 are therefore conjugate to

one of the three listed.
We now show that the three subgroups are not locally conjugate to one another. Define

Z ⊆ kerφ as in Definition 5. Z shares only I with each of subgroups 1, 2 and 3. Elements of

subgroups 1, 2 and 3 have p-parts of form x1

(
1 0
0 −1

)
+y1

(
0 1
0 0

)
, x2

(
1 0
0 −1

)
+y2

(
0 1
1 0

)
and x3

(
1 0
0 −1

)
+ y3

(
0 ϵ
1 0

)
, which all have trace 0 and have determinants −x21,−x22 − y22

and −x23 − ϵy23 respectively. Letting x2 be so that x22 + 1 is nonsquare in Z/pZ and letting
y2 = 1 shows that subgroups 1 and 2 are not locally conjugate by Lemma 3. Letting x3 = 0
and y3 = 1 shows that subgroups 1 and 3 are not locally conjugate as well. Moreover,
−x22 − y22 = 0 has nonzero solutions exactly when −1 is a square in Z/pZ, which is exactly
when −x23 − ϵy23 = 0 does not have nonzero solutions. Subgroups 2 and 3 are therefore not
locally conjugate. �

4.3. Subgroups of kerφ Up to Conjugacy by GL2(Z/p2Z). Subgroups H of kerφ of
dimension at least 2 have nontrivial intersection with T since dim(kerφ) = 4 and dim(T ) = 3.
In particular, if dim(H) = 2, then dim(H ∩T ) ≥ 1 and if dim(H) = 3, then dim(H ∩T ) ≥ 2.
We categorize the subgroups of kerφ that are not subgroups of T .

Proposition 6. The subgroups of kerφ of dimension 1 that are not subgroups of T are
conjugate in GL2(Z/p2Z) to one of the following:

(1)

⟨
I +

(
1 0
0 1

)
p

⟩
(2)

⟨
I +

(
1 1
0 1

)
p

⟩
(3)

⟨
I +

(
1 0
0 d

)
p

⟩
, where d ∈ Z/pZ is not ±1

(4)

⟨
I +

(
1 ϵc
c 1

)
p

⟩
.

No two distinct subgroups among these are locally conjugate.

Proof. The proof is similar to that of Proposition 4. �
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Proposition 7. The subgroups of kerφ of dimension 2 that are not subgroups of T are
conjugate in GL2(Z/p2Z) to one of the following:

(1)

⟨
I +

(
0 1
0 0

)
p, I +

(
0 0
1 1

)
p

⟩
(2)

⟨
I +

(
0 1
0 0

)
p, I +

(
0 0
0 1

)
p

⟩
(3)

⟨
I +

(
0 1
0 0

)
p, I +

(
1 0
0 d

)
p

⟩
, where d ∈ Z/pZ is not −1

(4)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
c 1

)
p

⟩
, where c ∈ Z/pZ

(5)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 0
0 1

)
p

⟩
(6)

⟨
I +

(
0 ϵ
1 0

)
p, I +

(
1 + a −ϵb
b 1− a

)
p

⟩
, where a, b ∈ Z/pZ.

Subgroup 2 and the type 3 subgroup where d = 0 are nontrivially locally conjugate. Two type
3 subgroups are nontrivially locally conjugate if their d values are multiplicative inverses. If
H1 and H2 are type 6 subgroups where (a, b) = (a1, b1) and (a2, b2) respectively, then H1 and
H2 are conjugate if a21 − ϵb21 = a22 − ϵb22. All other pairs of distinct subgroups above are not
locally conjugate.

Proof. Suppose H ≤ kerφ has dimension 2 and is not a subgroup of T . H∩T has dimension
1. Replace H with a conjugate so that H∩T is one of the subgroups of T as listed in Section
4.2.

Suppose H ∩T =

⟨
I +

(
0 1
0 0

)
p

⟩
. Choose a second basis element of H to be of the form

I +

(
a 0
c d

)
p. Note that a+ d ̸= 0 because H ∩ T has dimension 1. If a = 0, then we scale

this basis element so that d = 1. In this case, if c = 0, then H is subgroup 2. Otherwise, H

is conjugate to subgroup 1 via

(
c 0
0 1

)
. If a ̸= 0, then we may let a = 1 by scaling the basis

element. Since a + d ̸= 0, d ̸= −1. If c = 0, then H is a type 3 subgroup. Otherwise, H is

conjugate to subgroup 2 via

(
c

d+1
− 1

d+1

0 1

)
.

Suppose H ∩ T =

⟨
I +

(
1 0
0 −1

)
p

⟩
. Choose a second basis element of H to be of the

form I +

(
0 b
c d

)
p. d must be nonzero, so we can let d = 1 after scaling the second basis

element. If b = c = 0, then H is subgroup 5. If b ̸= 0, then H is conjugate to a type 4

subgroup via

(
1 0
0 b

)
. Otherwise, b = 0 and c ̸= 0, but conjugating H via

(
0 1
1 0

)
reduces

this case to the case where b ̸= 0.
8



Suppose H ∩T =

⟨
I +

(
0 ϵ
1 0

)
p

⟩
. Choose a second basis element of H ∩T to have trace

2. That is, the basis element is of the form I +

(
1 + a b′

c′ 1− a

)
p. Note that

(
I +

(
1 + a b′

c′ 1− a

)
p

)(
I +

(
0 ϵ
1 0

)
p

)−(b′+ϵc′)/(2ϵ)

= I +

(
1 + a −bϵ
b 1− a

)
p,

where b = c′ − (b′ + ϵc′)/(2ϵ). We may therefore replace the second basis element by this
product, so H is a type 6 subgroup.

We determine conjugacy and local conjugacy among the subgroups. If H1 and H2 are
locally conjugate and among the subgroups listed, then their intersections with T must be
locally conjugate and thus equal because T is normal in GL2(Z/p2Z). For any of the listed
subgroups H, let A and B be its first and second generators respectively, i.e. trace(A) = 0
and trace(B) ̸= 0. The p-parts of the elements H are of the form xA+yB where x, y ∈ Z/pZ.
Since A has trace 0, the trace of xA + yB depends only on y. Moreover, χ(H, rt, r2d) =
χ(H, t, d) for all t, d ∈ Z/pZ. Given that H1 ∩ T = H2 ∩ T , local conjugacy between H1

and H2 thus depends only on their intersections with Z, as defined in Definition 5, and
on χ(Hi, 1, d) for d ∈ Z/pZ. We will refer to the determinant and trace of the p-parts of
elements of kerφ simply as the element’s determinant and trace in the rest of this proof.

The p-parts of all subgroup 2 elements have zero determinant, so subgroup 2 is not locally
conjugate to subgroup 1 or type 3 subgroups where d ̸= 0. Let H1 and H2 be subgroup 2
and the type 3 subgroup where d = 0, respectively. H1 and H2 are locally conjugate because

I +

(
0 x
0 y

)
p is conjugate to I +

(
y x
0 0

)
p. Suppose, for contradiction, that H1 and H2 are

conjugate. Any conjugation from H1 to H2 preserves H1 ∩ T , meaning that the conjugation

sends I +

(
0 1
0 0

)
p to I +

(
0 r
0 0

)
p for some nonzero r ∈ Z/pZ. Any such conjugation is

done via an upper triangular matrix of GL2(Z/pZ), but such a conjugation preserves H1.
Hence, subgroup 2 and the type 3 subgroup where d = 0 are nontrivially locally conjugate.

A trace 1 element of subgroup 1 can have any determinant, whereas a trace 1 element of a
type 3 subgroup can only have determinant of the same quadratic character as d. Subgroup
1 is therefore not locally conjugate to subgroup 3.

The type 3 subgroup where d = 0 is not locally conjugate to other type 3 subgroups
because the latter has only elements whose p-parts have zero determinant. Now suppose
H1 and H2 are type 3 subgroups where d = d1, d2 respectively and d1, d2 ̸= 0. The trace 1
elements have determinant di/(di+1)2 where i = 1, 2. Thus, H1 and H2 are locally conjugate
exactly when d1/(d1+1)2 = d2/(d2+1)2, which is when d1 = d2 or d1d2 = 1. Just as before,
H1 and H2 are not locally conjugate if d1 ̸= d2 because any conjugation from H1 to H2 would
have to be by an upper triangular matrix of GL2(Z/pZ), but such a conjugation preserves
H1.

The determinants of the trace 1 elements of a type 4 subgroup are of the form −x2+x−c.
Those of subgroup 5 are of the form −x2 + x. −x2 + x − c = −(x − 1/2)2 − c + 1/4 takes
the value −c+1/4 exactly once and all other values exactly two or zero times. On the other
hand, −x2+x takes the value 1/4 exactly once and all other values exactly two or zero times.
Thus, the type 4 subgroup where c ̸= 0 is not locally conjugate to subgroup 5. Furthermore,

9



the type 4 subgroup where c = 0 is not locally conjugate to subgroup 5 because the two
subgroups have different intersection with Z.

Say thatH1 andH2 are two type 6 subgroups with (a, b) = (a1, b1) and (a2, b2) respectively,

where a21 − ϵb21 = a22 − ϵb22. Conjugating a type 6 subgroup via

(
−
√
ϵ −ϵ

−
√
ϵ ϵ

)
∈ GL2(Fp2)

yields the group

⟨
I +

(√
ϵ 0
0 −

√
ϵ

)
p, I +

(
1 a+ b

√
ϵ

a− b
√
ϵ 1

)
p

⟩
. Conjugating this group

by

(
α 0
0 δ

)
further yields

⟨
I +

(√
ϵ 0
0 −

√
ϵ

)
p, I +

(
1 (a+ b

√
ϵ)α

δ

(a− b
√
ϵ) δ

α
1

)
p

⟩
. H1 is

thus conjugate to H2 via

(
−
√
ϵ −ϵ

−
√
ϵ ϵ

)−1(
a2 + b2

√
ϵ 0

0 a1 + b1
√
ϵ

)(
−
√
ϵ −ϵ

−
√
ϵ ϵ

)
, which is a

scalar multiple of

(
(a1 + a2)

2 − (b1 + b2)
2ϵ 2(a2b1 − a1b2)

2(a2b1−a1b2)
ϵ

(a1 + a2)
2 − (b1 + b2)

2ϵ

)
∈ GL2(Z/pZ). Thus,

H1 and H2 are conjugate in GL2(Z/p2Z).
The trace 1 elements of a type 6 subgroup have determinants of the form 1−a2+ϵb2

4
− ϵx2.

This expression takes the value 1−a2+ϵb2

4
exactly once, when x = 0, and all values exactly two

or zero times. Therefore, two type 6 subgroups with distinct a2 − ϵb2 values are not locally
conjugate by Lemma 3. �

Proposition 8. The subgroups of kerφ of dimension 3, that are not subgroups of T are
conjugate in GL2(Z/p2Z) to one of the following:

(1)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p, I +

(
0 0
1 1

)
p

⟩
(2)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p, I +

(
0 0
0 1

)
p

⟩
(3)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
1 0

)
p, I +

(
0 0
c 1

)
p

⟩
, where c ∈ Z/pZ with 0 ≤ c ≤ p−1

2

(4)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 ϵ
1 0

)
p, I +

(
0 0
c 1

)
p

⟩
, where c ∈ Z/pZ with 0 ≤ c ≤ p−1

2
.

No two distinct subgroups among these are locally conjugate.

Proof. Suppose H ≤ kerφ has dimension 3 and is not a subgroup of T . H∩T has dimension
2. Replace H with a conjugate so that H ∩ T is one of the subgroups of T as listed in
Section 4.2. In any of these cases, a third basis element of H can be chosen to be of the form

I +

(
0 0
c d

)
p, where d ̸= 0. In particular, we may choose d to be 1 by scaling.

Suppose H ∩ T =

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p

⟩
. Note that the upper triangular el-

ements, in particular diagonal ones, normalize H ∩ T . If c ̸= 0, then H is conjugate to

subgroup 1 via

(
c 0
0 1

)
. If c = 0, then H is subgroup 2.

Suppose H ∩ T =

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
1 0

)
p

⟩
. If 0 ≤ c ≤ p−1

2
, then H is a type 3

subgroup. Otherwise, H is conjugate to

⟨
H ∩ T, I +

(
0 0
−c 1

)
p

⟩
, which is conjugate to a

10



type 3 subgroup via

(
−1 0
0 1

)
. Similarly, if H ∩T =

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 ϵ
1 0

)
p

⟩
, then

H is either a type 4 subgroup or is conjugate to one via

(
−1 0
0 1

)
.

We now show that no two distinct subgroups among the ones listed are locally conjugate.
Again, the intersections with T of two locally conjugate subgroups are locally conjugate.
Subgroups 1 and 2 are not locally conjugate because subgroup 2 contains Z as defined in
Definition 5 whereas subgroup 1 does not. Similarly, a type 3 or 4 subgroup where c = 0 is
not locally conjugate to another of the same type where c ̸= 0.

Elements of a subgroup H of type 3 where c = c0 ̸= 0 intersect Z only at I. Elements of
such a subgroup are of the form

h = I +

(
x

(
1 0
0 −1

)
+ y

(
0 1
1 0

)
+ z

(
0 0
c0 1

))
p.

The trace of h is determined by z, so local conjugacy of H is determined by χ(H, 1, d) for
d ∈ Z/pZ, i.e. when we fix z to be 1. In this case, det(p(h)) = −x2 + x − y2 − c0y, so we
want to count the number of solutions to d = −x2 + x − y2 − c0y for each d ∈ Z/pZ. This
is equal to the number of solutions to x′2 + y′2 = −d + (1 + c20)/4, where x

′, y′ ∈ Z/pZ are
parametrized as x− 1/2 and y + c/2, respectively.

The number of solutions to x′2+ y′2 = 0 is 1 if p ≡ 3 (mod 4) and 2p− 1 if p ≡ 1 (mod 4)
because −1 is a nonsquare in the former case and a square in the latter. Now consider
the number of solutions to x′2 + y′2 = K for nonzero K. x′2 and y′2 each take (p + 1)/2
distinct values including 0 and so x′2 and K − y′2 each take (p + 1)/2 distinct values of x′

and y′. By the Pigeonhole Principle, x′2+y′2 = K for at least one pair (x′, y′). In particular,
(±x′,±y′) give us at least two distinct solutions to x′2 + y′2 = K, whether or not x′ or
y′ = 0. Furthermore, if p ≡ 1 (mod 4), then the equation x′2 + y′2 = K is equivalent to
(x′ + iy′)(x′ − iy′) = K, where i2 = −1. The number of solutions here is therefore p− 1.

The number of solutions to det(p(h)) = (1 + c20)/4 is thus 1 if p ≡ 3 (mod 4) and 2p− 1
if p ≡ 1 (mod 4). Let H ′ be another type 3 subgroup with c = c1 ̸= c0. Note that c20 ̸= c21.
The number of solutions to det(p(h′)) = (1 + c20)/4, where h

′ ∈ H ′, is at least 2 and exactly
p − 1 if p ≡ 1 (mod 4). H and H ′ are thus not locally conjugate. Similarly, two distinct
type 4 subgroups are not locally conjugate as well. �

5. Locally Conjugate Subgroups of GL2(Z/p2Z)

5.1. Subgroups of GL2(Z/pZ).

Remark 3. The elements of Cns(p) depend of the choice of ϵ, but two choices for Cns(p) are
conjugate even with different choices of ϵ.

Remark 4. Cs(p) and Cns(p) are isomorphic to ((Z/pZ)×)2 ≃ (Z/(p − 1)Z)2 and F×
p ≃

Z/(p2 − 1)Z respectively.

Dickson [1] gives a classification of subgroups of GL2(Z/pZ) up to conjugacy in terms of
their images in PGL2(Z/pZ).

Theorem 1. Let H ≤ GL2(Z/pZ) with image H ′ ≤ PGL2(Z/pZ). Up to conjugacy, one of
the following holds:

(1) H contains an element of order p.
11



(a) H ≤ B(p)
(b) SL2(Z/pZ) ≤ H

(2) H does not contain an element of order p.
(a) H ′ is cyclic and H ≤ Cs(p) or Cns(p).
(b) H ′ is dihedral and H ≤ N(Cs(p)) or N(Cns)(p) but H ̸≤ Cs(p), Cns(p)
(c) H ′ ≃ A4, S4 or A5 and H ̸≤ N(Cs(p)), N(Cns)(p).

Furthermore, Sutherland [3, Section 3, Corollary 3.30] uses Dickson’s classification to fully
identify nontrivially locally conjugate subgroups of GL2(Z/pZ).

Theorem 2. Let H1, H2 ≤ Cs(p) be conjugate but unequal, i.e. they are diagonally swapped

(see Lemma 5).

⟨
H1,

(
1 1
0 1

)⟩
and

⟨
H2,

(
1 1
0 1

)⟩
are nontrivially locally conjugate. Up to

conjugation, these subgroups are the only nontrivially locally conjugate subgroups of GL2(Z/pZ).

Lemma 5. Let H1, H2 ≤ GL2(Z/pZ) be conjugate.

(1) If H1, H2 ≤ Cs(p), then H1 = H2 or H2 is obtained by swapping the diagonal entries
of elements of H1.

(2) Suppose H1, H2 ≤ N(Cs(p)). Some conjugation from H1 to H2 takes diagonal ele-
ments to diagonal elements and nondiagonal elements to nondiagonal elements if and
only if H1 and H2 are conjugate via an element of N(Cs(p)).

Proof. (1) Suppose H1 ̸= H2. There is some

(
w 0
0 z

)
in H1 but not in H2. Since H1 and

H2 are conjugate,

(
z 0
0 w

)
∈ H2. The conjugation must be via a matrix of the form(

0 b
c 0

)
, which switches the diagonal entries of all elements of H1.

(2) If H1 and H2 are conjugate via an element of N(Cs(p)), then the conjugation takes
diagonal elements to diagonal elements and nondiagonal elements to nondiagonal ele-
ments. Conversely, suppose that there is some conjugation from H1 to H2 that takes
diagonal elements to diagonal elements and nondiagonal elements to nondiagonal el-
ements. If H1, H2 ≤ Cs(p), then we are done by the previous part. Otherwise, since
some conjugation from H1 to H2 takes diagonal elements to diagonal ones, H1∩Cs(p)
and H2 ∩ Cs(p) are conjugate. We first conjugate H1 by an element of N(Cs(p)) so

that H1 ∩ Cs(p) = H2 ∩ Cs(p). Further note that Hi =

⟨
Hi ∩ Cs(p),

(
0 βi
γi 0

)⟩
for

any

(
0 βi
γi 0

)
∈ Hi. We choose

(
0 β1
γ1 0

)
,

(
0 β2
γ2 0

)
to be conjugate. In fact, since

β1γ1 = β2γ2, the two are conjugate by a diagonal matrix, in which case H1 and H2

are conjugate via an element of N(Cs(p)) to begin with.
�

Lemma 6. Let H ≤ B(p). H contains an element of order p if and only if

(
1 1
0 1

)
∈ H.

Proof.

(
1 1
0 1

)
has order p. By [3, Lemma 3.3], H has

(
1 1
0 1

)
p if it has an element of order

p. �
12



Remark 5. Theorem 2 states that all nontrivially locally conjugate subgroups of GL2(Z/pZ)
must be subgroups of B(p) with elements of order p, so Lemma 5 is valid even if we replaced
the term conjugate with locally conjugate in the first sentence.

5.2. Stabilizers of Subgroups of kerφ. Given a subgroup H ≤ GL2(Z/p2Z) not contain-
ing kerφ, H can be replaced with a conjugate so that H ∩ kerφ is one of the subgroups
of kerφ as listed in Sections 4.2 and 4.3. Since H ∩ kerφ is normal in H, φ(H) must be a
subgroup of the stabilizer of H ∩kerφ under conjugation. As we will see in Lemma 7 below,
fixing H ∩ kerφ in most cases gives some restrictions on φ(H).

Lemma 7. Let H ≤ kerφ be one of the aforementioned subgroups. The stabilizer of H in
GL2(Z/pZ) under conjugation is:

(1) ⟨I⟩: GL2(Z/pZ)

(2)

⟨
I +

(
0 1
0 0

)
p

⟩
: B(p)

(3)

⟨
I +

(
1 0
0 −1

)
p

⟩
: N(Cs(p))

(4)

⟨
I +

(
0 ϵ
1 0

)
p

⟩
: N(Cns(p))

(5)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p

⟩
: B(p).

(6)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
1 0

)
p

⟩
:

{(
α β
∓β ±α

)
∈ GL2(Z/pZ)

}
(7)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 ϵ
1 0

)
p

⟩
:

{(
α β

∓β/ϵ ±α

)
∈ GL2(Z/pZ)

}
(8) T : GL2(Z/pZ)

(9)

⟨
I +

(
1 0
0 1

)
p

⟩
: GL2(Z/pZ)

(10)

⟨
I +

(
1 1
0 1

)
p

⟩
:

⟨
Z(p),

(
1 1
0 1

)⟩
(11)

⟨
I +

(
1 0
0 d

)
p

⟩
, where d ̸= ±1: Cs(p)

(12)

⟨
I +

(
1 ϵc
c 1

)
p

⟩
, where c ̸= 0: Cns(p)

(13)

⟨
I +

(
0 1
0 0

)
p, I +

(
0 0
1 1

)
p

⟩
: Z(p)

(14)

⟨
I +

(
0 1
0 0

)
p, I +

(
0 0
0 1

)
p

⟩
: B(p)

(15)

⟨
I +

(
0 1
0 0

)
p, I +

(
1 0
0 d

)
p

⟩
, where d ̸= −1: B(p)

(16)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
c 1

)
p

⟩
, where c ∈ Z/pZ:

⟨
Z(p),

(
0 1
c 0

)⟩
(17)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 0
0 1

)
p

⟩
: N(Cs(p))
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(18)

⟨
I +

(
0 ϵ
1 0

)
p, I +

(
1 + a −ϵb
b 1− a

)
p

⟩
, where a, b ∈ GL2(Z/pZ):

⟨
Z(p),

(
a −bϵ
b −a

)⟩
(19)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p, I +

(
0 0
1 1

)
p

⟩
:

⟨
Z(p),

(
1 1
0 1

)⟩
(20)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p, I +

(
0 0
0 1

)
p

⟩
: B(p)

(21)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
1 0

)
p, I +

(
0 0
0 1

)
p

⟩
:

{(
α β
∓β ±α

)
∈ GL2(Z/pZ)

}
(22)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
1 0

)
p, I +

(
0 0
c 1

)
p

⟩
, where 1 ≤ c ≤ p−1

2
:{(

α β
−β α

)
∈ GL2(Z/pZ)

}
(23)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
ϵ 0

)
p, I +

(
0 0
0 1

)
p

⟩
:

{(
α ϵγ
∓γ ±α

)}
(24)

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
ϵ 0

)
p, I +

(
0 0
c 1

)
p

⟩
, where 1 ≤ c ≤ p−1

2
:{(

α ϵγ
−γ α

)
∈ GL2(Z/pZ)

}
(25) kerφ: GL2(Z/pZ)

If any generator in a stabilizer listed above has zero determinant, then it is not to be included
as a generator.

Proof. We will show this only for H =

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
c 1

)
p

⟩
, as the other cases

are similar. Given that we know thatN(Cs(p)) is the stabilizer of

⟨
I +

(
1 0
0 −1

)
p

⟩
, any ele-

ment of GL2(Z/pZ) that preservesH must be inN(Cs(p)) becauseH∩T =

⟨
I +

(
1 0
0 −1

)
p

⟩
and any conjugation preserves T .

Conjugating H by

(
α 0
0 δ

)
results in the group H ′ =

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 α

δ

c δ
α

1

)
p

⟩
.

I +

(
0 1
c 1

)
p and I +

(
0 α

δ

c δ
α

1

)
p are the unique elements of H and H ′, respectively, whose

p-parts have trace 1 and upper left entry 0. Therefore, H = H ′ if and only if α = δ, which

is when

(
α 0
0 δ

)
∈ Z(p).

Conjugating H be

(
0 β
γ 0

)
results in H ′ =

⟨
I +

(
−1 0
0 1

)
p, I +

(
1 cβ

γ
γ
β

0

)
p

⟩
. Note that⟨

I +

(
1 0
0 −1

)
p

⟩
=

⟨
I +

(
−1 0
0 1

)
p

⟩

and we may replace I +

(
1 cβ

γ
γ
β

0

)
p with I +

(
0 cβ

γ
γ
β

1

)
p as a generator of H ′. Similarly as

in the last paragraph, H = H ′ exactly when γ = cβ. �
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Recall that the only nontrivially locally conjugate subgroups among the ones listed here
are subgroup 14 and the type 15 where d = 0 and two type 15 subgroups whose d values are
multiplicative inverses.

5.3. Applying the Schur-Zassenhaus Theorem. We use a special case of the Schur-
Zassenhaus theorem as stated in Theorem 3. Recall that a Hall subgroup of a finite group
is one whose order is relatively prime to its index.

Theorem 3 (Schur-Zassenhaus). If K is an abelian normal Hall subgroup of a finite group
G, then there is a splitting ψ : K → G, which is unique up to conjugation.

Proof. See [2, Theorem 7.39, 7.40]. �

Lemma 8. Suppose H1, H2 ≤ GL2(Z/p2Z). If H1 ∩ kerφ = H2 ∩ kerφ, φ(H1) = φ(H2),
and p does not divide |φ(Hi)|, then H1 and H2 are conjugate in φ−1(φ(Hi)).

Proof. For i = 1, 2, consider the short exact sequence

1 → kerφ→ φ−1(φ(Hi)) → φ(Hi) → 1.

Since kerφ is abelian, | kerφ| = p4 and p does not divide |φ(Hi)|, there is a unique splitting,
up to conjugation, ψ : φ(Hi) → φ−1(φ(Hi)) by the Schur-Zassenhaus Theorem. Similarly,
there are splittings ψi : φ(Hi) → Hi from the short exact sequences

1 → Hi ∩ kerφ→ Hi → φ(Hi) → 1.

Since Hi ≤ φ−1(φ(Hi)), ψi and ψ are conjugate as maps φ(Hi) → φ−1(φ(Hi)). Therefore,
ψ1 and ψ2 are conjugate in φ−1(φ(Hi)). �

With this lemma, we will now only need to worry about the cases where H1 ∩ kerφ ̸=
H2 ∩ kerφ or φ(H1) ̸= φ(H2).

5.4. Representations of Elements of GL2(Z/p2Z). We will discuss some lemmas later
that will be useful to determine local conjugacy among subgroups of GL2(Z/p2Z). We men-
tion here how we will represent some elements of GL2(Z/p2Z) before stating these lemmas.

There is an injective homomorphism (Z/pZ)× → (Z/p2Z)× given by x 7→ xp, where
x ∈ Z/pZ and x is any lift of x in Z/p2Z. The map is well defined because (x+ kp)p = x in
Z/p2Z by the binomial theorem. We will refer to this map as canonical. Note that elements
of the image of the injection have order dividing p − 1. We extend the canonical map by
choosing 0 ∈ Z/p2Z as the lift of 0 ∈ Z/pZ.

Say g1, g2, g3 ∈ GL2(Z/p2Z) where φ(g1) =
(
w 0
0 w

)
, φ(g2) =

(
w 0
0 z

)
, φ(g3) =

(
0 x
y 0

)
and φ(g4) =

(
1 n
0 1

)
respectively. Throughout this paper, we will represent these matrices

in the form

g1 =

(
w 0
0 w

)
+ A1p, g2 =

(
w 0
0 z

)
+ A2p, g3 =

(
0 x
y 0

)
+ A3p, g4 =

(
1 n
0 1

)
+ A4p

respectively for some A1, A2, A3, A4 ∈ Mat2(Z/pZ), where w, x, y, z, n are chosen canonically
in Z/p2Z. We omit the bars on residues of elements of Z/p2Z in Z/pZ later on, i.e. if we
have x ∈ Z/pZ, then we denote x ∈ Z/p2Z as the canonical lift.
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5.5. Conjugacy and Local Conjugacy.

Lemma 9. Let H ≤ GL2(Z/p2Z). If h ∈ H where φ(h) =

(
w 0
0 w

)
, then

(
w 0
0 w

)
∈ H.

In particular,

(
w 0
0 w

)
+

(
a b
c d

)
p ∈ H if and only if I +

(
a b
c d

)
p ∈ H.

Proof. We express h as h =

(
w 0
0 w

)
+

(
a b
c d

)
p. Since

(
w 0
0 w

)
commutes with all matrices,

hp =

(
w 0
0 w

)
by the binomial theorem.(

w 0
0 w

)
+

(
a b
c d

)
p ∈ H if and only if

(
w 0
0 w

)−1((
w 0
0 w

)
+

(
a b
c d

)
p

)
= I +(

a/w b/w
c/w d/w

)
p ∈ H. Scaling tells us that I +

(
a/w b/w
c/w d/w

)
p ∈ H if and only if I +(

a b
c d

)
p. �

Corollary 1. Let H ≤ GL2(Z/p2Z) with φ(H) ≤ Z(p). H is the direct product (H∩kerφ)×
(H ∩ ψ(Z(p))), where ψ : Z(p) → GL2(Z/p2Z) is the canonical injection. In particular, two
subgroups H1, H2 ≤ GL2(Z/p2Z) are locally conjugate if and only if H1∩kerφ and H2∩kerφ
are.

With the Corollary 1 in mind, we will assume that φ(H) ̸≤ Z(p) for any H ≤ GL2(Z/p2Z)
from here.

Lemma 10. Let H ≤ GL2(Z/p2Z). If h ∈ H where h =

(
w 0
0 z

)
+

(
a b
c d

)
p where w ̸≡ z

(mod p), then

(
w 0
0 z

)
+

(
0 b
c 0

)
p ∈ H.

Proof. By expanding hp, we compute

hp =

(
w 0
0 z

)p

+

(
p−1∑
k=0

(
w 0
0 z

)k (
a b
c d

)(
w 0
0 z

))
p

= I +

p−1∑
k=0

(
awp−1 bwkzp−1−k

czkwp−1−k dzp−1

)
p.

Since w ̸≡ z (mod p),
∑p−1

k=0w
kzp−1−k and

∑p−1
k=0 z

kwp−1−k are geometric series that evaluate

to 1. Therefore, hp =

(
w 0
0 z

)
+

(
0 b
c 0

)
p. �

Corollary 2. Let H ≤ GL2(Z/p2Z). If h =

(
w 0
0 z

)
+Ap ∈ H where w ̸≡ z (mod p), then

H can be conjugated by an element of kerφ so that

(
w 0
0 z

)
∈ H.
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Proof. Letting A =

(
a b
c d

)
,

(
w 0
0 z

)
+

(
0 b
c 0

)
p is in H by the previous lemma.

(
w 0
0 z

)
+(

0 b
c 0

)
p is conjugate to

(
w 0
0 z

)
via I +

(
0 b

w−z
c

z−w
0

)
p. �

By Corollary 2, if φ(H) has some diagonal element, then we can conjugate H, without
affectingH∩kerφ, so thatH has a diagonal element whose entries are images of the canonical
map (Z/pZ)× → (Z/p2Z)× and which is the lift of the diagonal element of φ(H).

In Lemmas 11 through 18, we let H1, H2 ≤ GL2(Z/p2Z) be locally conjugate where H1 ∩
kerφ = H2 ∩ kerφ is one of the subgroups of kerφ listed in Lemma 7 and φ(H1), φ(H2) ̸≤
Z(p).

Lemma 11. Suppose that the stabilizer of Hi ∩ kerφ is Cs(p). H1 and H2 are conjugate.

Proof. Note that Hi ∩ kerφ =

⟨
I +

(
1 0
0 d

)
p

⟩
where d ̸= ±1. Since φ(Hi) ≤ Cs(p), φ(H1)

and φ(H2) are equal or they are diagonal swaps. We know that H1 and H2 must be conjugate
in the former case by Lemma 8, so we assume that they are unequal and hence are diagonal

swaps. Choose h1 =

(
w 0
0 z

)
∈ H1 where w ̸≡ z (mod p) so that h2 =

(
z 0
0 w

)
∈ H2 but

h1 ̸∈ H2. Note that such choices can be made using Corollary 2. Moreover,

h′1 = h1

(
I +

(
1 0
0 d

)
p

)
= h1 +

(
w 0
0 dz

)
p ∈ H1,

A in H2 conjugate to h′1 must map down to φ(h2), i.e. the conjugate is of the form h2k for
some k ∈ H2 ∩ kerφ. Such a matrix is of the form

h′2 = h2

(
I +

(
1 0
0 d

)
p

)r

= h2 +

(
rz 0
0 rdw

)
p.

The determinants of h′1 and h′2 are wz + wz(1 + d)p and wz + rwz(1 + d)p respectively,
so r = 1. The traces are (w + z) + (w + dz)p and (w + z) + (z + dw)p respectively, so
(w− z) ≡ d(w− z) (mod p) which is a contradiction. Hence, H1 and H2 are not nontrivially
locally conjugate in either case. �

Lemma 12. Suppose that the stabilizer of Hi∩kerφ is N(Cs(p)). H1 and H2 are conjugate.

Proof. If there is a conjugation from φ(H1) to φ(H2) taking diagonal matrices to diagonal
ones and nondiagonal matrices to nondiagonal ones, then φ(H1) and φ(H2) are conjugate
via an element of N(Cs(p)) by Lemma 5, in which case we can conjugate H1 so that φ(H1) =
φ(H2) and H1 ∩ kerφ = H2 ∩ kerφ.

Otherwise, all conjugations from φ(H1) to φ(H2) take some diagonal element to a nondi-
agonal one or some nondiagonal element to a diagonal one. In particular, φ(H1) ̸= φ(H2).
Note that diagonal matrices and nondiagonal matrices of N(Cs(p)) that are conjugate are

of the form

(
w 0
0 −w

)
and

(
0 wr
w/r 0

)
. Moreover,

(
w 0
0 −w

)
is conjugate to

(
0 wr
w/r 0

)
only via matrices of the form

(
a b
a/r −b/r

)
, so

(
0 wr
w/r 0

)
is conjugate to

(
w 0
0 −w

)
via
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(
a b
a/r −b/r

)−1

. Conjugating

(
w 0
0 z

)
where w ̸= ±z by

(
a b
a/r −b/r

)
or

(
a b
a/r −b/r

)−1

does not yield a matrix in N(Cs(p)), so φ(H1) and φ(H2) do not have such matrices.

Without loss of generality, say that φ(H1) has some matrix of the form

(
w 0
0 −w

)
. φ(H1)

is generated by φ(H1) ∩ Z(p),
(
w 0
0 −w

)
and, if φ(H1) has such an element,

(
0 x
y 0

)
. Sup-

pose φ(H1) is generated by all three. If φ(H1) is conjugate to φ(H2) via

(
a b
a/r −b/r

)
,

then a2x must be ±b2y to ensure that

(
0 x
y 0

)
is conjugated into N(Cs(p)). If a

2x = −b2y,

then we replace

(
0 x
y 0

)
with

(
w 0
0 −w

)(
0 x
y 0

)
=

(
0 −wx
wy 0

)
so that a2x = b2y. In

this case,

(
0 x
y 0

)
is conjugate to

(
ax/b 0
0 −ax/b

)
. If

(
ax/b 0
0 −ax/b

)
=

(
±w 0
0 ∓w

)
,

then

(
0 x
y 0

)
=

(
0 ±bw/a

±bw/a 0

)
, in which case φ(H2) is generated by φ(H1) ∩ Z(p),(

±w 0
0 ∓w

)
and

(
0 wr
w/r 0

)
. However, φ(H1) is then conjugate to φ(H2) via

(
±br 0
0 a

)
, a

contradiction. We now assume that no choice of x and y can be made so that

(
ax/b 0
0 −ax/b

)
=(

±w 0
0 ∓w

)
. In particular, the element of φ(H2) that is conjugate to

(
w 0
0 −w

)
must of the

form

(
0 wr
w/r 0

)
. The case where φ(H1) is conjugate to φ(H2) via

(
−b/r −b
−a/r a

)
is similar.

In the case that φ(H1) is generated by only the first two, and so φ(H1) is conjugate to

φ(H2) via

(
a b
a/r −b/r

)
, φ(H2) is generated by φ(H1) ∩ Z(p) and

(
0 wr
w/r 0

)
. Therefore,(

w 0
0 −w

)
is in φ(H1) and not φ(H2) in either case, so the element of φ(H2) that is con-

jugate to

(
w 0
0 −w

)
is

(
0 wr
w/r 0

)
. Conjugating φ(H2) via

(
1 0
0 r

)
preserves the first two

generators of φ(H2) and takes

(
0 wr
w/r 0

)
to

(
0 w
w 0

)
, so we can conjugate H2, without

affecting H2 ∩ kerφ, so that φ(H2) is this new group.

We replace H1 with a conjugate if necessary so that

(
w 0
0 −w

)
∈ H1. The conjugation

preserves H1 ∩ kerφ by Corollary 2. Note that, for both of its possibilities, Hi ∩ kerφ only

has elements whose p-parts are diagonal. The elements of H1 whose images are

(
w 0
0 −w

)
are exactly those of the form

h1 =

(
w 0
0 −w

)(
I +

(
a 0
0 d

)
p

)
=

(
w 0
0 −w

)
+

(
aw 0
0 −dw

)
p

18



where I +

(
a 0
0 d

)
p ∈ Hi ∩ kerφ. h1 has trace (a− d)wp.

On the other hand, take some h2 ∈ H2 to be conjugate to h1. h2 has the form h2 =(
0 w
w 0

)
+

(
a b
c d

)
p ∈ H2. Its square is

(
w2 0
0 w2

)
+

(
(b+ c)w (a+ d)w
(a+ d)w (b+ c)w

)
. Therefore,

I +

(
(b+ c)w (a+ d)w
(a+ d)w (b+ c)w

)
∈ H2 by Lemma 9, so a + d = 0. Thus, h2 has zero trace.

However, in both cases of Hi ∩ kerφ, we can choose a and d in the previous paragraph so
that h1 does not have zero trace, which is a contradiction. Hence, this case does not happen.

�
Lemma 13. Suppose that the stabilizer of Hi ∩ kerφ is Cns(p). H1 and H2 are conjugate.

Proof. Since Cns(p) is cyclic and φ(H1) and φ(H2) are locally conjugate in GL2(Z/pZ),
φ(H1) = φ(H2). Hence, H1 and H2 are conjugate. �
Lemma 14. Suppose that the stabilizer of Hi∩kerφ is N(Cns(p)). H1 and H2 are conjugate.

Proof. Note that Hi ∩ kerφ =

⟨
I +

(
0 ϵ
1 0

)
p

⟩
. The proof is similar to that of Lemma

12 once we work in Zp[
√
ϵ]/p2 and conjugate H1 and H2 by

(
−
√
ϵ −ϵ

−
√
ϵ ϵ

)
, which turns(

w ϵy
y w

)
,

(
w ϵy
−y −w

)
∈ N(Cns(p)) into

(
w +

√
ϵy 0

0 w −
√
ϵy

)
and

(
0 w −

√
ϵy

w +
√
ϵy 0

)
respectively and turns Hi ∩ kerφ into

⟨
I +

(√
ϵ 0
0 −

√
ϵ

)
p

⟩
. �

Lemma 15. Suppose that the stabilizer of Hi ∩ kerφ is

⟨
Z(p),

(
0 1
c 0

)⟩
for some fixed

c ∈ Z/pZ. H1 and H2 are conjugate.

Proof. Recall that we are assuming that φ(Hi) ̸≤ Z(p). By extension, we must assume c ̸= 0.

Note that φ(Hi) =

⟨
φ(Hi) ∩ Z(p),

(
0 βi
βic 0

)⟩
given that

(
0 βi
βic 0

)
∈ φ(Hi). We choose

β1 and β2 so that

(
0 β1
β1c 0

)
and

(
0 β2
β2c 0

)
are conjugate. By the determinants of these

matrices, β1 = ±β2. If β1 = β2, then H1 and H2 are conjugate, so we assume β1 = −β2.

We choose h1 ∈ H1 and h2 ∈ H2 so that φ(h1) =

(
0 β1
β1c 0

)
and h2 is conjugate to h1. It

follows that φ(h2) =

(
0 β2
β2c 0

)
. Express hi =

(
0 βi
βic 0

)
+

(
a′ b′

c′ d′

)
p ∈ Hi so that

h2i =

(
β2
i c 0
0 β2

i c

)
+

(
b′βic+ c′βi (a′ + d′)βi
(a′ + d′)βic b′βic+ c′βi

)
p

Therefore, I +

(
b′βic+ c′βi (a′ + d′)βi
(a′ + d′)βic b′βic+ c′βi

)
p ∈ Hi by Lemma 9. Expressing this element of

Hi as a linear combination of the basis elements of Hi ∩ kerφ tells us that 2(b′c + c′) =
a′ + d′. Note that the trace and determinant of hi are (a′ + d′)p and −β2

i c − (b′c + c′)βip
respectively. Thus, letting Ti = a′ + d′, the trace and determinant are Tip and −β2

i c− Ti

2
βip
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respectively. Since h1 and h2 are conjugate, T1 = T2 = 0. However, we may replace hi with

hi

(
I +

(
0 1
c 1

)
p

)
∈ Hi so that hi has nonzero trace, which is a contradiction. Hence, H1

and H2 are not locally conjugate in this case. �

Lemma 16. Suppose that the stabilizer of Hi∩kerφ is

⟨
I +

(
0 ϵ
1 0

)
p, I +

(
1 + a −ϵb
b 1− a

)
p

⟩
for some fixed a, b ∈ Z/pZ. H1 and H2 are conjugate.

Proof. The proof is similar to that of the previous lemma, but we need to differentiate the
cases a = 0 and a ̸= 0. �

Lemma 17. For g =

(
1 1
0 1

)
+

(
a b
c d

)
p,

gn =

(
1 n
0 1

)
+

(
an+ cn(n−1)

2
(a(n− 1) + b)n+ (d− a+ c(n− 1))n(n−1)

2
− c

∑n−1
k=0 k

2

cn dn+ cn(n−1)
2

)
p

Proof. We compute

gn =

(
1 1
0 1

)n

+
n−1∑
k=0

(
1 1
0 1

)k (
a b
c d

)(
1 1
0 1

)n−1−k

p

=

(
1 n
0 1

)
+

n−1∑
k=0

(
a+ ck (a(n− 1) + b) + (−a+ c(n− 1) + d)k − ck2

c c(n− 1) + d− ck

)
=

(
1 n
0 1

)
+

(
an+ cn(n−1)

2
(a(n− 1) + b)n+ (d− a+ c(n− 1))n(n−1)

2
− c

∑n−1
k=0 k

2

cn dn+ cn(n−1)
2

)
p

�
Remark 6. We leave

∑n−1
k=0 k

2 as is even though it is usually expressible as (n−1)n(2n−3)
6

because this fraction is ambiguous when p = 3.

Lemma 18. Suppose that the stabilizer of Hi ∩ kerφ is

⟨
Z(p),

(
1 1
0 1

)⟩
. H1 and H2 are

conjugate.

Proof. RecallHi∩kerφ =

⟨
I +

(
1 1
0 1

)
p

⟩
or

⟨
I +

(
1 0
0 −1

)
p, I +

(
0 1
0 0

)
p, I +

(
0 0
1 1

)
p

⟩
.

In the former case, say that hi =

(
1 1
0 1

)
+

(
a b
c d

)
p ∈ Hi. By Lemma 17,

hpi =

(
1
(
1− c

∑n−1
k=0 k

2
)
p

0 1

)
,

which is

(
1 p
0 1

)
if p ̸= 3 or c ̸= 2. However,

(
1 p
0 1

)
̸∈ Hi ∩ kerφ by assumption, so p = 3

and c = 2. We have computationally checked that H1 and H2 are conjugate in this case.
In the latter case, note that conjugacy and local conjugacy between H1 and H2 does

not depend on φ(H1) ∩ Z(p) and φ(H2) ∩ Z(p), just as long as they are equal. We as-

sume that φ(Hi) ∩ Z(p) = ⟨I⟩. We take h1 =

(
1 1
0 1

)
+

(
a b
c d

)
p. We can replace h1 by
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h1

(
I +

(
0 0
1 1

)
p

)k

for some k so that h1 has trace 1. We replace H1 by its conjugate via

I+

(
0 0
a 0

)
p so that h1 =

(
1 1
0 1

)
+

(
0 b
c 0

)
p. This conjugation preserves H1∩kerφ. More-

over, multiplying h1 by some power of I+

(
0 1
0 0

)
p yields

(
1 1
0 1

)
+

(
0 0
c 0

)
p, so H1 has this

matrix. Similarly, we can conjugate H2 if necessary so that h2 =

(
1 1
0 1

)
+

(
0 0
c′ 0

)
p ∈ H2.

We use Lemma 3 to determine whenH1 andH2 are locally conjugate. Multiplying elements

of Hi by e1 = I +

(
1 0
0 −1

)
p and by e2 = I +

(
0 1
0 0

)
p do not affect the trace and

determinant. We will thus only consider the traces and determinants of elements of H ′
i =

⟨hi, e3⟩ where e3 = I +

(
0 0
1 1

)
p.

Elements of H ′
1 mapping down to

(
1 n
0 1

)
have the form((

1 1
0 1

)
+

(
0 0
c 0

)
p

)n

ex3 =

(
1 n
0 1

)
+

(
cn(n−1)

2
+ nx ∗

cn+ x cn(n−1)
2

+ x

)
p

for some x ∈ Z/pZ, and this has trace 2+(cn2−cn+nx+x)p and determinant 1+(−cn+x)p.
Therefore, the trace-determinant pairs of elements are in correspondence with the pairs
(cn2 − cn + nx + x,−cn + x), or equivalently, (cn2 + nx,−cn + x). Similarly, the trace-
determinant pairs of elements ofH ′

2 are in correspondence with the pairs (c′n2+nx,−c′n+x).
Suppose c ̸= 0 but c′ = 0. −c′n + x = 0 exactly when x = 0 and so c′n2 + nx = 0 in this

case. On the other hand, −cn + x = 0 when x = cn and so cn2 + nx = 2cn2, which is not
always zero. Hence, c and c′ must be both zero or nonzero.

If c, c′ ̸= 0, then consider the case −cn + x = 1. Here, x = 1 + cn and so cn2 + nx =
2cn2 + n = 2c(n + 1/(4c))2 − 1/(8c). cn2 + nx takes the value −1/(8c) exactly once and it
takes all other values exactly two or zero times. On the other hand, when −c′n + x = 1,
c′n2+nx takes the value −1/(8c′) exactly once but takes all other values exactly two or zero
times. Since we need the distribution of pairs (cn2+nx, cn+x) and (c′n2+nx,−c′n+x) to
be the same for H1 and H2 to be locally conjugate, c and c′ must equal, i.e. H1 = H2. �

We expect the following to be true based on our observations with p = 3. However, we
have yet to fully identity a proof of this conjecture at the time of this paper. We hope that a
proof, if it exists, of this conjecture will work similarly to the proofs of Lemmas 11 through
14 because the stabilizers listed are conjugate to Cs(p), Cns(p), N(Cs(p)) or N(Cns(p)) de-
pending on p modulo 4.

Conjecture 1. Suppose that the stabilizer of Hi ∩ kerφ is

{(
α β
−β α

)
∈ GL2(Z/pZ)

}
,{(

α β
∓β ±α

)
∈ GL2(Z/pZ)

}
,

{(
α ϵγ
−γ α

)
∈ GL2(Z/pZ)

}
or

{(
α ϵγ
∓γ ±α

)
∈ GL2(Z/pZ)

}
.

H1 and H2 are conjugate.

Lemma 19. Suppose that the stabilizer of Hi ∩ kerφ is GL2(Z/pZ). If φ(Hi) does not
contain an element of order p, then H1 and H2 are conjugate.

21



Proof. In this case, φ(H1) and φ(H2) are conjugate as they are locally conjugate. We replace
H1 with a conjugate so that φ(H1) = φ(H2). By Lemma 8, H1 = H2. �

Lemma 20. Suppose that Hi ∩ kerφ = ⟨I⟩ or

⟨
I +

(
1 0
0 1

)
p

⟩
. H1 and H2 are conjugate

if p ̸= 3.

Proof. Suppose H1 and H2 are nontrivially locally conjugate. By Lemma 19, φ(Hi) needs
to contain an element of order p. Up to conjugation, φ(Hi) ≤ B(p) or SL2(Z/pZ) ≤ φ(Hi)

by Theorem 1. In either case,

(
1 1
0 1

)
∈ φ(Hi); the former implication is due to Lemma

6. Given that p ̸= 3, I +

(
0 1
0 0

)
p ∈ H1, which is a contradiction. Hence, H1 and H2 are

conjugate. �

Remark 7.

⟨(
8 0
0 1

)
,

(
4 4
6 4

)⟩
and

⟨(
1 0
0 8

)
,

(
4 4
6 4

)⟩
are nontrivially locally conjugate

and

⟨(
4 0
0 5

)
,

(
4 4
6 4

)⟩
and

⟨(
5 0
0 4

)
,

(
4 4
6 4

)⟩
are nontrivially locally conjugate when

p = 3. We have found, through computation, that they are the only pairs up to conjugation

that intersect with kerφ at ⟨I⟩ and
⟨
I +

(
1 0
0 1

)
p

⟩
respectively. We refer to these cases as

the special cases of p = 3.

We are left with the following:

Corollary 3. Barring the special cases of p = 3 and the cases of Conjecture 1, let H1, H2 ≤
GL2(Z/p2Z) be nontrivially locally conjugate, where H1 ∩ kerφ and H2 ∩ kerφ are some

subgroups of kerφ listed in Lemma 7. H1 and H2 contain I +

(
0 1
0 0

)
p ∈ Hi.

Proof. Lemmas 11 through 18 show that the stabilizer of Hi ∩ kerφ is B(p) or GL2(Z). In

the former case, Hi ∩ kerφ must contain I +

(
0 1
0 0

)
p. In the latter, Hi must contain an

element mapping down to

(
1 1
0 1

)
by Lemma 19 and Lemma 6 and since we have ruled out

the special cases of p = 3, I +

(
0 1
0 0

)
p ∈ Hi by Lemma 17. �

Remark 8. With H1 and H2 as in Corollary 3, The stabilizer of Hi ∩ kerφ must be B(p)
or GL2(Z/pZ). In the latter case, φ(Hi) ≤ B(p) or SL2(Z/pZ) ≤ φ(Hi).

We finish with another conjecture based on data from the case p = 3:

Conjecture 2. Let H1, H2 ≤ GL2(Z/p2Z) be nontrivially locally conjugate. Up to conjuga-
tion, H1 and H2 are diagonal swaps and are thus isomorphic.
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