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Abstract: It is a well known result that if a minimal surface is a graph over
a convex region, then it is the unique surface spanning its boundary. In this
paper we provide some basic structure results and counterexamples for more
complicated boundary conditions.

1 Introduction

We will start with one theorem about the uniqueness of minimal surfaces.

Theorem 1.1. Let Ω ⊂ R2 be strictly convex and σ ⊂ R3 a simple closed curve
which is a graph over ∂Ω with bounded slope. Then any minimal surface Σ ⊂ R3

with ∂Σ = σ must be graphical over Σ and hence unique ([CM, p. 38]).

We will study a more complicated case:

Let σ be a closed curve which can be projected onto a planar convex curve,
Σ is a topological disk and also a minimal surface spanning σ. At each point
on σ, there is exactly one tangent plane for Σ. σ has at most three layers and
two turning points (see Fig. 1).

2 Background

We begin by giving the relevant background on minimal surfaces.

Theorem 2.1. (Maximum principle) Let Ω ⊂ R2 be an open connected neigh-
bourhood of the origin. If u1, u2 : Ω → R are solutions of the minimal surface
equation with u1 ≤ u2 and u1(0) = u2(0), then u1 ≡ u2 ([CM, p. 37-38]).
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Figure 1: σ is the boundary and has 3 layers and 2 turning points

Figure 2: The plane tangent to Σ′

That is, if two minimal surfaces are tangent with each other and one of them
is on one side of the other, then they are the same surface.

From this theorem, we get several corollaries easily.

Corollary 2.2. If a minimal surface Σ′ spans a planar curve σ′, then it is a
part of a plane.

Proof: Assume that σ′ is on the xy-plane. If Σ′ is not contained in this plane,
then we can find a point on Σ′ whose z-component is not zero (let’s assume that
it’s positive). Use a plane parallel to the xy-plane to approach the xy-plane from
far away (where the z-component is large enough). When this plane first touch
Σ′, Σ′ will be tangent to the plane and stay on one side of the plane (as shown in
Fig. 2). Since the plane itself is a minimal surface, from the maximum principle
we know that Σ′ is just a part of a plane. �

Corollary 2.3. If we can find a planar loop on Σ, then Σ is a part of a plane.
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Figure 3: planar loop on Σ

Proof: As shown in Fig. 3, if there is a planar loop on Σ, then since Σ is
disk-type, part of it is spanning this loop. According to Corollary 2.2, this part
is contained by a plane. Then from the maximum principle we know that the
whole surface is a part of a plane. �

Corollary 2.4. If a loop σ can be projected onto the boundary of a convex
region on a plane, then the minimal surface Σ spanning it must be contained in
the cylinder with the planar convex region as its base (see Fig. 4).

Proof: Assume that some points on Σ are outside of the cylinder. For exam-
ple, assume that the plane is the xy-plane. There are some points on Σ whose
y-component is larger than the y-component of any point in the planar convex
region. Then we can use a plane parallel to the xz-plane to approach the cylin-
der from far away (where the y-component is large enough). When the plane
first touches Σ, it is tangent to it and Σ lies on one side of the plane. From
the maximum principle we know that Σ is just a part of a plane, which is a
contradiction. �

With the same method, we can still prove:

Corollary 2.5. If a closed curve lies on one side on a plane (part of it can be
on that plane), then the minimal surface spanned by this curve lies in the same
side of that plane.

These are geometric properties for minimal surfaces. In fact, we also have
an analytic one.

Proposition 2.6. If Σ is a minimal surface, then at each point on Σ, we can
find a local parametrization f : U ⊂ R2 → R3, which is both conformal and
harmonic (here U is an open set in R2). Conversely, if f : U ⊂ R2 → R2 is a
conformal and harmonic function, then the image of f is a minimal surface.

This Proposition follows immediately after Section 2.6 in [D. p. 74-77].
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Figure 4: Σ lies out of the cylinder

3 Turning points

In order to study the layer structure of Σ, we can consider all the turning points.

Definition 3.1. P ∈ Σ is called a turning point if the normal vector at P is
parallel to the projection plane (see Fig. 5).

Proposition 3.2. For any two points A and B on the projection of Σ, if we
can find a path connecting them without touching the turning points, then the
pre-images of A and B have the same number of points.

Figure 5: turning point
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Figure 6: curves of turning points under projection

Figure 7: curves of turning points

Proof: For each point on Σ which can be projected onto A (let’s call it A′),
we can lift this path to be a path from A′ to a point which can be projected
onto B uniquely (let’s call it B′). Conversely, this path can still be lifted from
B′ to A′ uniquely. Therefore, the number of layers above A is the same as the
one for B (see Fig. 6). �

According to this Proposition, if we can find out what these turning points
look like (actually what the projection of them looks like), then we can find out
the layer structure of Σ.

Proposition 3.3. For each turning point on the interior of Σ, the Gauss map
is a local diffeomorphism from Σ to S2.

Assume that the projection plane is just the xy-plane. Then the turning
points are just the points which can be mapped to the equator of S2 by Gauss
map. If Gauss map is a local diffeomorphism, then locally the turning points
have the same shape as the equator, and so form a smooth curve in R3. If we
consider the disk which represents Σ (since Σ is disk-type), then the turning
points are just several smooth curves (which can’t intersect each other), as
shown in Fig. 7.

Now let’s prove proposition 3.3. We only need to prove that |dN | is non-
zero at any turning points (here N is the Gauss map) and then from the inverse
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Figure 8: intersection between Γ and Σ

Figure 9: Σ near one curve of intersection

function theorem the Gauss map is a local differomorphism.

Lemma 3.4. For each interior turning point A, if Γ is the tangent plane of Σ
at A, then Γ ∩ Σ consists of several curves and it’s impossible for six or more
curves to go into A (see Fig. 8).

Proof: Assume that there are at least six curves going into A.
First, we show that the intersection consists of several curves. According

to corollary 2.3, there cannot be loops in Σ ∩ Γ. The two parts of Σ (locally)
separated by one curve lie on different sides of Γ, otherwise Σ would be tangent
to Γ and would lie on one side of Γ near the tangent point. Then according to
the maximum principle we would know that Σ is a part of a plane (see Fig. 9).

This also proves that for each point Q contained in the intersection of Σ and
Γ, there are even number of curves going into it, since Σ goes to the different
side of Γ when passing a curve, there must be even number of curves for Σ to
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Figure 10: six curves of intersection going into A

Figure 11: The pre-image of Σ ∩ Γ

go back to the same side of Γ after going one circle around Q.
Since the boundary σ has at most six intersections with Γ (it’s over the

boundary of a convex region and has at most three layers) and there are no
loops, there are at most six curves going into A (and each of these six branches
goes to one end point on σ, as shown in Fig. 8). Therefore, the shape of the
intersection is simple: six branches going into the same point A (see Fig. 8).

Since the boundary σ only has three layers and two turning-back points, on
one side of Γ, there are three parts of σ connecting the six ending points of the
intersection as shown in Fig. 10.

Consider the blue loop shown in Fig. 10. If we consider the disk representing
Σ (see Fig. 11), part of Σ is spanned by that loop and some points (like A′) in
the intersection are contained in the interior of this part of Σ.

According to corollary 2.5, we know that that part of Σ spanned by the blue
loop lies on one side of Γ. However, A′ is also on Γ and it’s not on the boundary
of that part of Σ (which is just the blue loop). Therefore, the minimal surface
spanned by the blue loop is tangent to Γ at A′ and lies on one side of Γ, by the
maximum principle we know that the whole surface is just a part of a plane,
which is obviously impossible. �
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Figure 12: four curves near the origin

Proof of Proposition 3.3: Consider the local parametrization at point A.
Assume that the Γ is the xy-plane. According to proposition 2.6, we can give a
local conformal and harmonic parametrization f(u, v) = (x(u, v), y(u, v), z(u, v))
such that f(0, 0) = A. Then as a component, z(u, v) is also harmonic. Therefore,
we can find another function w(u, v), such that z + iw is an analytic function
about ξ = u + iv. Since the surface is not a plane, we can write z + iw as
c0+c1ξ

n+o(ξn), where n is a positive integer.
n is not 1 since Γ is the tangent plane, which implies ∂z/∂u = ∂z/∂v = 0.
As u + iv goes once around the origin, z + iw goes exactly n times around

the origin. Then z will be positive and negative alternatively exactly n times.
So there will be exactly 2n curves going into A in the intersection of Σ and Γ.
Since we have proved that there are at most 4 such curves, n is exactly 2.

Therefore, the second derivatives of f cannot be all zero, so dN , as a matrix,
is non-zero. Thus |dN | 6=0. �

From the above discussion of z + iw, we know that:

Corollary 3.5. There are exactly four curves going into the interior turning
point A in the intersection of Σ and Γ and the angle between adjacent curves is
exactly π/2.

Proof: Since z+ iw = c0+c1ξ
2+o(ξ2), if we consider the complex plane for ξ,

then the set of ξ for which z = 0 is four curves near the origin (see Fig. 12, let’s
call them α1, α2, α3, α4) and the angle between each adjacent two curves is
π/2. Since the parametrization f is conformal, so the right angle is preserved.
Therefore, f(αi), i = 1, 2, 3, 4, have the same local shape, which means, the
angle between the adjacent two curves is exactly π/2. �

Since we have assumed that there are exactly two turning points on the
boundary σ, from proposition 3.3 we know that the shape of all turning points
should be smooth loops in the interior of Σ and curves which starts and ends at
the two turning points on σ (see Fig. 13). Now let’s consider the two turning
points A and B on the boundary σ.

Proposition 3.6. At each turning point (let’s call it point A) on the boundary
σ, there is exactly one curve of turning points going into A.
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Figure 13: shape of turning points

Figure 14: intersection of Γ and Σ

From this proposition, since there are exactly two turning points on the
boundary σ, there must be a curve connecting them.

We can use a similar method as in the proof of Lemma 3.4. Consider the
tangent plane Γ of Σ at point A. Now the intersection of Σ and Γ has at most
5 end points (see Fig. 14, two of them are overlapped at A).

Lemma 3.7. In the intersection of Σ and Γ, there are at most 2 curves going
into point A.

Proof: Assume that there are three curves going into A, since there are at
most 4 other end points, three of them are connected to A, then the rest one
should also be connected (see Fig. 14). Now we can still find a loop (see the
blue loop in Fig. 15) such that a part of Σ spans it and this part will contain
one of A′ and A′′ in its interior. Then we can use the maximum principle again

Figure 15: three curves going into A
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Figure 16: A1 and A2 on Σ

Figure 17: A1 and A2 on the projection

to get the contradiction.
There are three other possible shapes for the intersection of Σ and Γ, but

the proof is similar for each of them. �

Lemma 3.8. There are odd number of curves of turning points going into A.

From this Lemma, if there are more than one curve of turning points going
into A, then there will be at least three.

Proof of Lemma 3.8: Assume that there are even number of curves of turn-
ing points going into A, as shown in Fig. 16, which is the disk representing
the surface. Since the Gauss map is a local diffeomorphism at interior turning
points, when passing each curve in the disk, the Gauss map will point to differ-
ent hemispheres. Since there are even number of curves of turning points going
into A, for each pair of points A1, A2 (see Fig. 16) which is close enough to A,
the Gauss map on them must point to the same hemisphere.

Now we choose the points A1, A2 in the following way. As shown in Fig. 17,
which is the projection of Σ. We choose A1, A2 which can be projected onto
the same point. Now consider the straight line l passing A1 and A2. We can
choose A1, A2 close enough to the boundary so that l will not be tangent to Σ.
The topology between l and σ is clear: l goes through the loop σ once. Since
Σ is disk-type, so for each successive two intersections between Σ and l, l must
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Figure 18: gain two more layers when passing a curve

Figure 19: Γ ∩ Σ in projection direction

go through Σ from different sides. However, for points A1 and A2, they are
successive intersections between l and Σ because when they are close enough to
the boundary, the surface will have exactly three layers. Since the Gauss map
points to the same hemisphere at A1 and A2, l go through Σ from the same side
at these two points, which is a contradiction. �

Proof of Proposition 3.6: (See Fig. 18) Consider the projection of Σ. When
we pass the smooth part of a curve of turning points in the direction shown in
Fig. 18, there will be two more layers. Now consider the curves of turning
points going into A (see Fig. 19), assume that there is more than one curve.
Then according to Lemma 3.8, there are at least three curves. Since all these
curves go into A from the direction of Γ, at least two of them are on the same
side of Γ. There are two more layers when passing the curve in the direction
shown in Fig. 19. Since these two curves go into A, so there should be at least
four layers going into A. Each layer will intersect with Γ at one curve. Then
there will be at least four curves of intersection on Γ, which contradicts with
Lemma 3.7. �

Now the shape of turning points is more clear. There are several smooth
loops and one smooth curve between the two turning points on the boundary
(see Fig. 20). We will discuss the loops and that smooth curve in the following
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Figure 20: shape of turning points

two sections.

4 Loops of turning points

We can give σ some restrictions to eliminate all loops of turning points.

Proposition 4.1. Let z have exactly 1 local maximum and minimum on σ,
then there will be no loops of turning points on Σ.

Proof of Proposition 4.1: Here we assume that the projection plane of the
surface is the xy-plane. Assume that there is a loop of turning points on Σ (let’s
call this loop α). Use Σ′ denote the part of surface spanned by α (including the
boundary α).

Consider the Gauss map N . N is a continuous function from Σ′ to the unit
sphere S2 and maps α to the equator. Then at least one of the poles of S2

will be contained in N(Σ′). Otherwise since α is contractible in Σ′, so N(α)
should also be contractible in N(Σ′), hence also in S2 with two poles removed.
Since at each point on α, N is a local diffeomorphism, the image of α under N
should go along the equator in one direction for several rounds. Then N(α) is
not contractible in S2 with two poles removed, which is a contradiction.

Therefore, we can find a point P on Σ′, such that normal vector at P is
parallel to the z-axis, which means that the tangent plane Γ of Σ at P is parallel
to the projection plane.

Now let’s consider the intersection of Σ and Γ, which consists of several
curves. According to the restriction here for σ, there will be at most two end
points. Also, according to corollary 2.3, there are no loops in the intersection.
As a result, in Σ ∩ Γ, there are exactly two curves going into point P (see Fig.
21).

According to proposition 2.6, we can give Σ a local harmonic conformal
parametrization at P , let’s call it f(u, v) = (x(u, v), y(u, v), z(u, v)). Then
z(u, v) is also harmonic, so we can find another function w(u, v) such that z+iw
is analytic for ξ = u + iv. We can write z + iw as c0+c1ξ

n+o(ξn) (n ∈ Z+).
n 6=1 since the normal vector at P is parallel to the z-axis, so n ≥2. As we have
shown in the proof of proposition 3.3, there are exactly 2n curves (at least 4
curves) going into P , which is a contradiction. �
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Figure 21: two curves going into P

Figure 22: shape of cusps in projection plane

5 Cusps and multiple layers

In this section we will discuss the curve of turning points connecting the two
turning points on σ.

At each interior turning point, the Gauss map is a local diffeomorphism, so
we can give a parametrization α(t) = (x(t), y(t), z(t)) to this curve of turning
points. Then the tangent vector is α′(t) = (x′(t), y′(t), z′(t)). Now consider
the projection of α, which we call α0. The tangent vector of it is α′

0(t) =
(x′(t), y′(t)). Therefore, α0(t) is still smooth if (x′(t), y′(t)) 6= (0, 0). If (x′(t), y′(t)) =
(0, 0), we call α0(t) a cusp at this point.

As shown in Fig. 22, at each cusp, α0 may make a rapid turning. Also,
as shown in Fig. 16, when passing α0 from one direction, then we can get two
more layers. As a result, if we have multiple cusps along α0, then it may be
possible to get multiple layers for Σ.

Proposition 5.1. For an arbitrarily large positive integer N , it’s possible for
Σ to have at least N layers at some points (which means the projection can map
N points to the same point).

We will just give the example for the case N=5. For larger N , the method
to construct Σ is similar.

Example for the 5-layer surface:
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According to proposition 2.6, we can give the example of Σ by giving the con-
formal harmonic parametrization f(u, v) = (x(u, v), y(u, v), z(u, v)). In order to
make F harmonic, we only need to satisfy that the functions f1 = xu + ixv,
f2 = yu + iyv, f3 = zu + izv are analytic about ξ = u+ iv. Then f is conformal
⇐⇒ |fu| = |fv| and 〈fu, fv〉 = 0 ⇐⇒ f23 = −f21 − f22 .

First, we will give the expression of f1, f2, f3. Let

f1(ξ) = ξ(ξ − 1)(ξ + 1) + i(T + ξ) (1)

f2(ξ) = (ξ + S)f1(ξ) (2)

Now f23 = −f21 − f22 becomes f23 = −((ξ + S)2 + 1)f21 , so we can let

f3 = if1g (3)

Here g is an analytic function satisfying g2 = (ξ+S)2 + 1, which can be defined
when |ξ| is much smaller than S.

We define these three functions in the region {−100 ≤ u ≤ 100,−1 ≤ v ≤ 1}.

Proposition 5.2. {f(u, 0), u ∈ R} is the set of all the turning points.

Proof: f(u, v) is a turning point ⇐⇒ N (normal vector) is perpendicular to
the z-axis⇐⇒ xuyv = xvyu (by calculating N)⇐⇒ f2/f1 ∈ R (since f1 cannot
be 0 when |ξ| is small) ⇐⇒ ξ ∈ R. �

Proposition 5.3. f(1, 0), f(0, 0), f(−1, 0) are the only three cusps.

Proof: Since the curve of turning points α is the image of the u-axis, so we
can write α(t) as f(t, 0), then α′(t) = fu and α′

0(t) = (xu, yu).
Therefore, α′

0(t) is a cusp =⇒ xu = 0 =⇒ ξ = 0, 1 or −1. Conversely, When
ξ = 0, 1 or −1, then xu(ξ) = yu(ξ) = 0, so α′ reaches a cusp. �

Now we can get the expression of the surface in the form of some integrals:

f(u0, v0) =

∫ u0

0

fu(u, 0)du+

∫ v0

0

fv(u0, v)dv (4)

The curve α is just f(t, 0). As shown in Fig. 23, the red curve is α0. Now
we only need to find a neighbourhood U on uv-plane containing the segment
from −1 to 1 (and the boundary of U intersects with the u-axis at exactly two
points), satisfying that:

(1) The image of f(U) under the projection is a convex region and the
boundary of f(U) is mapped to the boundary of that convex region (call it β);

(2) f(U) is embedded.
Then f(U) will be the surface whose boundary has 3 layers and 2 turning

points and can be projected onto a convex curve.
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Figure 23: shape of the 5-layer surface

Figure 24: choice of β
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Figure 25: V and the neighbourhood inside V

The number of the layers of f(U) is shown in Fig. 23, where f(U) has 5-
layers at some points (the method of counting the layers is shown in Fig. 18).
Now we only need to find such U .

First, by direct calculation, we have

x(u, v) =
1

4
u4 − 1

2
u2 +

3

2
u2v2 − 1

4
v4 − 1

2
v2 + Tv + uv (5)

y(u, v) = Sx(u, v) +
1

5
u5 − 1

3
u3 − uv4 − uv2 + Tuv + u2v + 2u3v2 − 1

3
v3 (6)

Therefore, as shown in Fig. 24, the part of the curve α0 from -2 to 2 is
between the parallel lines y = Sx + 10 and y = Sx − 10, and also between
x = −10 and x = 10. We choose β to be the parallelogram formed by these four
lines.

Consider the rectangle V on the uv-plane shown in Fig. 25. If the image of
f(∂V ) under the projection is completely out of β ,then we can find a pre-image
for β inside V on the uv-plane, which means we can find a neighbourhood U
inside V whose boundary is mapped onto β.

In fact, we can prove that the projection of f(V ) is out of β by some simple
calculations. If |v| = 1, then |x(u, v)| will be very large since T is large enough,
so it will not stay between x = −10 and x = 10. If |u| = 100, |v| ≤ 1 and
x(u, v) = p ∈ [−10, 10], then we have

Tv = p− 1

4
u4 +

1

2
u2 − 3

2
u2v2 +

1

4
v4 +

1

2
v2 − uv (7)

so

y−Sx =
1

5
u5− 1

3
u3−uv4−uv2+Tuv+u2v+2u3v2− 1

3
v3 = − 1

20
u5+h(u, v) (8)

here |h(u, v)| is much smaller than | 120u
5| since |u| = 100 and |v| ≤ 1. Therefore,

|y − Sx| will be very large so it’s not between y = Sx+ 10 and y = Sx− 10.
Now we only need to prove that f(U) is embedded. We only need to prove

that f(V ) is embedded. Assume that we can find two points (u1, v1), (u2, v2),
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Figure 26: shape of surface with multiple layers

such that f(u1, v1) = f(u2, x2). Then

0 = f(u2, x2)− f(u1, v1) =

∫ u2

u1

fu(u, v1)du+

∫ v2

v1

fv(u2, v)dv (9)

Consider the x-component:∫ u2

u1

xu(u, v1)du+

∫ v2

v1

xv(u2, v)dv = 0 (10)

Since there is a T in xv, so |xv| >> |xu| inside V . Therefore we have
|u2 − u1| >> |v2 − v1|.

However, we can also consider the z-component:∫ u2

u1

zu(u, v1)du+

∫ v2

v1

zv(u2, v)dv = 0 (11)

We have f3 = igf1. g2 = (ξ + S)2 + 1, so g will be very close to S since
S is large enough. Therefore, |xv| >> |xu| =⇒ |zu| >> |zv|. Now we get the
opposite result |u1 − u2| << |v1 − v2|, which is a contradiction.

Now we get an example for a surface whose boundary has only three layers
and two turning points to have five layers at some points. In fact, we can use
the same method to construct a surface with even more layers. We just need to
choose

f1(ξ) = ξ(ξ − 1)(ξ − 2)(ξ − 3).....(ξ − 2n+ 2) + i(ξ + T ) (12)

Then the shape of α0 is shown in Fig. 26, where we have 2n + 1 layers at
some points (we can still use the previous calculations).

Now we finish the proof of proposition 5.1. �
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6 Area bounds for multiple layers

We can give an upper bound for the area of the surface where there are multiple
layers.

Proposition 6.1. Let Σ be absolutely minimizing for its boundary conditions.
If the projection of Σ is a disk of radius R and the height of Σ is h < R, then
on the projection of Σ, the area where Σ has at least n layers is no more than

πR2 + 2πRh+ 4πh2

3(n− 1)
(13)

We will use the following theorem:

Theorem 6.2. If Σ is an absolutely minimizing minimal surface, and B is a
ball with radius r, then

Area(B ∩ Σ) ≤ 4

3
πr2 (14)

([CM, p. 77])

Proof of Proposition 6.1: Since the projection of Σ is a disk of radius R and
the height of Σ is h, we can find a ball B with radius R+ h to contain Σ. Then
Area(B ∩ Σ) = Area(Σ). Area(Σ) is no less than the area of its projection. If
we use A to denote the area where Σ has at least n layers, then the area of the
projection is at least πR2 + (n− 1)A. According to Theorem 6.2, we have

πR2 + (n− 1)A ≤ 4

3
π(R+ h)2 (15)

So we get

A ≤ πR2 + 2πRh+ 4πh2

3(n− 1)
(16)

�

7 Future work

We also have some future works on this problem. Although we have some
counter examples, but all the surfaces we get in section 5 must be quite tall,
since we need T and S to be large enough. So if we assume that the surface is
relatively flat compared to its projection (or some other reasonable restriction),
then maybe it’s necessary for the surface to have only three layers in its interior.
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