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Abstract

A random polytope is the convex hull of points chosen randomly in Rd

according to some probability distribution. We examine several properties
of the asymptotic behavior of random polytopes in two settings: (1) when
the points are chosen uniformly and at random from a convex body K in
the plane, and (2) when the points are chosen according to the standard
normal distribution on the plane. In both cases, we provide insight into the
asymptotics of the expected number of sides of the random polytope in the
two-dimensional case. We then delve into the concept of affine perimeter
and explain its relation to the question: what is the probability that n
random points (chosen according to (1) or (2)) lie in convex position? We
explain key parts of the computation for (1) and the barriers to extending
these methods to (2), and we propose some methods which may prove
fruitful in overcoming these obstacles.

1 Introduction

In [8], J. J. Sylvester discussed a class of questions, all of which pertained to
“determining the chance that a system of points, each with its own specific
range, shall satisfy any prescribed condition of form.” Specifically, his original
problem was to compute the probability that four points, chosen at random
from the plane, are the vertices of a convex quadrilateral. As Sylvester himself
acknowledged, this problem is not well defined, as the answer will depend on
the probability distribution of the points. The question was later refined and
has been the subject of a fair amount of research. Rather than focusing on
exact probabilities for a specific number of points, we will instead focus on the
asymptotic behavior of these probabilities and related quantities. That is, we
will study what happens as the number of points becomes arbitrarily large.

Our first question concerns the expected number of sides of a random poly-
gon. We explain the work of Rényi and Sulanke [6], who deteremined an asymp-
totic formula for the expected number of sides in the case that the points are
chosen uniformly from a compact convex set with a non-empty interior, also
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known as a convex body. We then compute the same quantity for the case
that the points are chosen according to the standard normal distribution on the
plane.

In the final section, we turn our attention to a question more closely related
to Sylvester’s original problem. Following the method of Bárány in [3], we find
the asymptotic behavior of the probability that n points chosen uniformly at
random from a convex body are in convex position. (We refer to this as the “tail
probability.”) We also explore the concept of affine perimeter and its relation
to the tail probability. We conclude with a discussion of the tail probability for
the Gaussian case: we address the obstacles to extending Bárány’s methods to
the normal distribution, as well as provide suggestions for research which may
help in finding a solution to the problem.

2 Computing E[Vn] in a convex body K

In [6], Rényi and Sulanke show how to compute the expected number of sides
of a random polygon when the points are chosen uniformly at random from a
convex body K. Their original paper was written in German, and to the best
of the author’s knowledge, it has not been translated into English. Their proof
contains techniques which prove useful in other scenarios, and it is interesting
in its own right, so we provide a translated version here. We address the case in
which K is a convex polygon. For a translation of the case where the boundary
of K is smooth and has positive curvature at all points, see [5].

K is a convex polygon with vertices A1, . . . , Ar and θ1, . . . , θr corresponding
angles. Denote ak to be the length of side AkAk+1, and F is the area of K.
We choose points P1, . . . , Pn uniformly and at random from K. Denote their
convex hull by Hn, and the number of vertices of Hn by Vn.

Let εij = 1 when i 6= j and the line segment PiPj is one of the sides of Hn,
and εij = 0 otherwise. Then we have

Vn =
∑

εij .

Since the Pi are i.i.d, the probability

Wn = P (εij = 1)

is the same for all pairs i, j. There are
(
n
2

)
such pairs, so taking the expectation

of our first equation gives

En = E(Vn) =

(
n

2

)
Wn.

As before, for two points P1, P2, let F1 be the area of the smaller part of K
which is cut off by the line P1P2. Then we get

Wn =
1

F 2

∫
K

∫
K

[(
1− F1

F

)n−2
+

(
F1

F

)n−2]
dP1 dP2.

2



Since F1/F ≤ 1/2, we have

1

F 2

∫
K

∫
K

(
F1

F

)n−2
dP1 dP2 ≤

1

2n−2
,

and so

En ∼
(
n

2

)
1

F 2

∫
K

∫
K

(
1− F1

F

)n−2
dP1 dP2.

Denote the area of triangle Ai−1AiAi+1 by fi and set f = min{fi}. We can
split our integration into three cases. We denote by Ci the set of points P1, P2

for which the line P1P2 intersects sides Ai1Ai and AiAi+1, and Di for the set
where P1P2 intersects Ai−1Ai and Ai+1Ai+2. For all other choices of points, we
have 1− F1/F ≤ 1− f/F . Thus we have

En ∼
(
n

2

)
1

F 2

(
r∑
i=1

(Ii + Ji)

)
,

where

Ii =

∫
Ci

(
1− F1

F

)n−2
dP1 dP2

and

Ji =

∫
Di

(
1− F1

F

)n−2
dP1 dP2.

Let Q1 be the intersection of line P1P2 with side Ai−1Ai and Q2 be its
intersection with side AiAi+1, and define Gab to be the set of points P1, P2 for
which |AiQ1| < a and |AiQ2| < b. An elementary calculation yields∫

Gab

dP1 dP2 =
a2b2 sin2 θi

12
.

Now, the area of the triangle Q1AiQ2 cut by line P1P2 with side lengths a, b
(the sides which are part of the perimeter of K) is 1/2ab sin θi, so we get

Ii =

∫ ai−1

0

∫ ai

0

(
1− ab sin θi

2F

)n−2
sin2 θi

ab

3
da db,

where ai is the length of side AiAi+1. We now perform a change of variables.
Set

X = a

√
sin θi
2F

, Y = b

√
sin θi
2F

.

This yields

Ii =
4F 2

3

∫ Xi

0

∫ Yi

0

(1−XY )n−2XY dX dY,

where

Xi = ai−1

√
sin θi
2F

, Yi = ai

√
sin θi
2F

,
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and also note that ρi = XiYi = ai−1ai sin θi
2F = fi

F < 1. Now we have∫ Xi

0

∫ Yi

0

(1−XY )n−2XY dX dY =

∫ Xi

0

∫ Yi

0

(1−XY )n−2dXdY

−
∫ Xi

0

∫ Yi

0

(1−XY )n−1 dX dY.

We can now compute the RHS:∫ Xi

0

∫ Yi

0

(1−XY )n−1 dX dY =

∫ Xi

0

1− (1−XYi)n

nX
dX

=
1 + 1

2 + · · ·+ 1
n −

∑n
k=1

(1−ρi)k
k

n
.

Thus, we arrive at

Ii =
4F 2

3

[
1
2 + · · ·+ 1

n

n(n− 1)
−
∑n−1
k=1

(1−ρi)k
k

n(n− 1)
+

(1− ρi)n)

n2

]
.

We now set

Si =

∞∑
k=1

(1− ρi)k

k
= log

1

ρi
,

and so we obtain

En =
2

3
(γ − 1 + log n)r − 2

3

r∑
i=1

Si + o(1) +
1

F 2

(
n

2

) r∑
i=1

Ji,

where γ is Euler’s constant. (That is, γ = limn→∞(
∑n
k=1 1/k − log n).)

It remains to compute the integrals Ji. We extend sidesAi−1Ai andAi+1Ai+2

to their intersection at A∗i . (The case that these lines are parallel can be treated
similarly.) Define a′ = |AiA∗i |, b′ = |Ai+1A

∗
i |, a = |AiQ1|, b = |Ai+1Q2|, and

Gab as before. In this case, we again perform an elementary calculation to
obtain ∫

Gab

dP1 dP2 =
sin2 γi

12
(a2 + 2aa′)(b2 + 2bb′),

where γi is the angle at A∗i . Thus we have

Ji =

∫
Di

(
1− (ab+ a′b+ ab′) sin γi

2F

)n−2
sin2 γi

3
(a+ a′)(b+ b′) da db.

Asymptotically, therefore, we have

Ji ∼
∫
Di

(
1− (ab+ a′b+ ab′) sin γi

2F

)n−2
sin2 γi

3
a′b′ da db.
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We now use the tranformation

a =
F

b′ sin γi
X, b =

F

a′ sin γi
Y

which yields

Ji ∼
F 2

3

∫ a′i−1

0

∫ a′i+1

0

(
1− X + Y

2

)n−2
dX dY

=
4F 2

3n(n− 1)

[
1−

(
1−

a′i−1
2

)n
−
(

1−
a′i+1

2

)n
+

(
1−

a′i−1 + a′i+1

2

)n]
,

where

a′i−1 =
aib
′ sin γi
F

, a′i+1 =
ai+2a

′ sin γi
F

.

Finally, this leads us to

En =
2r

3
(log n+ γ)− 2

3

r∑
i=1

Si + o(1).

3 Computing E[Vn] for the normal distribution

We now examine the case where the n points Pi = (xi, yi) are chosen according
to the probability density

f(x, y) =
1

2π
e−(x

2+y2)/2,

i.e. the standard normal distribution on the plane. Denote their convex hull by
Hn, and denote the number of vertices of Hn by Vn. Similar to the previous
case, let εij = 1 if all of the n− 2 points other than Pi and Pj lie on one side of
the line between Pi and Pj , and 0 otherwise. Then note that εij = 1 precisely
when the line segment between Pi and Pj is a side of Hn. Since the number of
vertices of a polygon is equal to the number of sides in two dimensions, we have

Vn =
∑

1≤i<j≤n

εij ⇒ E[Vn] =
∑

1≤i<j≤n

E[εij ].

Furthermore, since the points are identically distributed, we have εij = ε12 for
all i, j. Also, since the εij are indicator random variables, their expectation is
the probability of the event they indicate. Combining these facts yields

E[Vn] =

(
n

2

)
P(P3, . . . , Pn lie on one side of line

←−→
P1P2).

This motivates us to find the distribution for lines generated by picking two
points according to the original distribution. Let the two points which will
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determine the line be the random variables P1 = (x1, y1) and P2 = (x2, y2), and
parameterize the resulting line by θ, p, where the line is given by

←−→
P1P2 = {x ∈ R2 : x · (cos θ, sin θ) = p}.

Write

P1 = p(cos θ, sin θ) + s(− sin θ, cos θ), P2 = p(cos θ, sin θ) + t(− sin θ, cos θ).

(That is, we perform a change of variables in which our new axes are in the

direction of the line
←−→
P1P2 and the normal to this line.) In [7], it is shown that

dx1 dy1 dx2 dy2 = |s− t|ds dt dp dθ

and thus

f(P1)f(P2)dP1 dP2 =

(
1

2π
e−p

2

)(
1√
2π
e−s

2/2

)(
1√
2π
e−t

2/2

)
|s−t|ds dt dp dθ.

As only p and θ are relevant to our final calculation, we can integrate the s and t
variables out. Note that s and t are both standard normal, thus their difference
is normally distributed with mean 0 and variance 2. We compute E[|Z|] for
Z ∼ N (0, 1):

E[|Z|] =

∫ ∞
−∞
|z| 1√

2π
e−z

2/2dz

= 2

∫ ∞
0

z
1√
2π
e−z

2/2dz

=

√
2

π

∫ ∞
0

e−udu

=

√
2

π

(Here we have employed the substitution u = 1
2z

2.) Since
√

2Z ∼ N (0, 2), arrive
finally at ∫ ∞

−∞

∫ ∞
−∞

(
1

2π
e−p

2

)(
1√
2π
e−s

2/2

)
|s− t|ds dt =

2√
π
.

Thus, our distribution on lines is

π−3/2e−p
2

dp dθ.

Now, we need to find the normal measure of the two half-planes generated by
any particular line. Due to the rotational symmetry of the normal distribution,
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we can assume that θ = 0. Then the left half-plane L for the line l(p, 0) has
measure ∫

L

f(P )dX =

∫ p

−∞

(∫ ∞
−∞

1√
2π
e−y

2/2dy

)
1√
2π
e−x

2/2dx

=

∫ p

−∞

1√
2π
e−x

2/2dx

= Φ(p)

where Φ is the cdf of the standard normal distribution. It follows that the
measure of the right half plane is 1 − Φ(p). Since the remaining n − 2 points
are chosen independently, the probability of the event that they all lie in the
left half-plane is Φ(p)n−2. Similarly, the probability that they all lie in the right
half-plane is (1−Φ(p))n−2. Since these events are disjoint, the total probability
is

Φ(p)n−2 + (1− Φ(p))n−2.

The last step is to integrate over all possible choices of p and θ:

E[Vn] =

(
n

2

)∫ ∞
0

∫ 2π

0

π−3/2e−p
2 (

Φ(p)n−2 + (1− Φ(p))n−2
)
dθ dp

=
2√
π

(
n

2

)∫ ∞
0

(
Φ(p)n−2 + (1− Φ(p))n−2

)
e−p

2

dp.

Now, note that since (1−Φ(p)) ≤ 1/2 for p ≥ 0, the (1−Φ(p))n−2 term will
vanish asymptotically. Furthermore, since∫ 1

0

Φ(p)n−2e−p
2

dp ≤ Φ(1)n−2 → 0

as n→∞, we have

E[Vn] ∼ 2√
π

(
n

2

)∫ ∞
1

Φ(p)n−2e−p
2

dp.

Setting p =
√

2z, we have∫ ∞
1

Φ(p)n−2e−p
2

dp =
√

2

∫ ∞
1

φ(z)n−2e−2z
2

dz,

where φ is the cdf for the normal distribution N (0, 1) (and therefore φ(p) =
Φ(
√

2p)). We can now compute the asymptotic growth rate of this final integral
using lemma 2.1 from [4], which states that∫ ∞

1

φ(z)β−αzse−αz
2

dz ∼ Γ(α)2α−1πα/2β−α(log β)(α+s−1)/2.

In this case, α = 2, β = n, and s = 0, which yields the final result

E[Vn] ∼ 2
√

2π log n.
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Note: Though we created this proof independently, the author recently dis-
covered that this method is very similar to the one used by Rényi and Sulanke
in [6]. However, there are slight differences in the two proofs, and Rényi and
Sulanke’s paper is in German, so we have chosen to still include this section.

4 Tail probabilties

In [3], Imre Bárány proved a connection between the probability

p(n,K) := P(n points chosen uniformly at random in K are in convex position)

and the affine perimeter of K. Specifically, he showed that

lim
n→∞

n2(p(n,K))1/n =
1

4
e2A3(K),

where A(K) is the supremum of the affine perimeters of all convex subsets
S ⊆ K. Rather than repeating all of the technical details, we present an outline
of his proof to help the reader understand the main ideas of the proof.

The following definition is due to Bárány [1]:

Definition 4.1. Let S be a convex body in R2 and choose a subdivision
x1, . . . , xm, xm+1 = x1 of the boundary ∂S and lines li supporting S at xi
for all i = 1, . . . ,m. Denote the intersection of li and li+1 by yi. (If li = li+1,
then set yi to be any point between xi and xi+1. Then if Ti is the area of the
triangle with vertices xi, yi, xi+1, the affine perimeter of S is defined as

AP(S) = 2 lim

m∑
i=1

(Ti)
1/3,

where the limit is taken over a sequence of subdivisions with maxi |xi−xi+1| →
0. The limit exists and is unique since the sum is clearly bounded below by 0,
and each refinement of the subdivision of the boundary decreases the sum.

Figure 1: Figure from [1]
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Refer to Figure 1. The shaded regions are the triangles mentioned in the
definition. To see the connection to the tail probability, suppose that the first
m < n points that we have chosen are the points x1, . . . , xm. (Clearly, if all n
points are to be in convex position, these m points must be in convex position
as well, so the only scenario is one of the sort depicted in the diagram.) Then
when the m + 1’th point is chosen, it must fall in one of the shaded regions in
order for m + 1 points to remain in convex position. As Bárány shows in [1],
given that the n points are in convex position, they will tend towards a limit
shape K0 ⊂ K. (In fact, Bárány shows that K0 is the unique subset of K which
has maximal affine perimiter.) Because of this, the shaded regions in which the
new points can be chosen will approximate those which arise in the definition
of affine perimiter for the region K0. The next point chosen approximates a
refinement of the boundary. This is the intuitive reason that affine perimeter
and tail probabilities are linked.

There is a particular portion of Bárány’s argument which deserves a detailed
explanation, simply due to its combinatorial beauty. Rather than “refreshing”
the triangles in which we can choose a point after each one is added, we fix a
set of triangles with our first choice of points, and then find the probability that
the remaining points lie in convex position within these triangles. We have the
following definition:

Definition 4.2. Let T be a triangle, and let P0 and Pk+1 be two vertices of T .
We say that the points P1, . . . , Pk form a convex chain in T if Pi ∈ T and the
points are in convex position.

Using this terminology, we wish to find the probability that k points chosen
uniformly in a triangle are in convex position. We follow the proof of theorem
1 from [2]. First, we assume that the Pi = (xi, yi) are placed uniformly in
the unit square and find the probability that they form a convex chain in the
triangle with vertices (0, 0), (1, 0), and (1, 1). Relable the points so that the xi
are increasing, and note that, in order for the points to form a convex chain, the
yi must be nondecreasing. For any relative ordering of the yi, with probability
1, exactly one of these is nondecreasing. Since all relative orderings are equally
likely due to the uniformity of the distribution, the yi are nondecreasing with
probability 1/k!. In this case, we say that the chain is monotone.

Now, conditioned on the fact that we have a monotone chain, we claim that
all permutations of the slopes of the segments ∆i are equally likely. Let M be
the set of all monotone chains. Then there is a bijection between the events in
M and the set

D = {(∆1, . . . ,∆k) : ∆i = (ui, vi), ui, vi ≥ 0,
∑

∆i = (1, 1)},

i.e. the set of all sequences of slopes for a monotone chain. For a monotone
chain with slopes {∆i}, permute the slopes ∆i and ∆i+1.

Referring to Figure 2, we see that the vertices P0 . . . , Pi−1, Pi+1, . . . , Pk+1

remain fixed, while vertex Pi is reflected through the midpoint of line segment
Pi−1Pi+1. Since Pi is uniform in the rectangle indicated in the figure (with
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Figure 2: Figure from [2]

corners at Pi−1 and Pi+1), these two choices of points are equally likely. Thus,
the permuted slopes are equally likely. In order for the Pi to be in convex
position, the slopes ∆i must be nonincreasing. So, with probability 1, exactly
one of the relative slope orderings gives us a convex chain. Thus, conditioned
on having a monotone chain, the probability that we have a convex chain is
1/(k + 1)!. This gives a total probability of

1

k!(k + 1)!

for the square. To find the probability for a triangle, we multiply by a factor of
2k. This accounts for the fact that the points cannot lie in the “wrong half” of
the square; all other factors remain the same. Since this probability is invariant
under nondegenerate affine transformations, the probability that k points form
a convex chain in any nondegenerate triangle (subject to the uniform measure)
is

2k

k!(k + 1)!
.

After some more lengthy computation, Bárány is able to show that

lim
n→∞

n2p(n, k)1/n =
1

4
e2A3(K),

where A(K) is the supremum of affine perimeters taken over all convex sets
S ⊂ K.

Motivated by this result, we wish to determine whether or not these tech-
niques can yield similar formulas in the case that the points are chosen according
to different log-concave probability distributions on the plane. The normal dis-
tribution is of particular interest. This may allow us to define a notion analogous
to affine perimeter for a probability distribution.
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There are several problems which need to be addressed at this juncture.
First, in order for any of the previously mentioned techniques to apply, the
points must approach some limit shape. Intuitively, if such a limit shape exists,
by the symmetry of the Gaussian distribution, it seems that the limit shape
must be a circle whose radius grows as a function of n. We may try rescaling
the normal distribution by the inverse of this radius, but we again run into
problems since Bárány’s convex chain argument requires that the distribution
is uniform. A feasible work-around is as follows. Suppose that the points tend
to be spaced around the hypothetical limit circle in such a way that the resulting
triangles in which we may have convex chains tend to be relatively flat–that is,
all of the points in a given triangle lie within a small range of radii from the
origin, say [r−ε, r+ε] for ε suitably small. Then the probability density in these
triangles will be approximately uniform, and the convex chain argument may
still apply. The rest of the techniques used in the proof should be extendable
without too much trouble.

Of course, should our guess about the points approaching some limit shape
prove incorrect, then this line of reasoning will not work. For this reason,
and because it is interesting in and of itself, we ask the question: what is the
distribution of n points, chosen according to the standard normal distribution,
conditioned on the fact that they lie in convex position? A naive numerical
approach–rejection sampling–will not work here, as the desired event occurs
with exponentially small probability in n. Thus, it quickly becomes infeasible
to simulate the distribution as n grows. Some other method will be needed, and
this seems a fruitful direction for further research.

References
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