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Abstract

We study non-abelian monogenic algebraic number fields (i.e., non-abelian number fields
whose rings of integers have a basis of the form {1, α, α2, . . . , αn−1} for some α). There are
numerous results about abelian monogenic number fields, yet for the non-abelian case little is
understood. As our main result, we find an infinite family of non-abelian monogenic degree 6
number fields.
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1 Introduction

A classic open problem in number theory is to characterize number fields whose rings of integers
have the form {1, α, α2, . . . , αn−1}. We call a number field with such a ring of integers monogenic.

The problem of characterizing monogenic fields was proposed by Hasse, and remains an active
field of research. While there is no general characterization, progress has been made on low degree
cases. For example, in [1, 6] necessary and sufficient conditions for the monogeneity of cubics are
presented.

An example of a family of monogenic number fields is the cyclotomic fields. Since the ring of
integers of a cyclotomic field is generated by a root of unity, it is monogenic. Cyclotomic fields
also have the property that they are abelian (they are Galois extensions and their Galois groups
are abelian). The Kronecker-Weber theorem states that all abelian number fields are subfields of
cyclotomic fields. We would like to study other cases of Galois extensions with a power integral
basis, so we will study non-abelian extensions.

We start off with some definitions.

Definition 1.1. We call a number field K monogenic if its ring of integers OK has a basis of the
form {1, α, α2, . . . , αn−1}. We call the set {1, α, α2, . . . , αn−1} a power integral basis.

Definition 1.2. We call a number field non-abelian if it is Galois and its Galois group is non-
abelian.

The theory of monogenic fields has been studied in depth by Gaál and Grás. Gaál’s book
[5] contains results pertaining to lower degree monogenic extensions. Specifically, it focuses on
computational methods to calculate the power integral basis. The book uses these algorithms to
discuss computational methods of finding solutions to Diophantine equations.

Grás, in [7], proves that cyclic extensions of prime degree p ≥ 5 are either non-monogenic or
are the maximal real subfield of some cyclotomic field.

In [6], Grás proves that for n relatively prime to 6, there are only finitely many abelian monogenic
fields of degree n.

Although much progress has been made in analyzing and classifying abelian monogenic fields,
not much progress has been made on non-abelian monogenic number fields. We make progress
by finding an infinite family of degree six non-abelian monogenic fields, thus proving the following
theorem:

Theorem 1.3 (Main Theorem). There exists infinitely many non-abelian monogenic number fields.
Specifically, there exists an infinite family of monogenic non-abelian fields of Galois group S3.

We also make progress on a problem with a long line of research. The problem is to char-
acterize all groups G which have infinitely many monogenic sextic (degree 6) fields with Galois
group G. Progress has been made on finding specific Galois groups for which there are infinitely
many monogenic sextic fields. In [4], Eloff, Daniel and Spearman find a family of infinitely many
monogenic sextics with Galois group A4. In [9] Spearman, Watanabe, and Williams show that
there exist infinitely many monogenic degree 6 number fields with Galois group PSL(5, 2). In [8],
Lavalee finds families of monogenic sextic fields, including infinitely many monogenic sextic fields
with Galois groups D6, A4, (S4,+), A4×C2, S4×C2. We further improve upon this result by finding
an infinite family of monogenic degree 6 fields with Galois group S3. Finding an infinite family of
sextic number fields with other Galois groups remains an open problem. Note that none of the
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previous groups had order 6, so our result is the first infinite family of monogenic sextic number
fields which are Galois.

Our results may have applications to breaking fully homomorphic encryption protocols which
rely on the assumption that ring learning with errors (RLWE) is hard. In [3], an attack on specific
instances of RLWE is proposed, and it is posed as a problem to find non-abelian monogenic number
fields of cryptographic size.

We hope our results will inspire more work on non-abelian monogenic fields.

2 Preliminaries

In this section we present various results which we will later use to prove the main theorem (Theorem
1.3).

Theorem 2.1 (Conductor-Discriminant Formula). For any two number fields A ⊂ B, we have
disc(A)[B:A]|disc(B).

Proof. See Proposition 4.4.8 in [2].

Theorem 2.2 (Dedekind). Let K = Q(α) be a number field, T ∈ Z[x] the monic minimal polyno-
mial of α, and let p be a prime number. Let f denote the reduction of f modulo p. Let

T (x) =
k∏

i=0

ti(x)ei

be the factorization of T modulo p. Let

G(x) =
k∏

i=0

ti(x),

where the ti are arbitrary monic lifts of ti.
Let H(X) ∈ Z[x] be a monic lift of T (X)/G(X) and set F (X) = (G(X)H(X)−T (X))/p ∈ Z[x]

Then [OK : Z[α]] is not divisible by p if and only if

(F ,G,H) = 1

in Fp[X].

Proof. See Theorem 6.1.4 in [2].

The following theorem gives a sufficient condition for monogeneity.

Theorem 2.3 (Discriminant Test). Let f(x) be a polynomial with integer coefficients and K =
Q[x]/f(x). If disc(f) = disc(K), then K is monogenic.

Proof. We know that the discriminant of f(x) is the discriminant of Z[α], where α is a root of f(x).
We also know that OK contains α, and therefore contains Z[α].

We now have that disc(Z[α]) = disc(K)[OK : Z[α]]2. Since the discriminants are equal, we have
[OK : Z[α]] = 1, and therefore the two rings are equal. Subsequently, it follows that α generates
the ring OK .

Theorem 2.4. The Galois group of a cubic f(x) is S3 if and only if disc(f) is not a square.
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3 A Family of Non-Abelian Monogenic Sextic Number Fields

In this section, we show that infinitely many polynomials of the form x6 + 3x5 + ax4 + (2a −
5)x3 + ax2 + 3x + 1 are non-abelian and monogenic. In the first subsection we find a for which
the polynomial is irreducible. In the next subsection we find a for which the splitting field of the
polynomial is non-abelian. Specifically, we show that the Galois group is S3. In the last subsection
we show the splitting field is monogenic, completing the proof.

3.1 Proving Irreducibility

We let

fa(x) = x6 + 3x5 + ax4 + (2a− 5)x3 + ax2 + 3x+ 1

ga(x) = x3 + (a− 6)x− (a− 6).

Using a computer algebra system, we calculate that the discriminants of fa(x) and ga(x), are
−(4a+ 3)3(a− 6)4, and −(4a+ 3)(a− 6)2, respectively.

Lemma 3.1. If a− 6 is square-free, then ga(x) is irreducible.

Proof. ga(x) is a cubic. Thus, if it is reducible, then one of its factors will be linear, and it will
have an integer root. Let that root be r.

Let p be a prime dividing a− 6. Since a− 6 is square-free, p divides a− 6 exactly once. If r is
a root of ga(x), then p must divide r. But then the terms r3 and (a− 6)r2 will be divisible by p2,
while a− 6 will not, so ga(x) has no roots modulo p2. Therefore, as long as a− 6 is square-free and
different from ±1, the polynomial ga(x) is irreducible.

We can check the case a− 6 = ±1 and see that in those cases ga is irreducible, completing the
proof.

Lemma 3.2. If −(4a+ 3) is not a square, and a 6= −2, 6, then fa(x) is irreducible

Proof. Suppose fa(x) is reducible. It cannot have a linear factor since fa(1), fa(−1) are nonzero.
We let Fa(x) be the factor with smallest degree.

First, assume the degree of Fa(x) is 2. Let b be a root of fa(x). Then Q[b] = Q[1/b] is a degree
2 extension. However, because −ga(−1 − x − 1/x)x3 = fa(x), and 0 is not a root of fa(x), we
know that −ga(−b− 1/b− 1) = 0. Because ga(x) is irreducible, Q[−b− 1/b− 1] is an extension of
degree 3. This is impossible because Q[−b− 1/b− 1] is a subfield of Q[b], which we have shown is
an extension of degree 2.

Now we assume the degree of Fa(x) is 3. Note that if f(r) = 0, then also f(1/r) = 0. We let
the roots of fa(x) be r1, r2, r3, r

−1
1 , r−1

2 , r−1
3 . We know that the roots of Fa(x) must multiply to

±1. Therefore, they cannot contain a pair of inverse roots r and r−1. Therefore, without loss of
generality, we may assume the roots of Fa(x) are r1, r2, r3. It follows that either there exist b and
c such that

Fa(x) = x3 + bx2 + cx+ 1

Ga(x) = x3 + cx2 + bx+ 1,
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or

Fa(x) = x3 + bx2 + cx− 1

Ga(x) = x3 − cx2 − bx− 1.

We first deal with the case Fa(x) = x3 + bx2 + cx+ 1 and Ga(x) = x3 + cx2 + bx+ 1.
Comparing coefficients in Fa(x)Ga(x) = fa(x) results in the identities:

b+ c = 3

bc+ b+ c = a

b2 + c2 + 2 = 2a− 5.

We now see bc = a− 3, and therefore b2 + c2 − 2bc+ 2a− 6 = 2a− 7, and therefore (b− c)2 = −1,
a contradiction.

We now deal with the case Fa(x) = x3 + bx2 + cx− 1 and Ga(x) = x3 − cx2 − bx− 1.
We get the identities

b− c = 3

−bc+ c− b = a

−b2 − c2 − 2 = 2a− 5.

The first two equations imply that −bc = a − 3. Therefore, −b2 − c2 − 2 − 2bc − 2a − 6 = 2a − 5,
and therefore −(b+ c)2 = 4a+ 3. This is impossible because −(4a+ 3) is not a square.

3.2 Finding the Galois Group

In this section, we show that the field Q[x]/fa(x) is a non-abelian number field. We will do this by
showing that the polynomial ga(x) has Galois group S3 and that its splitting field is the same as
the splitting field of fa(x).

Lemma 3.3. Q[x]/fa(x) is Galois.

Proof. We will show that from one of the roots of fa(x), we can generate all of the roots.
Let one of the roots be r. We see that the rest of the roots of fa(x) are −(r + 1), 1/r,−1/(r +

1),−(1/r + 1),−1/(1/r + 1). This can be verified with a computer algebra system. Note that all
these roots are distinct, and therefore these are all of the roots of fa(x). Therefore, one of the roots
of fa(x) generates all of the roots, and it follows that Q[x]/fa(x) is Galois.

Theorem 3.4. If fa(x) and ga(x) are irreducible, and 4a + 3 is not a square, then Q[x]/fa(x) is
non-abelian.

Proof. We let the roots of fa(x) be r1, r2, r3, r
−1
1 , r−1

2 , r−1
3 . Then the polynomial ga(x) has roots

−r1−r−1
1 −1,−r2−r−1

2 −1, and −r3−r−1
3 −1. We can see this is true because ga(−1−x−1/x)x3 =

fa(x), and 0 is not a root of fa(x). Therefore, Q[x]/ga(x) is a subfield of the field Q[x]/fa(x).
Now, if we show that the Galois group of the splitting field of ga(x) is S3, then we will be done

because we know that the splitting field of ga is contained in the splitting field of fa(x) which is of
degree 6. To show the Galois group of the splitting field of ga(x) is S3, we use a computer algebra
system to find the discriminant of ga(x) in terms of a, and see that it is −(4a+ 3)3(a− 6)4. Since
we have assumed that 4a + 3 is not a square, by Theorem 2.4 it follows that the Galois group is
S3. Therefore Q[x]/fa(x) is non-abelian.

5



3.3 Proof of Monogeneity

In the previous sections, we found a for which fa(x) is irreducible, and we showed that for such a
Q[x]/fa(x) has Galois group S3. In this section, we find a for which Q[x]/fa(x) is monogenic.

We let K = Q[x]/fa(x), and L = Q[x]/ga(x).

Lemma 3.5. Suppose a− 6 is square-free. If ga(α) = 0, then gcd([OL : Z[α]], a− 6) = 1.

Proof. The theorem follows from Theorem 2.2 by setting T (x) = ga(x) and letting p be some prime
divisor of a− 6. Then T (x) = x3, so G(x) = x.

We now have F (x) = (x3 − T (x))/p = −(a−6)x+(a−6)
p .

We now find that (F ,G,H) = (a− 6)/p which is a unit in Fp since p divides a− 6 exactly once
when a− 6 is square-free. Therefore, [OL : Z[α]] is not divisible by p for all p that divide a− 6, so
gcd([OL : Z[α]], a− 6) = 1.

We know that disc(ga)
disc(L) is a square, since disc(ga)

disc(L) = [OL : Z[α]]2, where α is a root of ga(x).

Therefore, because disc(ga) = −(4a+3)(a−6)2, if 4a+3 is square-free, using Lemma 3.7, disc(L) =
disc(ga) = −(4a + 3)(a− 6)2. Therefore, by the conductor-discriminant formula (Theorem 2.1), it
follows that (4a + 3)2(a − 6)4|disc(K). We know that disc(fa) = −(4a + 3)3(a − 6)4. Therefore,
disc(fa)
disc(K) divides 4a + 3, so disc(fa)

disc(K) is square-free. However, we know that disc(fa)
disc(K) = [OK : Z[β]]2,

where β is a root of fa. Therefore, because the right side is square-free, both sides must equal 1.
We now have the following lemma.

Lemma 3.6. If a−6 and 4a+3 are both square-free, then disc(K) = disc(fa) = −(4a+3)3(a−6)4,
and therefore by the discriminant test (Theorem 2.3), K is monogenic.

We will now show that the density of a such that both a − 6 and 4a + 3 are square-free is
positive.

Lemma 3.7. As a approaches infinity, the fraction of a for which both a − 6 and 4a + 3 are
square-free is always greater than some positive constant.

Proof. The density of n such that n is square-free approaches d = ζ(2)−1 ≈ 0.608 [?]. It follows
that d fraction of our choices for a would make a− 6 square-free.

The density numbers of the form 4a that are square-free is 0, since 4a is divisible by 22. The
maximal possible density of square-free numbers of the form 4a + 1 and 4a + 2 is 1. We let x be
the lim inf of the number of square-free numbers of the form 4a+ 3, for 0 < a < A, divided by A.
(The intuition is to let x be the density of square-free numbers of the form 4a + 3; however, we
don’t know whether such a density exists in the limit, so we consider the lower bound). Taking the
average density and using the fact that .6 < d gives

.6 < d ≤ 0 + 1 + 1 + x

4
= .5 + x/4.

Therefore, x must be greater than .4. However, if .4 of the integers of the form 4a+3 are square-free,
and d of the integers of the form a − 6 are square-free integers since d + .4 > 1, the lim inf of the
density of a such that both 4a+ 3 and a− 6 are square-free must be positive.

In summation, we have the following theorem:
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Theorem 3.8. There exist infinitely many polynomials of the form x6 + 3x5 + ax4 + (2a− 5)x3 +
ax2 + 3x+ 1 that are irreducible, non-abelian, and monogenic.

This in turn implies the following theorem:

Theorem 3.9 (Main Theorem). There exists infinitely many non-abelian monogenic number fields.

4 Conclusion, Open Problems and Further Research

We have found an infinite family of monogenic non-abelian number fields, proving that infinitely
many such fields exist. This evidence leads us to suspect that such families could be found for
higher degrees as well. We conjecture that such families exist for all symmetric Galois groups.

It is an open problem to determine whether there exist monogenic non-abelian fields of arbitrar-
ily high degree. Finding such a family of polynomials may be helpful in showing that ring learning
with errors is not hard on all rings, which could help break various fully homomorphic encryption
protocols [3].

It is also still open to classify all Galois groups G that have infinitely many monogenic sextic
fields with Galois group G. So far, monogenic sextics with Galois groups A4, D6, A4, (S4,+), A4 ×
C2, S4×C2, PSL(5, 2) and S3 have been found. Classifying the other possible Galois groups remains
open.
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