
A Particle System with Interlacing Pattern
SPUR Final Paper, Summer 2013

Yanlin Zhao
Mentor Xin Sun

Project suggested by Scott Sheffield

July 31, 2013

Abstract

Consider infinite many particles on the real line, infinite in both
direction. At next step, we uniformly pick one point between every two
consecutive particles to form the next generation of particles. In this
way, we obtain Markov process with interlacing pattern. In this paper,
we study some basic properties of this Markov chain, such as invariant
measure, convergence, fluctuation and some possible generalization of
this model.
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1 Introduction

Interlacing pattern is a natural object in mathematics. It appears in rep-
resentation theory as Gelfand-Tsetlin pattern, eigenvalues of sub-matrices
of Hermitian matrices etc. Correspondingly, there are some very important
random objects supported on interlacing patterns such as total asymmetric
exclusion process, some Schur and Macdonald process which lead to various
interacting particle systems, GUE corner process, lozenge tiling, bead model
etc. For the probability related to interlacing patterns, we refer to [1], [2],
[3], and reference therein. In this paper, we study a very natural Markov
chain under the interlacing condition.

Consider Markov chain Yn whose state space is 2R such that it is locally
finite and infinite in both direction. At time 0, Y0 = {x0

i }i∈Z are infinite
points on R. If at time n, Yn = {xn

i }i∈Z, then Yn+1 = {xn+1
i }i∈Z will satisfy

the two rules
Rule 1: xn

i < xn+1
i < xn

i+1

Rule 2: xn+1
i will be independently distributed according to U(xn

i , x
n
i+1),

where U(xn
i , x

n
i+1) is the uniform distribution in the open interval (xn

i , x
n
i+1).

Denote Xn
i be the distribution of the gap between (xn

i , x
n
i+1), Since it is

an Markov particle system, we are interested in two types of questions: equi-
librium and dynamic. In the former direction, we give a family of ergodic
invariant measure and show that all the invariant under some moment as-
sumption are convex combination of these measure. This type of result is
an analogue of that for exclusion process(see [4]). In the latter direction, we
study the convergence to equilibrium under certain initial condition and the
fluctuation of a single particle.

The paper is organized in the following way: in Section 2, we give a family
of invariant measure of this Markov dynamic. In Section 3 we employ moment
method to show that under certain moment condition, all the invariant mea-
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sure are convex combination of the measure defined in Section 2. In Section
4 we show that the if the initial gaps form a stationary sequence satisfying
certain moment condition, then it converges to equilibrium. In Section 5, we
replace the uniform distribution by other distribution on [0, 1] and studied
similar questions. In Section 6, we first show that if under extremal invari-
ant measure the trace of one particle is actually a Poisson process. Then we
study the fluctuation of on particle under the lattices initial condition. In
particular we give the order the variance of the position of a particle.

2 Elementary invariant measure

Theorem. If X(ρ) is a translational invariant measure which has indepen-
dent and identically distributed gap Xi(ρ) whose density function is 4ρ2xe−2ρx, (x >
0), then X(ρ) is a group of elementary invariant measure for the Markov pro-
cess.

Proof. We prove that X(ρ) has the following properties:
1.Xi(ρ) are mutually independent under the Markov process
Since Xi(ρ) are independent,we want to prove that X1

i (ρ) are independent.
It suffice to prove that any consecutive k gap of X1

i are independent. Assume
f(t) is the characteristic function of Xi(ρ). Then

f(t) =

∫ +∞

−∞
eitx4ρ2xe−2ρx dx =

1

(1 + ct)2
, c = −i/2ρ

The characteristic function of X1
i (ρ) is (

∫ 1

0
f(tu) du)2 = f(t) = 1

(1+ct)2
, c =

−i/2ρ. The characteristic function of X1
i +. . .+X1

i+k−1 is (
∫ 1

0
f(tu) du)2f(t)k−1 =

f(t)k,therefore X1
i are independent. Thus X1

i (ρ) are independent.

2.The distribution of the gap Xi(ρ) are invariant under the Markov pro-
cess.
Assume U1 and U2 are any uniform distributions in [0,1] and f(t) is the char-
acteristic function of Xi(ρ), then

f(t) = 1
(1+ct)2

, c = −i/2ρ,
∫ 1

0
f(tu) du = 1

1+ct
f(t) = (

∫ 1

0
f(tu) du)2

Since Xi(ρ) are mutual independent under the Markov process.Hence, (1 −
U1)Xi(ρ) + U2Xi+1(ρ) ∼ Xi(ρ)
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3. X(ρ) is translational invariant under the Markov process.
Since X(ρ) is translational invariant, by the definition of the model,X1(ρ) is
translational invariant,therefore at any time n the measure is translational
invariant.
Thus,Xρ is a group of translational invariant invariant measure of constant
density ρ and the density function of the gap is 4ρ2xe−2ρx, (x > 0).

3 Classification of invariant measure with fi-

nite moment

Theorem. Assume µ is an invariant measure. The distribution of the gap
is Xi, i ∈ Z. If Xi, i ∈ Z has finite moment EXj1

i1
Xj2

i2
. . . Xjn

in
;

i1, i2, . . . , in ∈ Z, j1, j2, . . . , jn ∈ N and ∃ constant c,s.t.lim(E(Xi)
k/k!)

1
k <

c,then µ is a convex combination of X(ρ) of finite moment.

Lemma: If an invariant measure with gap distribution Xi has finite mo-
ment, then for any distinct i1, i2, . . . , in ∈ Z, and ∀k, j1, j2, . . . , jn ∈ N, j1 +
j2 + . . . + jn = k, ∃Ak ∈ R, s.t. EXj1

i1
Xj2

i2
. . . Xjn

in
= (j1+1)!(j2+1)!...(jn+1)!

2k Ak

Proof. Assume X i
0 = X0 is the distribution containing 0. For k=1,Since X1

0

is either generated by X0, X1(meansX0 = (1 − U1)X0 + U2X1) or X−1, X0.
Denote A = X0 is generated byX0, X1,then we have 0 < P (A) < 1(if P(A)=0
or 1,then it can’t be an invariant measure).Since X0 is independent with Xi

when i → ∞.Then as |i| → ∞,since EXi is finite, we must have

lim(EXi −
EXi + EXi+1

2
) = lim(EXi+1 −

EXi + EXi−1

2
) = 0

Hence, lim(EXi+1 − EXi) = 0

Therefore,∀ε > 0,∃M > 0, s.t.|EXi − EXi+1| < ε, for any|i| > M.

Since X0 is arbitrarily chosen, if we choose j and k, s.t. j−i > M, k−i < −M ,
then we can conclude that |EXi − EXi+1| < ε for any i and ε,thus we let
A1 = EXi,∀i ∈ Z
For k > 1 , set Y j1

i1
Y j2

i2
. . . Y jn

in
= 2k/(j1+1)!(j2+1)! . . . (jn+1)!EXj1

i1
Xj2

i2
. . . Xjn

in

Then we only have to prove that for any distinct i1, i2, . . . , in ∈ Z, and
∀k, j1, j2, . . . , jn ∈ N, j1 + j2 + . . . + jn = k, Y j1

i1
Y j2

i2
. . . Y jn

in
are equal.
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Similar to k=1, ∃M > 0,s.t. when |i1|, |i2|, . . . , |ik| > M
lim(EXi1Xi2 . . . Xik −E((1−U1)Xi1 +U2Xi1+1) . . . ((1−Uk)Xik +Uk+1Xik+1))
= lim(EXi1+1Xi2+1 . . . Xik+1 − E((1 − U1)Xi1 + U2Xi1+1) . . . ((1 − Uk)Xik +
Uk+1Xik+1)) = 0
Therefore,similar to k=1, we can conclude thatEXi1Xi2 . . . Xik = EXi1+1Xi2+1 . . . Xik+1

= E((1 − U1)Xi1 + U2Xi1+1) . . . ((1 − Uk)Xik + Uk+1Xik+1)
= E((1 − U1)Xi1−1 + U2Xi1) . . . ((1 − Uk)Xik−1 + Uk+1Xik)
Therefore,∃aj1j2...jk

, bj1j2...jk
∈ R, s.t.

Yi1Yi2 . . . Yik = Yi1+1Yi2+1 . . . Yik+1

=
∑

jt=it,it+1;t=1,2,...,k aj1j2...jk
Yj1Yj2 . . . Yjk

=
∑

jt=it,it−1;t=1,2,...,k bj1j2...jk
Yj1Yj2 . . . Yjk

−−(1)
If we let Xi ∼ Xi(ρ), then EXj1

i1
Xj2

i2
. . . Xjn

in
= EXj1

i1
EXj2

i2
. . . EXjn

in
= 2k/(j1+

1)!(j2 + 1)! . . . (jn + 1)!
Therefore, we have Yi1Yi2 . . . Yik = 1.
Since aj1j2...jk

, bj1j2...jk
are only related to U ,therefore by (1) we have

∑
aj1j2...jk

=∑
bj1j2...jk

= 1. −−(2)

Since E((1 − U)X)i(UX)j = E(1 − U)iU jEX i+j = i!j!
(i+j+1)!

∗ (i+j+1)!
2i+j Y i+j =

i!j!
2i+j Y

i+j

E((1 − U)X)iE(UX)j = 1
i+1

(i+1)!
2i Y i 1

j+1
(j+1)!

2j Y j i!j!
2i+j Y

i+j Therefore,after we

substitute EXj1
i1

Xj2
i2

. . . Xjn

in
by Y j1

i1
Y j2

i2
. . . Y jn

in
, the coefficient aj1j2...jk

, bj1j2...jk

are all equal,and by (2) they are equal to 1
(j1+1)(j2+1)...(jk+1)

–(3).

Next by(1)(2)(3)we have Y j1
i1

Y j2
i2

. . . Y jn

in
= 1

(j1+1)(j2+1)...(jn+1)

∑
jt=it,it+1;t=1,2,...,n Y j1

i1
Y j2

i2
. . . Y jn

in
=

1
(j1+1)(j2+1)...(jn+1)

∑
jt=it,it−1;t=1,2,...,n Y j1

i1
Y j2

i2
. . . Y jn

in
− −(∗),it suffice to prove

that Y j1
i1

Y j2
i2

. . . Y jn

in
are equal:

We prove by contradiction:If Y j1
i1

Y j2
i2

. . . Y jn

in
are not equal,since Y j1

i1
Y j2

i2
. . . Y jn

in

are finite.
Set A(m) = {Y j1

i1
Y j2

i2
. . . Y jn

in
||in−i1| = m},assume a(m) = max{a ∈ A(m)}, b(m) =

min{b ∈ A(m)},then∃minimal t > 0, s.t., a(t+1)−a(t) > ε or b(t+1)−b(t) <
−ε.
Assume we have a(t+1)−a(t) > ε(For b(t+1)− b(t) < −ε,the proof is simi-

lar), then by (*) either ∃(j′n + j′1) < (jn + j1), Y
j′1
i′1

Y
j′2
i′2

. . . Y
j′n
i′n

> Y j1
i1

Y j2
i2

. . . Y jn

in

or a(t + 2) − a(t + 1) > ε (if not we have 0 > (j2 + 1) . . . (jn−1 + 1)ε − (j2 +
1) . . . (jn−1 + 1)ε = 0 which leads to a contradiction.)
Since jn + j1 ≤ kand (a(t + 2) − a(t + 1)) ≥ 2

k
(a(t + 1) − a(t)) always holds,

therefore limm→∞ a(m) = Y j1
i1

Y j2
i2

. . . Y jn

in
→ ∞,when |in − i1| → ∞
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, which leads to a contradiction with finite moment. Thus for any distinct
i1, i2, . . . , in ∈ Z, and ∀k, j1, j2, . . . , jn ∈ N, j1+j2+. . .+jn = k, Y j1

i1
Y j2

i2
. . . Y jn

in
are

equal.
Proof of the theorem: By lemma,if we set Yi ∼ Xi

X0(ρ)
.Then we have EY j1

i1
Y j2

i2
. . . Y jn

in
=

Ak(j1 + j2 + . . . + jn = k).Since ∃ constant c,s.t.lim(E(Xi)
k/k!)

1
k < c, there-

fore Yi equal to the same distribution Y . Xi ∼ Y X0(ρ),so the gap Xi is a
convex combination of Xi(ρ). Now we only have to prove that the distri-
bution of 0 in X0 is unique,then µ is a convex combination of X(ρ). As-
sume X’ is the distribution of the gap between 0 and x1. Then, we have
X ′ = X ′ + U1X1, ifX

′ < U0X0; X
′ − U0X0, ifX

′ > U0X0

Therefore, (X0, X
′)forms a Markov chain and (X0, X

′) is ergodic on R*R.
Thus the invariant joint distribution of the Markov process is unique.

4 Convergence to invariant measure

Theorem. Consider initial measure µ which has independent and identical
distributed gap Xi, i ∈ Z. If the initial gap Xi has finite moment E(Xi)

m,m ∈
N, then µ converge to an invariant measure.

Proof. We only have to prove that for any m ∈ N, lim E(Xi)
m∃ and ∃ con-

stant c,s.t.lim(E(Xi)
k/k!)

1
k < c.

We prove by induction on m thatan = lim E(Xi)
n∃.

First, E(Xj
i ) = E(Xi) exist. Since µ is transitional invariant, we set ρ =

1/EXi.

Assume for m < n, an = lim E(Xi)
n = (n+1)!

(2ρ)n ,then for m = n, since E(Xj
i ) are

independent.(EXj
i )

n = E((1−U1)X1 +U2X2)
n = 1

n+1
E(X1)

n + 1
n+1

E(X2)
n +

n!(n−1)
(2ρ)n

Therefore,lim E(Xi)
n = (n+1)!

(2ρ)n

Thus, µ converge to X(ρ) which is an invariant measure.

5 Replace uniform distribution by general dis-

tribution on [0, 1]

Theorem. If U is a general distribution on [0, 1], EU2+E(1−U)2 6= 1, then
∃ invariant measure of the Markov process and all invariant measure are the
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convex combination of a group of particular invariant measure X(U, ρ).

Proof. In section 3, we have prove that if Xi is the gap of invariant mea-
sure X(U, ρ), then for any distinct i1, i2, . . . , in ∈ Z, and ∀k, j1, j2, . . . , jn ∈
N∗, j1 + j2 + . . . + jn = k
IfEXj1

i1
Xj2

i2
. . . Xjn

in
∃, then ∃Ak ∈ R, s.t. E(Xi1/X(U, 1))j1(Xi2/X(U, 1))j2 . . . X(inX(U, 1))jn =

Ak

Therefore, consider the k-order moment EXj1
1 Xj2

2 . . . Xjn
n . Since EXj1

1 Xj2
2 . . . Xjn

n can
be written as the linear combination of EXj1

1 Xj2
2 . . . Xjn

n , j1+j2+. . .+jn = k.
If we assume vector v=(EXj1

1 Xj2
2 . . . Xjn

n , j1 +j2 + . . .+jn = k), then we have
v=Av, A is a |v| ∗ |v| matrix. We now have to prove that the linear equa-
tions have a non-zero solution. In section 4,since EU2 + E(1 − U)2 6= 1 ⇒
EUn + E(1− U)n 6= 1. Hence the initial coefficient of EXj1

1 Xj2
2 . . . Xjn

n , j1 +
j2 + . . . + jn = k = 1 − EUn − E(1 − U)n > 0. We have prove that if
we start from an initial measure µ which has i.i.d gap distribution Xi, then
lim EXj1

1 Xj2
2 . . . Xjn

n , j1 + j2 + . . . + jn = k∃. Therefore, the solution of the
linear equations exist and must be a distribution of the limit measure which
is also an invariant measure. Thus, all invariant measure are the convex
combination of a group of particular invariant measure X(U, ρ) satisfying
EXn = E((1−U1)X1+U2X2)

n ⇔ X(U, ρ) = (1−U1)X(U, ρ)+U2X(U, ρ).

6 Dynamics of a single particle

6.1 Invariant initial condition

Theorem. If we start from an invariant measure X(ρ), then the fluctuation
of a particular point xn

0 is a Poisson process.

Proof. Assume x0
0 = 0. Then xn

0 = U0X
0
0 + U1X

1
0 + . . . + UnX

n
0 . Ui are

independent uniform distribution on [0, 1], suppose g(t) is the characteristic
function of UiX

i
0.

g(t) =

∫ 1

0

f(tu) du = 1/(1 − i/2ρ)

Therefore,UiX
i
0 have the same distribution which is an exponential distribu-

tion with density function 2ρe−2ρx, x > 0. We want to prove that UiX
i
0 are

mutually independent: In section 2,we have found that f(t) = g(t)2 and Xn
i

are mutually independent, therefore UiX
i
0 is independent with (1 − Ui)X

i
0.
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Hence, U0X
0
0 is independent with U1X

1
0 = U1((1 − U0)X

0
0 + U ′

0X
0
1 ). Assume

for m¡n U0X
0
0 , . . . , UmXm

0 are mutually independent. Then for m=n, since
UnX

n
0 = Un((1−Un−1)X

n−1
0 +U ′

n−1X
n−1
1 ), U0X

0
0 , . . . , Un−1X

n−1
0 are indepen-

dent with Xn−1
1 , U ′

n−1, Un Similarly we have Un−1X
n−1
0 and (1 − Un−1)X

n−1
0

are independent.Thus, U0X
0
0 , . . . , UnX

n
0 are mutually independent Therefore

xn
0 is a Poisson process. Thus we have

xn
i

σn
∼ normal distribution.

6.2 Lattices initial condition

In this section, we study the dynamic of the interlacing particle system under
the lattice initial condition,which means Y0 = {xi = i, i = 0, 1, . . . , n}.

Theorem. Assume the distribution is U andEU = a,EU2 = b, a2 < b ≤ a,

We have there exists constant c1, c2, s.t., 0 < c1 <
V ar(xn

0 )

n/ log n
< c2

Proof. Assume σ2
n is the deviation of xn = xn

i , x = xn−1
i , y = xn−1

i+1 .EU =
a,EU2 = b Exn = an
xn = x + U(y − x), x′ = x + (y − x)/2
Then we have σ2

n = E(x + U(y − x))2 − (an)2

= (1 − 2a + b)Ex2 + bEy2 + 2(a − b)Exy − (an)2

= (1 − 2a + b + 2(a − b))[σ2
n−1 + (a(n − 1))2] + b[σ2

n−1 + (a(n − 1) + 1)2] +
2(a − b)Ex(y − x) − (an)2

= σ2
n−1 + (a2 + b− 2ab) + 2(a− b)E(x′(y − x)− an)− (a− b)E(y − x)2 (1)

Substitute a by 1-a,b by 1-2a+b,then U is change to 1-U: due to symmetry
we also have:

σ2
n = σ2

n−1+((1−a)2+b−2(1−a)b)+2(a−b)E(y′(y−x)−an)−(a−b)E(y−x)2

(2)

By(1)(2)⇒ σ2
n = σ2

n−1 + (a − a2) − (a − b)E(y − x)2

= σ2
n−1 + (a − a2) − (a − b)EXn−1

0
2 −−(3)
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Set ak
i = EXk

0 Xk
i ,then EXn−1

0
2

= an−1
0 we have:

ak+1
0 = (1 − 2(a − b))ak

0 + 2(a − a2)ak
1

ak+1
1 = (1 − a − b)ak

0 + (1 − 2a + 2a2)ak
1 + (a − a2)ak

2

ak+1
i = (a − a2)ak

i−1 + (1 − 2a + 2a2)ak
i + (a − a2)ak

i+1, i > 1

Since∀i, a0
i = 1,Hence,assumean

0 = Ana
0
0 + Bna

0
1 + . . . = An + Bn + . . . (A0 =

1, B0 = 0)
Set Sn = An + Bn + . . . Thenan

0 = Sn and Sn = Sn−1 + (2b− 2a2)An−1 − (b−
a2)Bn−1 By(*),An = (1 − 2(a − b))An−1 + (a − b)Bn−1 ⇒

EY n−1
0

2
= an−1

0 = Sn−1 =
a − a2

a − b
− b − a2

a − b
An−1 (4)

By(3)(4)⇒ σ2
n = σ2

n−1 + (b − a2)An−1

⇒ σ2
n = (b − a2)

n−1∑
k=1

Ak

Thus, we only have to find the estimation of tn−1 =
n−1∑
k=1

Ak By(*), An is

derived by two sequences:

An+2 = 2bAn+1 +
1 − 2b

4
(B0An + B1An−1 + . . . + BnA0)

Bn+2 = 1/2Bn+1 + 1/16(B0Bn + B1Bn−1 + . . . + BnB0)

A0 = 1, A1 = 1 − 2(a − b), B0 = 0, B1 = 2(a − a2) First it is easily to prove
that ∃constant c1, c2, s.t., c1 < 4−Bn

1/n
< c2

Therefore,∃constant c1, c2, s.t.c1 <

n−1
P

k=1

Ak

the sum of all the entries ofA−1 < c2

where A is 
1 1/2 . . . 1/n
0 1 . . . 1/(n − 1)
· · · · · · · · · · · ·
0 0 . . . 1


Set J= 

0 1 0 . . . 0
0 0 1 . . . 0
· · · · · · · · · · · · · · ·
0 0 0 . . . 0
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Then the sum all the entries of A−1 is the coefficient of x on (nf(x) −
f ′(x)), f(x) = − x

log(1−x)
,which is ∼ n

log n
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