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Abstract

In this study we studied the impedance of electrochemical cells, a characteristic

property of such systems, for several one-dimensional and two-dimensional mathemat-

ical models, both analytically and numerically. In the 1D models we solved for the

impedance, �rst under a simplifying assumption, and then exactly. We then used �-

nite di�erence method to solve the 1D model numerically and con�rmed the analytical

results. Finally we formulated an isotropic 2D model, solved the resulting PDE us-

ing �nite Hankel transform and Laplace transform, and found an asymptotic result of

impedance which closely resembled the results from 1D model.

1 Introduction

Electrochemical cells are devices that generate voltage and current by chemical reactions,
such as batteries or, inversely, drive chemical reactions when voltage and current is applied,
such as electrolytic cells. The voltage correspond to the potential di�erence of the reactions,
related by the Nernst equation, and the current correspond to the transfer of electrons due
to the reactions. A particularly important type of electrochemical cells are fuel cells, which
convert the chemical energy of a fuel into electricity through oxidation-reduction reactions,
typically with oxygen; the most common fuel used is hydrogen.The di�erence between fuel
cells and batteries is that fuel cells require constant input of fuel and oxygen and can run
as long as the input is supplied. The general design of a fuel cell consists of an anode,
a cathode, and electrolyte in between the two electrodes, with reactions occurring on the
two electrode-electrolyte interfaces. The fuel is oxidized at the anode, and the positive ion
formed moves through the electrolyte, which allows ions but not electrons to pass, while
the free electron passes through the circuit connected to the fuel cell, creating a current
in the circuit, before the two recombine at the cathode and react with another reactant,
usually oxygen, to complete the process, producing water or carbon dioxide. There are
many practical advantages of fuel cells over traditional energy technologies, such as low
emission, high e�ciency, fuel �exibility, durability, and scalability, and they have been used
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for power in many applications, including commercial, industrial, and residential buildings
and fuel cell vehicles that range from automobiles, airplanes, to submarines. [1]

Impedance is the measure of the total opposition to current generation in an alternating
current system, de�ned as the complex ratio of voltage to current.[2] It is related to resistance,
the measure of opposition to current generation in a direct current system, but is more
general in that impedance includes not only opposition due to resistive e�ects, which gives
resistance and forms the real part of impedance, but also opposition due to capacitive and
inductive e�ects, which together form the imaginary part of impedance. The impedance of
a system can be calculated by applying a small sinusoidal voltage input to the system and
measuring the generated current signal; when this is done across a range of frequencies, the
result is an impedance spectrum in response to frequency, usually depicted in a Nyquist plot,
which shows the impedance spectrum on the complex plane, or in a Bode plot, which shows
the magnitude of the impedance response against the frequency used. Two experimental
technique for measuring the impedance are the galvanostatic intermittent titration technique
(GITT) and the electrochemical impedance spectroscopy (EIS), also known as dielectric
spectroscopy, now popularly used in characterizing electrode processes and interfaces, which
can often reveal important information about them.[3][4]

In this paper, we study the impedance of electrochemical cells for one type of physical
con�guration, both analytically and numerically. The physical con�guration in consideration
is a very long cylindrical tube containing solutions of chemical species with chemical reactions
occuring on one end of the tube, in which di�usion is the time-dominating e�ect. The
paper is divided into the following sections. In section 1, we introduced the basic concepts
and the objective of the study. In section 2, we formulate a long-term, one-dimensional
mathematical model of the problem and solve for the impedance. In section 3, we remove
the long-term assumption and solve the resulting PDE for the impedance, and compare its
limiting behavior to the impedance from section 2. In section 4, we use the �nite di�erece
method to numerically solve the PDE, and compare the result with the analytical solution
in section 3 using the Nyquist plot and the Bode plot. In section 5, we move on to an
isotropic, two-dimensional mathematical model and solve for the impedance by applying the
�nite Hankel transform and the Laplace transform, and compare its limiting and asymptotic
behavior with the previous models. In section 6, we discuss the results from the previous
sections and possible directions of future research.

2 Results of Long-term 1D Model

We model the system as a very long container of solutions, with chemical reactions occurring
at one end (x = 0). The baseline concentration of the system is C0. After t = 0 a small
external AC voltage V (t) = V0e

iωt is applied at x = 0, which causes a concentration change
C(x, t) in the system and a current I(t) at x = 0. Our goal is to compute the impedance

Z(t) = V (t)
I(t)

of the system.
From the Nernst Equation

E = Eo − kBT

ne
ln

( ∏
[Products]∏
[Reactants]

)
,
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where E is the cell potential, Eo the standard cell potential, kB the Boltzmann constant, T
the temperature, n the number of electrons transferred per reaction, and e the charge of an
electron, we get

V (t) =
kBT

ne
ln

(
C0 + C(x = 0, t)

C0

)
≈ kBT

ne

C(x = 0, t)

C0

. (1)

The linear approxmiation holds because V (t) is small, so C(x = 0, t) can be assumed to be
negligible compared to C0. In addition, we assume the reactions are quasi-equilibrium, i.e.
no signi�cant concentration change occurs internally, so we may take the total concentration
to be C0 + C(x, t).

The current I(t) is produced by the transfer of electrons during electrochemical reactions,
so

I(t) = −neAF = −neAD∂C
∂x

(x = 0, t), (2)

where A is the cross-sectional area, D the di�usitivity, and F = D ∂C
∂x

(x = 0, t) the �ux of
the species.

Since the system is large in lateral dimensions (y- and z-directions) relative to the scale
of molecular di�usion, we may ignore boundary e�ects of y- and z-directions and assume
concentration only varies in x-direction, and since the system is very long, we may assume
it extends in�nitely away from x = 0. Also, we assume the time-dominating e�ect in the
system is the di�usion of one species, so other e�ects are negligible. Futhermore, we assume
the di�usion is linear, so D is independent of position and time, and for the purpose of
simplifcation, we take D to be constant. Under these assumptions,

∂C

∂t
(x, t) = D

∂2C

∂x2
(x, t). (3)

Finally, since we are interested in the long-term behavior, we may assume C(x, t) is
separable, so

C(x, t) = C∗(x)eiωt. (4)

We solve for the impedance. Dividing 1 by 2, we get

Z(t) =
V (t)

I(t)
=

kBT

(ne)2ADC0

C(x = 0, t)

−∂C
∂x

(x = 0, t)
(5)

Substituting 4 into 3, we get

iωC∗(x)eiωt = Deiωt
d2C

dx2
(x).

Cancelling eiωt on both sides, we get

iωC∗(x) = D
d2C

dx2
(x).

Solving this ODE, we get

C∗(x) = C∗(0)e−
√

iω
D
x.
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Plugging this back into 4, we get

C(x, t) = C∗(0)e−
√

iω
D
xeiωt.

Di�erentiating this with respect to x at x = 0, we get

∂C

∂x
(x = 0, t) = −

√
iω

D
C(x = 0, t).

Plugging this in 5, we get

Z(t) =
kBT

(ne)2ADC0

C(x = 0, t)

−∂C
∂x

(x = 0, t)
=

kBT
√

D
iω

(ne)2ADC0

=
Z∗√
iω

where Z∗ = kBT

(ne)2A
√
DC0

.

3 Analytical Results of 1D Model

The previous model is based on the long-term assumption 4, which we now remove. In this
section we will solve the boundary value problem of the PDE 3 with the following initial and
boundary conditions, from which we can compute the impedance using 5:

C(x = 0, t) = aeiωt,

C(x > 0, t = 0) = 0,

C(x→∞, t) = 0,

where a = neC0V0
kBT

from 1. These two are physically resonable, since initially the system is at
baseline concentration and there is no concentration change, and the e�ect of concentration
change due to voltage travels at a �nite speed.

Let W (x, t) = C(x, t)− aeiωt, then the original problem is transformed into

∂W

∂t
(x, t)−D∂

2W

∂x2
(x, t) = −iωeiωt,

W (x = 0, t) = 0,

W (x > 0, t = 0) = −a.

(6)

Furthermore, extend the x-domain to the whole x-axis, and extend the functions to odd
functions on the whole line, i.e.

∂W

∂t
(x, t)−D∂

2W

∂x2
(x, t) = (−iωeiωt)sgn(x). (7)

W (x, t = 0) = (−a)sgn(x). (8)

Once we solve W in the extended problem above, its restriction to 0 < x <∞ would satisfy
6.
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Note that the solution to the general boundary value problem

∂W

∂t
(x, t)−D∂

2W

∂x2
(x, t) = f(x, t).

W (x, 0) = φ(x).

is given by

W (x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy +

∫ t

0

∫ ∞
−∞

S(x− y, t− s)f(y, s)dyds,

where

S(x, t) =
e−

x2

4Dt

√
4Dt
√
π
.

Plugging f(x, t) and φ(x) from 7 and 8 in this, we get

W (x, t) = −a
∫ ∞
−∞

S(x− y, t)sgn(y)dy +

∫ t

0

−iωaeiωsds
∫ ∞
−∞

S(x− y, t− s)sgn(y)dy, (9)

Note that ∫ ∞
−∞

S(x− y, t)sgn(y)dy =

∫ ∞
0

(S(x− y, t)− S(x+ y, t)) dy.

Plugging in S(x, t), we get

∫ ∞
−∞

S(x− y, t)sgn(y)dy =

∫ ∞
0

e−( x−y√
4Dt

)2

√
4Dt
√
π
− e

−
(
x+y√
4Dt

)2

√
4Dt
√
π

 dy.

Evaluating the integral, we get∫ ∞
−∞

S(x− y, t)sgn(y)dy =
2√
π

∫ x√
4Dt

0

e−z
2

dz = erf

(
x√
4Dt

)
.

Using this, 9 gives

W (x, t) = (−a)erf

(
x√
4Dt

)
− iωa

∫ t

0

erf

(
x√

4D(t− s)

)
eiωsds.

Back to the original problem, we get

C(x, t) = W (x, t) + aeiωt = a

(
eiωt − erf

(
x√
4Dt

)
− iω

∫ t

0

erf

(
x√

4D(t− s)

)
eiωsds

)
.

Di�erentiating this with respect to x at x = 0, we get

∂C

∂x
(x = 0, t) = − a√

πD

(
1√
t

+ iω

∫ t

0

eiωs√
t− s

ds

)
= − a√

πD

(
1√
t

+ 2i
√
ωeiωt

∫ √ωt
0

e−iz
2

dz

)
.
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Plugging this in 5, we get

Z(t) =
kBT

(ne)2ADC0

C(x = 0, t)

−∂C
∂x

(x = 0, t)
=

kBT

(ne)2A
√
DC0

eiωt

1√
πt

+ 2√
π
i
√
ωeiωt

∫ √ωt
0

e−iz2dz
. (10)

Note that ∫ ∞
0

e−iz
2

dz =

√
π

2
√
i
.

Using this, and taking t→∞, 10 gives

Z(t→∞) =
kBT

(ne)2A
√
DC0

eiωt

2√
π
i
√
ωeiωt

√
π

2
√
i

=
Z∗√
iω
,

where Z∗ = kBT

(ne)2A
√
DC0

, which agrees with the impedance from section 1. This agreement

is expected, since in the long term (t → ∞) there is no di�erence between the models in
section 1 and section 2.

4 Numerical Results of 1D Model

We now solve the boundary value probelm in the last section numerically using the �nite
di�erence method. Note that for small ∆t and ∆x, we have

∂C

∂t
(x, t) ≈ C(x, t+ ∆t)− C(x, t)

∆t
,

∂C

∂x
(x, t) ≈ C(x+ ∆x, t)− C(x, t)

∆x
,

∂2C

∂x2
(x, t) ≈ Cx(x+ ∆x, t)− 2Cx(x, t) + Cx(x−∆x, t)

(∆x)2
.

Plugging these in 3 and 5, we get

C(x, t+ ∆t) ≈ C(x, t) +
D∆t

(∆x)2
(C(x+ ∆x, t)− 2C(x, t) + C(x−∆x, t)) ,

and

Z(t) ≈ − kBT∆x

(ne)2ADC0

(
C(∆x, t)

C(x = 0, t)
− 1

)−1
Let C be the matrix with C(i, j) = C((i− 1)∆x, (j − 1)∆t), and Z be the row vector with
Z(j) = Z((j − 1)∆t), then the above give

C(·, j + 1) ≈ (I +
D∆t

(∆x)2
L)C(·, j), (11)

Z(j) ≈ − kBT∆x

(ne)2ADC0

(
C(2, j)

C(1, j)
− 1

)−1
, (12)
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where

L =


−2 1 0 ...
1 −2 1 ...
...
... 0 1 −2


Applying 11 iteratively, we can numerically �nd the concentration over any range of position
and time, recorded in C, and then use 12 to �nd the corresponding impedance over time. To
take care of the boundary condition, we adjust C(1, j + 1) accordingly after j-th iteration.
The results are displayed in the �gures 1 and 2. The constants are set as follows: D = 2,
∆x = 10−3, ∆t = 10−7, and all others 1. The Nyquist plot, which plots the negative
imaginary part against the real part of impedance as angular frequency varies, and the Bode
plot, which plots the log of magnitude of impedance against the log of angular frequency,
are displayed in �gures 3 and 4. In both cases, the plot from numerical computation closely
coincides with the plot of the limit impedance from the theoretical solution for higher angular
frequencies. This is reasonable from the following scale analysis. From 3, we make the
estimate

C

t
= D

C

x2
,

which gives position scale
x ∼
√
Dt.

Since the system is oscillating with angular frequency ω, the relevant time scale t is the
period 2π

ω
. Plugging this in the above, we get

x ∼
√

2πD

ω

For su�ciently high ω, the position scale x is very small compared to the length of the
system used in the numerical computation, which approximates the semi-in�nite theoretical
solution very well, so the numerical plot and theoretical plot are close for such ω.

5 Results of Isotropic 2D Model

In this section, we model the system as a very long cylinder of radius R = 1, with an
external voltage V (t) = V0e

iωt applied at the circular end S (r < 1, z = 0) after t = 0,
causing a concentration change C(r, z, t) in the system and current I(t) at z = 0. Note we
drop the φ coordinate because the model is isotropic. We remove the 1D assumption since
the radial dimension is small and so boundary e�ects are not negligible. We keep the other
assumptions from the 1D model: the system is semi-in�nitely long, the time-dominating
e�ect is the di�usion of one species, di�usivity D is constant, the voltage V (t) is related to
concentration change C(r < 1, z = 0, t) by 1, and current is given by 2 in integral form,

I(t) =

∫
S

−neD∂C
∂z

(r, z = 0, t)dA = −neADπ
∫ 1

0

∂C

∂z
(r, z = 0, t) · 2rdr,

7



which gives the impedance for this model,

Z(t) =
V (t)

I(t)
=

kBT

(ne)2DC0π

C(r < 1, z = 0, t)

−
∫ 1

0
∂C
∂z

(r, z = 0, t) · 2rdr
. (13)

In addition, to account for the boundary e�ects, we assume the cylindrical surface (r = 1)
radiates at rate h proportional to the concentration change. The boundary value problem
for this model is

∂C

∂t
(r, z, t) = D∇2C(r, z, t) = D

(
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂z2

)
(r, z, t),

with initial and boundary conditions

C(r, z, t = 0) = 0,(
∂C

∂r
+ hC

)
(r = 1, z, t) = 0,

C(r < 1, z = 0, t) = aeiωt,

C(r, z →∞, t) = 0,

where a = neC0V0
kBT

from 1.
Let Jk(x) be the kth-order Bessel function of the �rst kind; βn the nth positive root of

the di�erential equation
hJ0(x) + xJ ′0(x) = 0, (14)

with β0 = 0; and Wn(z, t) the zeroth-order Hankel transform with respect to r for C(r, z, t),
de�ned as

Wn(z, t) = H0{C(r, z, t), βn} = lim
β→βn

∫ 1

0

rC(r, z, t)J0(βr)dr, (15)

with the inverse transform given by the Fourier-Bessel series

C(r, z, t) = 2W0(z, t) +
∞∑
n=1

2J0(βnr)

(1 + h2

β2
n
)J0(βn)2

Wn(z, t). (16)

Note that

H0

{(
∂2C

∂r2
+

1

r

∂C

∂r

)
(r, z, t), βn

}
= −β2

nWn(z, t) + βnJ0(βn)

(
∂C

∂r
+ hC

)
(r = 1, z, t).

Apply the zeroth-order Hankel transform with respect to r. Using the property above, the
PDE and the boundary condition

(
∂C
∂r

+ hC
)

(r = 1, z, t) = 0 become

∂Wn

∂t
(z, t) = D

(
−β2

nWn(z, t) +
∂2Wn

∂z2
(z, t)

)
.

Using 15, the remaining initial and boundary conditions become

Wn(z, t = 0) = 0,
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Wn(z = 0, t) = aeiωt lim
β→βn

∫ 1

0

rJ0(βr)dr = lim
β→βn

J1(β)

β
aeiωt,

Wn(z →∞, t) = 0,

Let Vn,s(z) be the Laplace transform for Wn(z, t) with respect to t, de�ned as

Vn,s(z) = L{Wn(z, t), s} =

∫ ∞
0

Wn(z, t)e−stdt (17)

Note that

L

{
∂Wn

∂t
(z, t), s

}
= sVn,s(z)−Wn(z, t = 0)

Apply the Laplace transform with respect to t. Using the property above and the initial
condition Wn(z, t = 0) = 0, the PDE becomes( s

D
+ β2

n

)
Vn,s(z) =

∂2Vn,s
∂z2

(z)

Using 17, the remaining boundary conditions become

Vn,s(z = 0) = lim
β→βn

J1(β)

β
L{aeiωt, s},

Vn,s(z →∞) = 0

Solving this ODE, we get

Vn,s(z) = lim
β→βn

J1(β)

β
L{aeiωt, s}e−z

√
s
D
+β2

n

Taking the inverse Laplace transform of Vn,s(z) with respect to s gives

Wn(z, t) = lim
β→βn

J1(β)

β
aeiωt

∫ t

0

L−1
{
e−z
√

s
D
+β2

n , τ
}
e−iωτdτ.

Substituting this in 16 gives

C(r, z, t) = aeiωt
∫ t

0

(
L−1

{
e−z
√

s
D , τ

}
+
∞∑
n=1

2J0(βnr)

(1 + h2

β2
n
)J0(βn)2

J1(βn)

βn

{
e−z
√

s
D
+β2

n , τ
})

e−iωτdτ,

where we used the fact that

lim
β→0

J1(β)

β
=

1

2
.

Di�erentiating this with respect to z at z = 0 gives

∂C

∂z
(r, z = 0, t) = −aeiωt

∫ t

0

(
L−1

{√
s

D
, τ

}
+
∞∑
n=1

2J0(βnr)

(1 + h2

β2
n
)J0(βn)2

J1(βn)

βn
L−1

{√
s

D
+ β2

n, τ

})
e−iωτdτ,
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and so

−
∫ 1

0

∂C

∂z
(r, z = 0, t)·2rdr = aeiωt

∫ t

0

(
L−1

{√
s

D
, τ

}
+
∞∑
n=1

4h2

β2
n(h2 + β2

n)
L−1

{√
s

D
+ β2

n, τ

})
e−iωτdτ,

where we used the de�ning equation 14 for βn and the fact that

J ′0(x) = −J1(x).

Substituting this and the boundary condition C(r < 1, z = 0, t) = aeiωt in 13, we get

Z(t) =

kBT
(ne)2DC0π∫ t

0

(
L−1

{√
s
D
, τ
}

+
∑∞

n=1
4h2

β2
n(h

2+β2
n)
L−1

{√
s
D

+ β2
n, τ
})

e−iωτdτ
.

Taking t→∞, we get

Z(t→∞) =

kBT
(ne)2DC0π√

iω
D

+
∑∞

n=1

4h2
√

iω
D

+β2
n

β2
n(h

2+β2
n)

. (18)

In particular, when h = 0, i.e. the cylindrical surface is impermeable, we get

Z(t→∞) =

kBT
(ne)2DC0π√

iω
D

=
Z∗√
iω
,

where Z∗ = kBT

(ne)2A
√
DC0

, which agrees with the 1D models. This is expected, since when

the cylindrical surface is impermeable, there is no radial variation in concentration, which
reduces the problem to the 1D models in sections 2 and 3. On the other hand, when h→∞,
i.e. the cylindrical surface is always kept at the baseline concentration, we get

lim
h→∞

Z(t→∞) =

kBT
(ne)2DC0π√

iω
D

+
∑∞

n=1

4
√

iω
D

+β2
n

β2
n

= 0.

This is expected, since when the cylindrical surface is always kept at the baseline concentra-
tion, while the concentration �uctuates with a constant magnitude at the circular end, the
variation in concentration at the circular end near the cylindrical surface approaches in�nity,
which means the current is in�nite and so the impedance is zero.

Taking ω →∞ in 18, we get

lim
ω→∞

Z(t→∞)√
D
iω

=

kBT
(ne)2DC0π

1 +
∑∞

n=1
4h2

β2
n(h

2+β2
n)

,

so asymptotically as a function of ω,

Z(t→∞) ∼ 1

1 + κ(h)

Z∗√
iω
,
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where Z∗ = kBT

(ne)2A
√
DC0

and

κ(h) =
∞∑
n=1

4h2

β2
n(h2 + β2

n)
.

Making the approximation βn ≈ nπ,

κ(h) ≈
∫ ∞
1

4h2

(xπ)2(h2 + (xπ)2)
dx =

4

π2
+

4 tan−1(π
h
)− 2π

πh
≤ 4

π2
.

Compared to the 1D models in sections 2 and 3, this asymptotic impedance as a function of ω
di�ers by a coe�cient 1

1+κ(h)
, which is due to the additional radial variation in concentration,

induced by the radiating boundary condition. Furthermore, from the approximation we see
this coe�cient is on the order of approximately 1

1+ 4
π2

= 0.7116....

6 Discussion and Conclusion

In this paper, we studied the impedance of electrochemical cells, an important measure of
such systems which can often reveal information about their reactions and structures, for
di�erent mathematical models using analytical and numerical methods. In section 1 we
gave the background information of the paper and our goal in this study. In section 2
we introduced a long-term one-dimensional model and solved for the impedance from the
resulting ODE. In section 3 we dropped the long-term assumption and completely solved the
resulting PDE for the impedance and found its long-term limit to be the same as the answer
in section 1. In section 4 we solved the PDE numerically using the �nite di�erence method,
and found that the concentration and impedance from the numerical solution agreed with
those in the analytical solution, as the Nyquist plot and the Bode plot showed, and the
agreement grows closer when frequency increases, which is predicted by a scale analysis. In
section 5 we formulated an isotropic two-dimensional model and solved the resulting PDE
using the �nite Hankel transform and Laplace transform and obtained a formula for the
impedance, and found its asymptotic long-term limit to be in a similar form as in the 1D
models.

We found that, in the long term, the impedance response to frequency was

Z(t→∞) =
Z∗√
iω

where Z∗ = kBT

(ne)2A
√
DC0

in the two 1D models. We also found a similar asymptotic impedance

in the isotropic 2D model

Z(t→∞) ∼ 1

1 + κ(h)

Z∗√
iω

which only di�ered from the 1D result by 1
1+κ(h)

, a coe�cient on the order of approximately
0.7. The exact agreement between the results from the two 1D models were expected, since
their formulation only di�ered in a separable assumption, which would not matter in the long
term. The similarity between the results from the 1D models and the isotropic 2D model
was reasonable, since in the special case h = 0 the 2D model simpli�ed to the 1D model and
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for h > 0 there was an additional e�ect due to the radial variation in concentration. The
numerical methods con�rmed the analytical results for the 1D models, especially for high
frequencies.

For future research, we may want to solve the 2D model numerically and further study the
analytical results from the 2D model, as well as generalizing the problem to other physical
con�gurations. Another possiblility is to �t our mathematical result to experimental data
and use it to determine important physical quantities such as di�usivity from the data.

7 Acknowledgment

Thanks to Yi Zeng and Professor Martin Z. Bazant, who mentored me on this project, and
Professor Pavel Etingof and Dr. Slava Gerovitch, who supervisedthis project during the 2012
SPUR of the MIT Mathematics Department.

References

R. S. Khurmi, R. S. Sedha. Materials Science. S. Chand & Company Ltd., 2010.

Electrical Impedance. Encyclopedia Britannica.

A. Lasia. Electrochemical Impedance Spectroscopy and Its Applications, Modern Aspects of

Electrochemistry. Kluwer Academic/Plenum Publishers, New York, 1999, Vol. 32, p. 143-248.

Y. Zhu, C. Wang. Galvanostatic Intermittent Titration Technique for Phase-Transformation
Electrodes. Journal of Physical Chemistry C, 2010, 114, 2830-28418.

12



Figure 1: Concentration distribution, for 1000 positions from x = 0 to x = 1 and for 1000
times from t = 0 to t = 0.1, with input angular frequency ω = 50π.
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Figure 2: Magnitude of impedance, for 1000 times from t = 0 to t = 0.1, with input angular
frequency ω = 50π. Contrasted is the limit |Z| = 0.056 calculated from the theoretical
solution.
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Figure 3: Nyquist plot of impedance at t = 0.1, for 20 input angular frequencies from
ω = 10π to ω = 1000π. Contrasted is the Nyquist plot of the limit impedance calculated
from the theoretical solution, which is a line of slope 1. Note the two plots closely coincide
for higher angular frequencies, which correspond to smaller values of Re(Z) and −Im(Z),
i.e. lower left corner.
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Figure 4: Bodet plot of impedance at t = 0.1, for 20 input angular frequencies from ω = 10π
to ω = 1000π. Contrasted is the Bode plot of the limit impedance calculated from the
theoretical solution, which is a line of slope -1/2. Note the two plots closely coincide for
higher angular frequencies, which correspond to smaller values of ln |Z|, i.e. lower right
corner.
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