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Abstract

We study the discrete-time analog of the stochastic growth models on a system
of interacting particles in 2+1 dimensions, which belong to the anisotropic KPZ
class introduced in [1]. We consider the discrete time dynamics described in [1],
derive the formulas for the limit shape and discover the Gaussian free field. Then
we do some simulations to observe the limiting behavior of this system, and study
the phenomena concerning the convergence of such moments of demeaned height
functions which describe the behavior. We also do some simulations which shows
some evidence of Conjecture 1.4 in [1].
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1 Introduction

The system discussed here consists of n(n+1)
2 particles, denoted as {xmk } (where m ranges

from 1 through n, and k ranges from 1 through m), each with a position in the integer
lattice Z2, evolving in discrete time (in our model, we simply consider N0− valued time)
with a determinantal structure described by the determinantal kernel.

The principal object we study here is a randomly growing surface, embedded in
the four-dimensional space-time. There are two kinds of interesting projections of this
model. One is to reduce the spatial dimension by one, the other is by fixing time, each
yielding some random surface. For the first kind, we should note that the projections
of our growth models described in Section 2 and 3 to {xm1 }m≥1 and {xmm}m≥1 give the
“Bernoulli jumps with blocking” and “Bernoulli jumps with pushing” discussed in [15].
On the opther hand, {xm1 } in the continuous time context is a totally asymmetric simple
exclusion process (TASEP). The second kind (fixed-time) projection will be mentioned
in §3.2.

The other object discussed in this paper is the Gaussian free field, which is commonly
assumed to describe the fluctuations of random surfaces appearing in a wide class of
models in statistical physics, in particular in the case with dimension equal to two (for
more general discussion, see [11], for its connection to SLE4 see [12], to dimer model see
[7], [8], and to other growth models on a system of interlacing particles see [1], [13]).
And in our case we expect the two dimensional GFF to describe the fluctuation of the
random surface induced by our discrete time growth model.

Our main result is the behavior of the height functions that integrate the particle
configuration and reflect the limit shape of the growing surface consisting of facets inter-
polated by a curved piece. We see that the curved region has a Gaussian fluctuation by
exploiting the determinantal structure of the process. In the same flavor, we observe the
presence of a Gaussian free field as the pushforward of the random surface we consider.
As a result, we can express the limit of the moment of the height fluctuations at mul-
tiple points in terms of the Green function of the Laplace operator on H with Dirichlet
boundary condition.

Section 2 gives the background of our model and some analytic tools to describe the
limit shape. Section 3 gives the theoretical results. §3.1 cites the transition kernel for
four types of discrete-time interacting particle systems on the plane, computes critical
points for each system. And using the critical points, we obtain the growth velocity of
the surface and show the processes are in AKPZ class. §3.2 introduces some important
notions of Gaussian free fields, and presents the main theorems about the growing surface
and GFF. Following Duits’ constructions in [13], §3.3 proves one of the main results.
Section 4 discusses the continuous-time AKPZ growth model in [1] and its left-jumping
counterpart as a limit of the discrete case, and demonstrates how to derive the theorems
for the height fluctuations and their moments in the continuous time scheme from the
discrete time scheme. Section 5 presents the simulation result testing conjecture 1.4 in
[1]. Some interesting phenomena in the simulations, and suggestions about topics for
further research are provided, which ends with a remark about the conditions in which
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Figure 1: The initial configuration and random configuration for the case n = 25, and
F of the form (B) or (D), which will be introduced after (2.8).

the main results in this paper holds.
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2 The model

We consider the discrete-time anisotropic 2-dimensional growth model as follows: con-
sider a Markov chain on the (locally compact, separable) state space X of interlacing
variables

S(n) =
{
{xmk }m=1,··· ,n

k=1,··· ,m
⊂ Z

n(n+1)
2 |xm+1

k < xmk ≤ xm+1
k+1

}
, n ∈ Z+,

where the double-indexed xmk (which also refers to the particle itself) can be interpreted
as the position of particle with label (k,m). The initial condition we consider is a
fully-packed one, which means xmk (0) = k −m− 1 for all k,m.
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Figure 2: Demonstration for the height function, with a random configuration of the
model with n = 40 rows.

The particles evolve according to the following dynamics. At each time t ∈ Z+,
each particle xmk attempts to jump to either left or right by one unit according to some
function Ft, and each particle xmk can be pushed by lower ones or be blocked by lower
ones. Define the height function as h(x,m, t) = card{k|xmk (t) > x}. Intuitively, we
can describe the anisotropy as follows: particles with smaller upper indices are heavier
than those with larger upper indices, so that the heavier particles block and push the
lighter ones in order to preserve the interlacing conditions.

To analyze the properties of such random point processes, let us start with introduc-
ing some definitions given in [4] and [14].

Definition 2.1. We call a subset of X as a point configuration, and define Conf(X )
to be the space of point configurations in X ; we call a relatively compact subset A of X
a window, and for a window A, define NA: Conf(X ) → N0 by NA(X) = card(X ∩A).
Put the smallest Borel measure on Conf(X ) such that these functions are measurable. A
random point process is a probability measure on Conf(X ).

Definition 2.2. For a finite subset A ⊂ X , the correlation function of A is

ρ(A) = Prob{X ∈ Conf(X )|A ⊂ X}.

For A = {x1, · · · , xn}, we write ρ(A) = ρn(x1, · · · , xn), which is a symmetric function
on X n.

Definition 2.3. A point process on X is determinantal if there is a kernel K : X×X →
C such that

ρn(x1, · · · , xn) = det[K(xi, xj)]
n
i,j=1, (2.1)

where K(x, y) is called the correlation kernel.
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For m = 1, · · · , n, let Xm denote the set of particles {xm1 , · · · , xmm}, and Pm be a
stochastic matrix defining a Markov chain on Xm, and let Λ2

1, · · · ,Λnn−1 be Markov links
between these sets:

Pk : Xk ×Xk → [0, 1],
∑
y∈Xk

Pk(x, y) = 1, x ∈ Xk, k = 1, · · · , n;

Λkk−1 : Xk ×Xk−1 → [0, 1],
∑

y∈Xk−1

Λkk−1(x, y) = 1, x ∈ Xk, k = 2, · · · , n.

We expect these matrices to satisfy the commutation relations:

∆k
k−1 := Λkk−1Pk−1 = PkΛ

k
k−1, , k = 2, · · · , n, (2.2)

The commutation relations can be provided using Toeplitz-like transition probabilities.

Proposition 2.1. Choose n nonzero complex numbers α1, · · · , αn, and let F (z) be an
analytic function in an annulus center at 0 that contains each α−1

i , and that F (α−1
i ) 6= 0.

Then

1∏n
i=1 F (α−1

i )

∑
{y1<···<yn}⊂Z

det(α
yj
i )ni,j=1 det(f(xi − yj))ni,j=1 = det(α

xj
i )ni,j=1,

where f(m) = 1
2πi

∫
dz z−(m+1)F (z), or equivalently, F (z) =

∑
m∈Z f(m)zm.

Assume yn is virtual with f(xk − virt.) = αxkn . Then

1∏n−1
i=1 F (α−1

i )

∑
{y1<···<yn}⊂Z

det(α
yj
i )n−1

i,j=1 det(f(xi − yj))ni,j=1 = det(α
xj
i )ni,j=1.

See proof in [1].

Definition 2.4. Set X = (x1 < · · · < xn) and Y = (y1 < · · · < yn), Y ′ = (y1, · · · , yn−1, yn =
virt.). Define the Toeplitz matrix of F as (f(i−j))i,j∈Z, and Toeplitz-like transition
probability

Tn(α1, · · · , αn;F )(X,Y ) :=
1∏n

i=1 F (α−1
i )

det(f(xi − yj))ni,j=1

det(α
yj
i )ni,j=1

det(α
xj
i )ni,j=1

, (2.3)

Tnn−1(α1, · · · , αn;F )(X,Y ′) :=
1∏n−1

i=1 F (α−1
i )

det(f(xi − yj))ni,j=1

det(α
yj
i )n−1

i,j=1

det(α
xj
i )ni,j=1

. (2.4)

The last fraction of equation (2.3) is called Doob’s h-transform.

We have some nice properties for Toeplitz-like transition probability: let F1, F2 be
two holomorphic functions in an annulus with Fi(α

−1
j ) 6= 0, then

Tn(F1)Tn(F2) = Tn(F2)Tn(F1) = Tn(F1F2), (2.5)

Tn(F1)Tnn−1(F2) = Tnn−1(F1)Tn−1(F2) = Tnn−1(F1F2). (2.6)

From [1], we have the following two lemmas (see [1] for their proofs):
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Lemma 2.1. Consider F (z) = 1 + pz, that is,

f(m) =


p, m = 1,

1, m = 0,

0, otherwise

.

For integers x1 < · · · < xn and y1 < · · · < yn, we have

det[f(xi − yj)]ni,j=1 = p
∑n
i=1(xi−yi)

n∏
i=1

1{0,1}(xi − yi).

Lemma 2.2. Consider F (z) = (1− qz)−1, that is

f(m) =

{
qm, m ≥ 0,

0, otherwise
.

For integers x1 < · · · < xn and y1 < · · · < yn,

det[f(xi − yj)]ni,j=1 =

{
q
∑n
i=1(xi−yi), xi−1 < yi ≤ xi, 1 ≤ i ≤ n,

0, otherwise;

for integers x1 < · · · < xn and y1 < · · · < yn−1, and yn = virt. such that f(x− virt.) =
qx,

det[f(xi − yj)]ni,j=1 =

{
(−1)n−1q

∑n
i=1 xi−

∑n−1
i=1 yi , xi < yi ≤ xi+1, 1 ≤ i ≤ n− 1,

0, otherwise.

Now we continue to discuss the multivariate Markov chains with the Toeplitz matrices
which are tools to give the commutation relations (2.2) via relations (2.5), (2.6). Take

Λkk−1 = T kk−1(α1, · · · , αk; (1− αkz)−1), k = 2, · · · , n,
Pm(t) = Tm(α1, · · · , αm;Ft(z)), m = 1, · · · , n,

where Ft(z) = (1+β+
t z) or (1+β−t /z) or (1−γ+

t z)
−1 or (1−γ−t /z)−1, on the sequential

update state space

S(n)
Λ =

{
(x1, · · · , xn) ∈ S1 × · · · × Sn|

n∏
m=2

Λmm−1(xm, xm−1) > 0
}

=
{
{xmk }m=1,··· ,n

k=1,··· ,m
⊂ Z

n(n+1)
2 |xm+1

k < xmk ≤ xm+1
k+1

}
,

with transition probabilities as (using notation Xn = (x1, · · · , xn), Yn = (y1, · · · , yn))

P
(n)
Λ (Xn, Yn) =

P1(x1, y1)
∏n
k=2

Pk(xk,yk)Λkk−1(yk,yk−1)

∆k
k−1(xk,yk−1)

,
∏n
k=2 ∆k

k−1(xk, yk−1) > 0

0, otherwise.

(2.7)
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We choose α1 = · · · = αn = 1, and assume

β±t , γ
±
t > 0, γ+

t < min{α1, · · · , αn} = 1, γ−t < min{α−1
1 , · · · , α−1

n } = 1. (2.8)

The dynamics on S(n)
Λ can be described as follows. Given {xmk (t)} ∈ SnΛ, to obtain

{xmk (t + 1)}, we perform the sequential update from X1 to Xn. When we are at Xm,
1 ≤ m ≤ n, the new positions of the particles xm1 < · · · < xmm are decided independently.
Here we summarize the results directly following from [1]:

(A) For Ft(z) = (1 + β+
t z) , xmk either is forced to stay if xm−1

k−1 (t + 1) = xmk (t), or

is forced to jump to the left by 1 if xm−1
k (t+ 1) = xmk (t), or chooses between staying or

jumping to the left by 1 with probability of staying as 1/(1 + β+
t ).

(B) For Ft(z) = (1 + β−t /z), x
m
k either is forced to stay if xm−1

k (t + 1) = xmk (t) + 1,
or is forced to jump to the right by 1 if xm−1

k−1 (t + 1) = xmk (t) + 1, or chooses between

staying or jumping to the right by 1 with probability of staying as 1/(1 + β−t )
(C) For Ft(z) = (1 − γ+

t z)
−1, xmk chooses its new position according to a geometric

random variable with parameter 1/γ+
t conditioned to stay in the segment

[max(xmk−1(t) + 1, xm−1
k−1 (t+ 1)),min(xmk (t), xm−1

k (t+ 1)− 1)].

(D) For Ft(z) = (1− γ−t /z)−1, xmk chooses its new position according to a geometric
random variable with parameter γ−t conditioned to stay in the segment

[max(xmk (t), xm−1
k−1 (t+ 1)),min(xmk+1(t)− 1, xm−1

k (t+ 1)− 1)].

Remark 2.1. Note that there is another type of update scheme, parallel update, which
has the same correlation functions as sequential update Markov chains. For more details
about parallel update, see [1].

3 Main results

3.1 Limit shape of the growing surface

One main result of [1] is that, in the continuous-time model, the growing surface in the
(ν, η,h)−space has a limit shape consisting of facets interpolated by a curved piece. Here
we otain a similar result for discrete-time model, which is the expression (3.21).

First we would like to quantitatively describe our model in languages introduced in
Section 2. Taking the element xj of X in definition 3 to be of form κj = (yj ,mj .tj) ∈
Z× {1, · · · , n} × N0, or Z× {1, · · · , n} × R≥0, j = 1, · · · ,M , the correlation function

ρM (κ1, · · · ,κM ) =

Prob{For j = 1, · · · ,M there exists a 1 ≤ kj ≤ mj such that x
mj
kj

(tj) = yj}.

As in [1] and [3], we introduce a partial order on pairs (m, t) ∈ {1, · · · , n} × N0 or
{1, · · · , n} × R≥0:

(m1, t1) ≺ (m2, t2) iff m1 ≤ m2, t1 ≥ t2 and (m1, t1) 6= (m2, t2). (3.1)
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From [1], we have the following theorem

Theorem 3.1. Consider the Markov chain P
(n)
Λ with the densely packed initial condi-

tion and Ft(z) be one of the four kinds we discuss above. Assume that triplets κj =
(yj ,mj , tj), j = 1, · · · ,M , are such that any two distinct pairs (mi, ti), (mj , tj) are
comparable with respect to ≺. Then

ρM (κ1, · · · ,κM ) = det[K(κi,κj)]Mi,j=1, (3.2)

where

K(y1,m1, t1; y2,m2, t2) = − 1

2πi

∮
Γ0

dw

wy2−y1+1

∏t1−1
t=t2

Ft(w)∏m2
l=m1+1(1− αlw)

1[(m1,t1)≺(m2,t2)]

+
1

(2πi)2

∮
Γ0

dw

∮
Γα−1

dz

∏t1−1
t=0 Ft(w)∏t2−1
t=0 Ft(z)

∏m1
l=1(1− αlw)∏m2
l=1(1− αlz)

wy1

zy2+1

1

w − z
, (3.3)

where the contours Γ0,Γα−1 are closed and positively oriented, and include poles 0 and
{α−1

i }, i = 1, · · · , n, respectively, and no other poles.

In particular, in the cases we consider αi = 1. Define a shifted and conjugate kernel
K by

K(x1, n1, t1;x2, n2, t2) = (−1)n1−n2K(x1 − n1, n1, t1;x2 − n2, n2, t2),

then with change of variables w 7→ 1
1−z , z 7→

1
1−w , and using residue formula for the first

integral in (3.3), we get

K(x1, n1, t1;x2, n2, t2)

=


1

(2πi)2

∮
Γ1
dz
∮

Γ0
dw zn1

wn2
(1−w)x2

(1−z)x1+1
1

w−z

∏t1−1
t=0 Ft(

1
1−z )∏t2−1

t=0 Ft(
1

1−w )
, (n1, t1) ⊀ (n2, t2)

1
(2πi)2

∮
Γ1
dz
∮

Γ0,z
dw zn1

wn2
(1−w)x2

(1−z)x1+1
1

w−z

∏t1−1
t=0 Ft(

1
1−z )∏t2−1

t=0 Ft(
1

1−w )
, (n1, t1) ≺ (n2, t2).

(3.4)

Next step, we want to calculate the limit shape via h(ν, η) := limL→∞ L
−1Eh(ν, η)

when (n1, t1) ≺ (n2, t2). Taking the hydrodynamic limit, and writing xi ' νiL, ni ' ηiL,
ti ' τiL, L→∞, we have the bulk scaling limit (see section 3.2 of [10])

Kbulk(x1, n1, t1;x2, n2, t2) ' 1

(2πi)2

∮ ∮
exp(L(S1(w)− S2(z)))

dzdw

(1− z)(w − z)
(3.5)

=
1

2πi

∫ Ω

Ω
exp(L(S1(w)− S2(w)))

dw

(1− w)
(3.6)

where

Si(u) = −ηi lnu+ νi ln(1− u)− τi ln
(
Ft

( 1

1− u

))
, (3.7)

and the integration contour of 3.6 crosses R+ if (n1, t1) ⊀ (n2, t2), and crosses R− if
(n1, t1) ≺ (n2, t2).
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We want to deform the contours as in [10] so that

Re(S(w)) < S0, Re(S(z)) > S0, for some constant S0. (3.8)

We want to find a domain D of {(ν, η, τ)} in R3
+, such that the x−density, which is

the local average number of particles on unit length in the x−direction, ' −L−1∂h/∂ν, is
asymptotically strictly between 0 and 1. Notice that given (ν1, η1, τ1) = (ν2, η2, τ2) ∈ D,
they correspond to same critical points, and we will show later that L−1Eh(νL, ηL, τL)
has a limit when L tends to infinity for (ν, η, τ) ∈ D, hence we can also view D in
PR3 ∩ R3

+, and identify D in R2
+ via (ν, η, τ) ∼ (ν ′, η′) = (ν/τ, η/τ).

Then we consider the critical points of S(w), that is, roots of S′(w) = 0. As men-
tioned in [14], if both roots r0 ≤ r1 are real, then the triplet κ = (ν, η, τ) is not in the
domain. Here for the four types of Ft mentioned in Section 2 (we first assume β and
γ constant over time and remove the assumption later), we first calculate the critical
points for those κ ∈ DF , and then compute the domain DF . Here we denote the critical
points by Ω,Ω since they are solution of the quadratic equation S′F (w) = 0, and notice
that we can choose Ω to be in H and identify with (|Ω|, |Ω− 1|). It is not hard to check
that Ω is a homeomorphism from the domain D to H, hence it maps ∂D to R.

(A) Ft(z) = 1 + β+z: (ν − η)w2 + (2η + βη − ν − βν − βτ)w − (1 + β)η = 0.

|Ω| =

√
(1 + β+)η

η − ν
, (η > ν), |Ω− 1| =

√
β+(τ + ν)

η − ν
. (3.9)

∆ < 0⇔ (βη − (1 + β)ν − βτ)2 < 4βητ,

D : |
√
β+η −

√
τ | <

√
(1 + β+)(ν + τ) <

√
β+η +

√
τ ; η > τ, ν. (3.10)

(B) Ft(z) = 1 +β−/z: β(ν− η− τ)w2 + ((2β+ 1)η− (1 +β)ν+βτ)w− (1 +β)η = 0.

|Ω| =

√
(1 + β−)η

β−(τ + η − ν)
, (τ + η > ν), |Ω− 1| =

√
ν

β−(τ + η − ν)
. (3.11)

∆ < 0⇔ (η − (1 + β)ν + βτ)2 < 4βτη,

D : |√η −
√
β−τ | <

√
(1 + β−)ν <

√
η +

√
β−τ ; τ + η > ν. (3.12)

(C) Ft(z) = (1− γ+z)−1: (ν − η)w2 + (2η − γη − ν + γν − γτ)w − (1− γ)η = 0.

|Ω| =

√
(1− γ+)η

η − ν
, (η > ν), |Ω− 1| =

√
γ+(τ − ν)

η − ν
, (τ > ν). (3.13)

∆ < 0⇔ (γη + (1− γ)ν + γτ)2 < 4γητ,

D : |
√
γ+η −

√
τ | <

√
(1− γ+)(τ − ν) <

√
γ+η +

√
τ ; η, τ > ν. (3.14)
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Figure 3: the triangle for the critical point in the H defined using |Ω| and |1− Ω|

(D) Ft(z) = (1−γ−/z)−1: γ(η−ν−τ)w2 +((1−2γ)η−(1−γ)ν+γτ)w−(1−γ)η = 0.

|Ω| =

√
(1− γ−)η

γ−(τ − η + ν)
, (τ + ν > η), |Ω− 1| =

√
ν

γ−(τ − η + ν)
. (3.15)

∆ < 0⇔ (η − (1− γ)ν + γτ)2 < 4γτη,

D : |√η −
√
γ−τ | <

√
(1− γ−)ν <

√
η +

√
γ−τ ; τ + ν > η. (3.16)

Let us denote the angles of the triangle of vertices 0,1,Ω in H as in figure 3. Then
we take S0 in (3.8) to be ReS(Ω), and by (3.6), write

K(x1, n1, t1;x1, n1, t1) =
1

2πi

∫ Ω

Ω

1

1− w
dw =

1

2πi

∫ 1−Ω

1−Ω

1

u
du. (3.17)

Then by theorem 3.1, we have

ρ(x, n, t) = det[K(x, n, t;x, n, t)] = K(x, n, t;x, n, t)

=
1

2πi

∫ 1−Ω

1−Ω

du

u
=
− arg(1− Ω)

π
=
θ2

π
, (3.18)

hence

h(ν, η, τ) = lim
L→∞

1

L
Eh([νL], [ηL], [τL]) = lim

L→∞

1

L

∑
[νL]+ 1

2

K(x+ n, n, t;x+ n, n, t)

=
−1

π

∫ ∞
ν

arg(1− Ω(ν, η, τ))dν1 =
−1

π

∫ u

ν
arg(1− Ω(ν, η, τ))dν1, (3.19)

where u is an upper bound for ν so that Ω is in the domain.

Remark 3.1. By its homogeneity, we observe that

(ν
∂

∂ν
+ η

∂

∂η
+ τ

∂

∂τ
)h = h. (3.20)
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Using the method mentioned in [14], we can obtain

Theorem 3.2.

h(ν, η, τ) =
1

π

(
−νθ2 + η(π − θ1) + τvF

)
, (3.21)

where vF denotes the growing velocity v corresponding to different functions F .

Proof. Using the kernel in (3.4) and taking partial derivatives, by (3.7) we have

S′(Ω) = − η
Ω
− ν

1− Ω
− τ

F ′t

(
1

1−Ω

)
Ft

(
1

1−Ω

) ,
S′′(Ω)

∂Ω

∂ν
+

1

1− Ω
= 0,

S′′(Ω)
∂Ω

∂η
+

1

Ω
= 0,

S′′(Ω)
∂Ω

∂τ
+
F ′t

(
1

1−Ω

)
Ft

(
1

1−Ω

) = 0,

(1−Ω)Ων = ΩΩη =
Ft

(
1

1−Ω

)
F ′t

(
1

1−Ω

)Ωτ , (3.22)

and the first equality of (3.22) gives the complex Burgers equation, cf. [1], [9].
Taking partial derivatives with respect to (3.19), we get

hν =
arg(1− Ω)

π
= −θ2

π
(3.23)

hη =Im
1

π

∫ u

ν

1

1− Ω
Ωηdν = Im

1

π

∫ u

ν

Ων

Ω
dν

=
1

π
Im ln(Ω)|uν =

1

π
(π − θ1). (3.24)

v = Im
1

π

∫ u

ν

1

1− Ω
Ωτdν = Im

1

π

∫ u

ν

F ′t

(
1

1−Ω

)
Ft

(
1

1−Ω

)Ωνdν. (3.25)
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Figure 4: triangle to describe the discrete-time growth velocity v

We compute v for the four cases. (For the angles, see figure 4).

(A) : v = Im
1

π

∫ u

ν

β+

(1− Ω)(β+ + 1− Ω)
Ωνdν

= Im
1

π

∫ u

ν

(
1

1− Ω
− 1

β+ + 1− Ω

)
Ωνdν

=
1

π
arg(1− Ω)− 1

π
arg(β+ + 1− Ω) =

θ4 − θ2

π
; (3.26)

(B) : v = Im
1

π

∫ u

ν

−1
1
β− + 1− Ω

Ωνdν

=
−1

π
arg

(
1

β−
+ 1− Ω

)
=
θ5

π
; (3.27)

(C) : v = Im
1

π

∫ u

ν

(
1

1− γ+ − Ω
− 1

1− Ω

)
Ωνdν

=
1

π
arg(1− γ+ − Ω)− 1

π
arg(1− Ω) =

θ2 − θ6

π
; (3.28)

(D) : v = Im
1

π

∫ u

ν

1

1− 1
γ− − Ω

Ωνdν

=
1

π
arg

(
1− 1

γ−
− Ω

)
=
θ7 − π
π

. (3.29)

Notice that the Ω’s under different functions F are different. As a result of the above
and remark 3.1, we prove (3.21).

Remark 3.2. By calculating the Hessians of v(hν ,hη) with respect to texthν , texthη,
we conclude that the discrete-time growth models we consider are in AKPZ class. See
[16].

By theorem 3.2, we know the limit shape of the growing surface. Our next goal is
to study the fluctuation of the surface, that is, the fluctuation of the height function.

12



To do this, we need to introduce some notions of Gaussian free field, cf. [11]. In the
previous theorem, we show that the height function grows with L in order 1; in contrast,
our later result will show that the variance of the height function at a given point grows
logarithmically with L.

Remark 3.3. Now we relax the assumption that β and γ fixed over time, and reduce
the new case to the case with time-fixed β, γ by setting

F̃ (z) =

 t∏
j=1

Fj(z)

1/t

, (3.30)

for example for Ft(z) = 1 + β+
t (z), we let F̃ (z) = 1 + β̃+(z) :=

(∏t
j=1(1 + β+

j (z))
)1/t

.

(The expression (3.30) seems more natural when we are considering the continuous time,
which can be viewed as the derivative of a strictly increasing function.)

Next, inspired by [5], we consider a mixture of the four growth models above.

Remark 3.4. At each time t ∈ N, we randomly choose F to be one of the form 1+β+z,
1 + β−/z, (1 − γ+z)−1, (1 − γ−/z)−1 with equal probability (of course we can choose
different probability; the idea is the same as the argument below, all to do is to put
different weight on F ’s). We have our newly defined F and (3.7) as

F (z) =
(
(1 + β+z)(1 + β−/z)((1− γ+z)−1)((1− γ−/z)−1)

)1/4
S(u) = −η lnu+ ν ln(1− u)− τ ln

(
F
( 1

1− u

))
Using the method we used for calculating Ω and D for cases (A), (B), (C), (D), we can
obtain the corresponding critical points and domain for our newly defined mixture model.
We can also compute the limit shape. hν and hη are defined in terms of Ω as in (3.23),
(3.24), and for integral (3.25), note that

F ′( 1
1−Ω)

F ( 1
1−Ω)

=

(
lnF

(
1

1− Ω

))′
=

1

4

∑
A,B,C,D

F ′( 1
1−Ω)

F ( 1
1−Ω)

hence with the figure 3 for the new critical point Ω, we have

v =
θ4 + θ5 − θ6 + θ7 − π

4π

Combine with Remark 3.3, we obtain the limit shape for a general class of growth model.

Dealing with more general Ft(z) in the discrete-time model by letting β and γ vary
over time and alternatively choosing one of the four Ft’s at time t ∈ N , is technically
harder- it is harder to establish the convergence of the Markov chains. we need We will
briefly discuss the continuous analog of alternating step Markov chain in Section 4.
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3.2 Gaussian fluctuations and Gaussian free field

Denote the Laplace operator on H with Dirichlet boundary conditions by ∆ and take the
Sobolev space W0(H) (later simply denoted W0) as the completion of C∞c (H) equipped
with Dirichlet inner product [11]

(φ1, φ2)∇ =

∫
H
∇φ1 · ∇φ2 ∼ −

∫
H
φ1∆φ2 = (φ1,−∆φ2). (3.31)

with “ ∼ ” to be “ = ” if φ2 is smooth.

Definition 3.1. [11](definition 12) The Gaussian free field on H, denoted GFF (H),
is any Gaussian Hilbert space G(H) of random variables denoted by {〈F, φ〉∇}− one
variable for each φ ∈ W0− that inherits the Dirichlet inner product structure of φW0,
also called the covariance structure, namely,

E[〈F, φ1〉∇〈F, φ2〉∇] = (φ1, φ2)∇. (3.32)

Consider h as a function on (ν ′, η′), so h − Eh becomes ht − Eht = h(x,m, t) −
Lh(ν ′, η′, 1), where (x,m, t) = ([νL, [ηL], [τL]), hence ht−Eht, as a function of (x,m) ∈
Z × N, has a discrete domain. We restrict the test functions to those in C2

c (H), and
define a discretization of the inner product (3.31):

〈F, φ〉 := 〈F, φ〉∇ = −
√
π

L2

∑
(x,m)∈LD

F (x,m)∆φ(Ω(x/L,m/L))J(x/L,m/L), (3.33)

where J = JΩ is the Jacobian of the map Ω : D → R2
+, F : Z× N→ R and φ ∈ C2

c (H).
Then using the techniques in [13] dealing with linear statistics, we can show the

following result

Theorem 3.3. Let φ ∈ C2
c (H), and h be defined as above. Then with the discretization

〈·, ·〉 given in (3.33),

lim
L→∞

E[exp iξ〈ht − Eht, φ〉] = e−
‖φ‖2∇ξ

2

2 . (3.34)

Hence, as L→∞, the pushforward of the random surface defined by Ht :=
√
π(ht−Eht)

under Ω converges to GFF (H) (see [11](proposition 2.13)).

Denote the Green function of the Laplace operator on H with Dirichlet boundary
conditions by G(·, ·), where

G(z, w) = − 1

2π
ln

∣∣∣∣z − wz − w̄

∣∣∣∣ . (3.35)

As mentioned in Section 1.3 of [7], an alternative description of the Gaussian free field
is that it is the unique Gaussian process which satisfies

E(F (x1), F (x2)) = G(x1, x2). (3.36)

By a general result about Gaussian free field, mentioned in [11], and the first chapter of
[17], we get the correlations along the space-like path.
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Corollary 3.1. For any N = 1, 2, · · · , let κj = (ν ′j , η
′
j) ∈ D be any distinct N points.

Denote the critical points of different κj by Ωj = Ω(ν ′j , η
′
j). Then

lim
L→∞

E(
N∏
j=1

Ht(κj)) =

{
0, N is odd,∑

σ∈FN
∏N/2
j=1 G

(
Ωσ(2j−1),Ωσ(2j)

)
, N is even,

where FN denotes the set of (2n− 1)!! pairings of the indices.

Remark 3.5. Note that theorem 1.3 in [1] is more general in the sense that it can
describe the correlations of height functions at different time.

Actually, we can deal with the correlations of height functions evaluated at different
time using Duits’ method [13]. Since Duits’ arguments are based on the determinan-
tal structure of the correlation functions, and we have the determinantal structure by
theorem 3.1 already.

We have a discretization form of inner product similar to (3.33): for φ ∈ C2
c (H),

〈F, φ〉 := 〈F, φ〉∇ = −
√
π

L2

∑
(x,m,t)∈LD

F (x,m, t)∆φ(Ω(x/L,m/L, t/L))J(x/L,m/L, t/L),

(3.37)
where J = JΩ is the Jacobian of Ω : D → R2

+, F : Z× N× Z≥0 → R and φ ∈ C2
c (H).

We have theorems similar to theorem 3.3 and corollary 3.1.

Theorem 3.4. Let φ ∈ C2
c (H), and h be the height function defined in Section 2. Then

lim
L→∞

E[exp iξ〈h− Eh, φ〉] = e−
‖φ‖2∇ξ

2

2 . (3.38)

As L→∞, the pushforward of the random surface defined by HL(ν, η, τ) :=√
π(h([νL], [ηL], [τL])− Eh([νL], [ηL], [τL])) under Ω converges to GFF (H), with

τ1 ≤ τ2 ≤ · · · ≤ τN , η1 ≥ η2 ≥ · · · ≥ ηN .

In particular, at a given point, HL is centered Gaussian with O(lnL) fluctuations.

As a corollary, we have a counterpart for theorem 1.3 in [1]

Theorem 3.5. For any N = 1, 2, · · · , let κj = (νj , ηj , τj) ∈ D be any distinct N triples
such that

τ1 ≤ τ2 ≤ · · · ≤ τN , η1 ≥ η2 ≥ · · · ≥ ηN , (3.39)

and denote
Ωj = Ω(νj , ηj , τj).

Then

lim
L→∞

E(

N∏
j=1

HL(κj)) =

{∑
σ∈FN

∏N/2
j=1 G

(
Ωσ(2j−1),Ωσ(2j)

)
, N is even

0, N is odd
(3.40)

where FN denotes the set of all pairings on [N ].
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Notice that condition (3.39) is sufficient for the determinantal structure (3.2) to hold,
and that theorem 3.3 and 3.4 has the same proof except that theorem 3.3 is dealing with
kernel defined on two-dimensional spaces and that we need to be more careful when
proving theorem 3.4.

3.3 Proof of theorem 3.4

Now let’s start to prove theorem 3.4 using the methods in [13]. To do this, we may
consider the limit behavior of Var 〈h−Eh, φ〉. And we need the following constructions,
which are the modifications of the sketch of proof in [13].

Definition 3.2. For f : Z×N×N0 → R with finite support, define the linear statistics
(random variables) Xf by

Xf =
∑

(x,m,t)∈C

f(x,m, t), (3.41)

where C is a random configuration. With kernel K given in (3.4), by definition 3,

EXf =
∑

(x,m,t)∈Z×N×N0

f(x,m, t)K(x,m, t;x,m, t) (3.42)

VarXf =
∑

(x,m,t)∈Z×N×N0

f(x,m, t)2K(x,m, t;x,m, t)−

∑
(x1,m1,t1)∈Z×N×N0,
(x2,m2,t2)∈Z×N×N0

f(x1,m1, t1)f(x2,m2, t2)K(x1,m1, t1;x2,m2, t2)K(x2,m2, t2;x1,m1, t1).

(3.43)

Lemma 3.1.∑
x2∈Z

K(x1,m1, t1;x2,m2, t2)K(x2,m2, t2;x1,m1, t1) = K(x1,m1, t1)δm1,m2δt1,t2 , (3.44)

for (x1,m1, t1) ∈ Z × N × N0, and (m2, t2) ∈ N × N0, and either (m1, t1), (m2, t2) com-
parable under relation ≺ (see (3.1)), or (m1, t1) = (m2, t2).

Remark 3.6. Before proving lemma 3.1, we note that this lemma does not deal with
all triples in Z × N × N0, while a similar lemma in [13] deal with all doublets in Z ×
N. Nevertheless, all our future tasks deal with either the variance of HL at a point
(corresponding to coinciding (m1, t1), (m2, t2)) or covariance of HL’s at multiples points
satisfying the relation (3.39) (corresponding to the case when (mi, ti)’s are comparable
under ≺), lemma 3.1 works for all cases we consider.

Proof. Write kernel K as (3.4) with Ft ≡ F for one of the four types we discussed earlier,
and αl ≡ 1.

(I) If m1 ≥ m2, t1 ≤ t2, we deform Γ1 so that it contains Γ0. Due to (w − z)−1,
we pick up a residue that gives a single integral over Γ0. In this case, the integrand of
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the single integral has no pole inside Γ0, so it vanishes and we are left with the double
integral only.

(II) If m1 < m2, t1 ≥ t2, or if m1 = m2, t1 > t2, we deform Γ0 so that it contains Γ1,
which is exactly the form (3.4) for (m1, t1) ≺ (m2, t2).

So we can rewrite (3.4) for this case as (with the contours further extended)

K(x1,m1, t1;x2,m2, t2) =
1

(2πi)2

∮
Γ′1

dz

∮
Γ′0

dw
(F ( 1

1−z ))t1

(F ( 1
1−w ))t2

zm1

wm2

(1− w)x2

(1− z)x1
1

(1− z)(w − z)
,

(3.45)
where Γ′1 contains Γ′0, and Γ′0 also contains Γ1 if m1 > m2, t1 ≤ t2 or if m1 = m2, t1 ≤ t2;
Γ′0 contains Γ′1, and Γ′1 also contains Γ0 if m1 < m2, t1 ≥ t2, or if m1 = m2, t1 > t2.

The sum is over terms ( 1−w
1−z′ )

x2 , where (w, z), (w′, z′) are the coordinate systems of
the kernels K(x1,m1, t1;x2,m2, t2), K(x2,m2, t2;x1,m1, t1) respectively, and we have∑
x2∈Z

1

(2πi)2

∮ ∮
F ( 1

1−z′ )
t2

F ( 1
1−w )t2

z′m2

wm2

(1− w)x2

(1− z′)x2+1

dwdz′

(w − z)(w′ − z′)
=

1

2πi

∮
Γ′0

dw

(w − z)(w′ − w)
.

(3.46)
The r.h.s vanishes if w′ and z are on the same side with respect to contour Γ′0, that is
precisely when m1 6= m2 or m1 = m2 with t1 6= t2. Thus we prove (3.44) for the case
when δm1,m2δt1,t2 = 0. Finally, if m1 = m2, t1 = t2, w′ is in the region enclosed by Γ′0,
and hence the l.h.s of (3.44), by using (3.46) and taking the residue at w = w′, which is

1

(2πi)3

∮
Γ0

dw′
∮

Γ′1

dz

∮
Γ′0

dw
F ( 1

1−z )t1

F ( 1
1−w′ )

t1

zm1

w′m1

(1− w′)x1
(1− z)x1+1

1

(w − z)(w′ − w)

=
1

(2πi)2

∮
Γ0

dw′
∮

Γ′1

dz
F ( 1

1−z )t1

F ( 1
1−w′ )

t1

zm1

w′m1

(1− w′)x1
(1− z)x1

1

(1− z)(w′ − z)
,

where Γ0 contains Γ′1, which is K(x1,m1, t1;x1,m1, t1) by (3.4).

As the diagonal of K2 agree with K, we can rewrite the variance of linear statistic
as follows

Proposition 3.1. Denote by D the difference operator such that Df(x,m) = f(x,m)−
f(x− 1,m) for real-valued function f defined on Z× N. Then

VarXf =
∑

(x1,m1,t1)∈Z×N×N0,
(x2,m2,t2)∈Z×N×N0

Df(x1,m1, t1)Df(x2,m2, t2)R(x1,m1, t1;x2,m2, t2),

(3.47)
where R (y1, n1, s1; y2, n2, s2)

=

{∑
x1≥y1

∑
x2<y2

K(x1, n1, s1;x2, n2, s2)K(x2, n2, s2;x1, n1, s1), y1 ≥ y2,∑
x1<y1

∑
x2≥y2 K(x1, n1, s1;x2, n2, s2)K(x2, n2, s2;x1, n1, s1), y1 < y2.

(3.48)
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Using the definition of the ht in the comments under definition 5, and letting φ ∈
C2
c (H), we can rewrite 〈h, φ〉 as Xf , where

f(x,m, t) = −
√
π

L2

∑
y≤x

(y,m,t)∈LD

∆φ (Ω(y/L,m/L, t/L)) J(y/L,m/L, t/L). (3.49)

To describe Var 〈h, φ〉, we need one further lemma from [13], where we need to check
its validity since our R is defined for different kernel K, see remark at the end of the
section.

Lemma 3.2. Fix δ > 0, and set xi = [Lνi], mi = [Lηi], ti = [Lτi], i = 1, 2. Then for

(νi, ηi, τi)’s lie in some compact subset of D and ‖(ν1, η1, τ1)− (ν2, η2, τ2)‖ ≥ L−
1
2

+δ,

lim
L→∞

R(x1,m1, t1;x2,m2, t2) =
1

π
G (Ω(ν1, η1, τ1),Ω(ν2, η2, τ2)) ∼ O(lnL)

Combining proposition 3.1 with lemma 3.2, we obtain the limit of Var 〈h− Eh, φ〉:

Proposition 3.2. Let h be the height function, φ ∈ C2
c (H), and 〈·, ·〉 defined as (3.37),

and let ‖ · ‖∇ denote the Sobolev norm induced by (3.31). Then

lim
L→∞

Var 〈h− Eh, φ〉 = ‖φ‖2∇. (3.50)

Proof. (Slightly modified from [13]) Writing 〈h, φ〉 as Xf . By (3.49), we have Df =

−
√
π

L2 ∆φ. And using proposition 3.1 and lemma 3.2, we obtain

lim
L→∞

Var 〈h− Eh, φ〉 = lim
L→∞

VarXf

=− lim
L→∞

π

L4

∑∑
∆φ(Ω1)∆φ(Ω2)R(ν1, η1, τ1; ν2, η2, τ2)J(ν1, η1, τ1)J(ν2, η2, τ2)

=−
∫
· · ·
∫

∆φ(Ω1)∆φ(Ω2)G(Ω1,Ω2)J(ν1, η1, τ1)J(ν2, η2, τ2)dν1dη1dτ1dν2dη2dτ2

=−
∫∫

H×H
∆φ(Ω1)∆φ(Ω2)G(Ω1,Ω2)dm(Ω1)dm(Ω2)

=−
∫
H
φ(Ω)∆φ(Ω)dm(Ω) = ‖φ‖2∇.

where dm denotes the planar Lebesgue measure, and the second last equality follows
from the fact that G is the Green’s function for the Laplace operator on H with Dirichlet
boundary conditions.

The strategy of proving theorem 3.4 is to use cutoff to reduce the case to functions
with bounded support. Writing 〈h, φ〉 as Xf with f in the form (3.49), we observe that
supp(f) is unbounded. Following [13], we split the function as

f = f1 + f2, with f2 = fχDε , (3.51)
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where χ for characteristic function, Dε = {(ν, η, τ) ∈ D|Im Ω(ν, η, τ) > ε}, so that f2 has
bounded support, and ε small enough so that Dε contains supp(∆φ ◦ Ω).

By [13], we have the following two results: variance of Xf1 tends to zero as ε → 0;

limL→∞

(
E
(
eiξ(Xf2−EXf2 )

)
− e−

1
2
ξ2VarXf2

)
= 0 uniformly for ξ in compact subsets of

C. We take the first result for grant since it does not depend on the actual expression
of the kernel K nor the corresponding R:

Lemma 3.3. For ε > 0, and f1 defined as (3.51). There exists a positive function gφ
with limε↘0 gφ(ε) = 0, such that

lim sup
L→∞

VarXf1 ≤ (gφ(ε))2.

The second result is restated below:

Proposition 3.3.

lim
L→∞

(
E
(
eiξ(Xf2−EXf2 )

)
− e−

1
2
ξ2VarXf2

)
= 0

uniformly for ξ in compact subsets of C.

To prove theorem 3.4, using (3.49), it suffices to show that

lim
L→∞

E exp(iξ(Xf − EXf )) = exp

(
−
ξ2‖φ‖2∇

2

)
, t ∈ R.

Split f = f1 + f2, and write Yfi := Xfi − EXfi , it suffices to show that

|E exp(iξYf )− E exp(iξYf2)| −→ 0, (3.52)∣∣∣∣E exp(iξYf2)− exp(−1

2
ξ2VarYf2)

∣∣∣∣ −→ 0, (3.53)∣∣∣∣exp(−1

2
ξ2VarYf2)− exp

(
−
ξ2‖φ‖2∇

2

)∣∣∣∣ −→ 0. (3.54)

(3.52) follows from the l.h.s is bounded by ξ
√

VarYf1 , which by lemma 3.3, tends to 0,
when ε → 0; (3.53) follows from proposition 3.3; (3.54) is a result of proposition 3.2,

since lim supL→∞ |VarYf2 − VarYf |
ε↘0−−→ 0 using Cauchy-Schwartz inequality, and then

use limL→∞VarYf = ‖φ‖2∇. Hence we prove theorem 3.4.

Remark 3.7. Note that lemma 3.2 and proposition 3.3 are based on some further
asymptotic analysis of kernel K and the corresponding R. Writing (F (w))t in (3.4)
as et ln(F (w)), the analysis in [13] actually works for our case as well. The basic idea is
to rewrite (3.4) as two parts I1 + I2 similar to (3.5) by taking the L limit, with S defined
as (3.7):

I1 =
1

2πi

∫ ζ

ζ
exp(L(S1(w)− S2(w)))

dw

1− w

I2 =
1

(2πi)2

∮
Γ1

∮
Γ0

exp(L(S1(w)− S2(z)))
dw

(1− z)(w − z)
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where ζ and ζ ′ are the two intersection points of the steepest descent path Γ0 and Γ1

(meaning Re(S1(ζ)− S1(Ω1))−Re(S2(ζ)− S2(Ω2))), and the direction of the integration
contour of I1 is given in (3.6).

Note that the function “S” in our paper has the same utility as function “F” in [13];
S is well behaved in Ω(D) (e.g., S′′(Ω) is bounded from below), and the expressions of S
and Duits’ F are quite similar.

To prove lemma 3.2, first write R as a quadruple integral, and apply the technique
in the proof of lemma 3.1 to discuss the contours. Next rewrite the quadruple integral in
scaling limit. For details, see [13].

4 Continuous case

The continuous-time anisotropic 2-dimensional growth model can be described as follows:
consider a Markov chain on the state space of interlacing variables

S(n) =
{
{xmk }m=1,··· ,n

k=1,··· ,m
⊂ Z

n(n+1)
2 |xm+1

k < xmk ≤ xm+1
k+1

}
, n ∈ Z+,

where the double-indexed xmk (which also refers to the particle itself) can be interpreted
as the position of particle with label (k,m). The initial condition we consider is fully-
packed, that is xmk (0) = k −m− 1 for all k,m.

The particles evolve according to the following dynamics. Each of the particles xmk
has an independent exponential clock of rate one. When the xmk −clock rings, the particle
attempts to jump to the right by one: if xmk = xm−1

k − 1, then the jump is blocked; else
we find the largest c ≥ 1 such that xmk = xm+1

k+1 = · · · = xm+c−1
k+c−1 and all these c particles

jump to the right by one.
Similarly to the discrete case, for a triplet κ = (ν, η, τ) in the (2+1)-dimensional

space-time in the continuous model, we consider h([(ν − η)L] + 1
2 , [ηL], τL), where the

brackets stand for the floor function. Define the x−density as the local average number
of particles on unit length in the x−direction. Then for large L, one expects the density
to be L−1∂νh. And it is known that the domain D ∈ R3

+, where the x−density of our
system is asymptotically in (0, 1) is given by |

√
τ − √η| <

√
ν <

√
τ +
√
η, that is we

have map our κ to the upper complex plane by Ω : D → H such that |Ω(ν, η, τ)| =√
η/τ , |1 − Ω(ν, η, τ)| =

√
ν/η. The preimage of any point in Ω(D) is a ray in D with

constant ratios (ν : η : τ). The limit shape h(κ) satisfies h(ακ) = αh(κ) for any α > 0,
that is, the height function grows linearly in time along the array, where

h(κ) := lim
L→∞

Eh([(ν − η)L] + 1
2 , [ηL], τL)

L
.

The velocity of surface growth, ∂τh =: v depends on the two macroscopic slopes
hν := ∂νh, hη := ∂ηh. The anisotropy comes from the fact that the Hessian of
v = v(hν ,hη) is strictly negative for (ν, η, τ) ∈ D.

Continuous Case as the Limit of the Discrete Case
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As mentioned in [1], the above continuous process can be realized as a limit of the
discrete-time analog (B), (D) by taking β−, γ− → 0 for the Toeplitz Ft(z) = (1 + β−/z)
or (1 − γ−/z)−1 respectively, and then the transition probability of the Markov chain
generated by Tm(α1, · · · , αm; 1+β−/z) converge to (similar for the case in which Ft(z) =
(1− γ−/z)−1)

lim
β−→0

(Tm(α1, · · · , αm; 1 + β−/z))[t/β−](Xm, Ym) by (2.3)

=
det(α

yj
i )ni,j=1

det(α
xj
i )ni,j=1

det
(
tyi−xj1(yi − xj ≥ 0)/(yi − xj)!

)m
i,j=1

exp(t
∑m

i=1 αi)
.

Remark 4.1. In the view of our formalized discrete-analog setting, the continuous case
is equivalent to extending the domain of t to be R≥0, and (F (z))t = exp(t/z), that is,
Ft(z) ≡ exp(1/z). Factoring out et1−t2 in (3.4), we have an alternative form for (3.7)

S(w) = −η lnw + ν ln(1− w) + τw,

then the corresponding domain, critical points, expressions for (3.25), and (3.21) are

D :|√η −
√
τ | <

√
ν <
√
η +
√
τ , (4.1)

|Ω(ν, η, τ)| =
√
η/τ , |1− Ω(ν, η, τ)| =

√
ν/τ , (4.2)

v =Im
1

π

∫ ∞
ν
−Ωνdν =

1

π
Im Ω, (4.3)

h(ν, η, τ) =
1

π

(
−νθ2 + η(π − θ1) + τ Im Ω

)
. (4.4)

retrieving the result about the limit shape given in [1].

Remark 4.2. There is another kind of continuous-time growth model corresponding to
(A), (C) in which the particles jump to the left instead of to the right, and when the
xmk −clock rings, the particle is blocked if xm−1

k−1 = xmk ; else find the largest c ≥ 1 such

that xmk = xm+1
k + 1 = · · · = xm+c−1

k + (c− 1) and move all the c particles to the left by
1. And the limiting Ft(z) = exp(z). Then the corresponding expression for (3.7) is

S(w) = −η lnw + ν ln(1− w)− τ 1

1− w
,

then the corresponding domain, critical points, expressions for (3.25), and (3.21) are

D : ν + τ < 2
√
ητ , (4.5)

|Ω(ν, η, τ)| =
√

η

η − ν
, |1− Ω(ν, η, τ)| =

√
τ

η − ν
, (4.6)

v = Im
1

π

∫ ∞
ν

Ων

(1− Ω)2
dν =

1

π
Im

1

1− Ω
=

1

π

Im Ω

|1− Ω|2
, (4.7)

h(ν, η, τ) =
1

π

(
−νθ2 + η(π − θ1) + τ

Im Ω

|1− Ω|2

)
. (4.8)
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Remark 4.3. Note that the corresponding analog of the processes discussed in remark
3.3, and comment under remark 3.4 can be described as follows (similar to the construc-
tion in [5]): We can also consider a continuous-time growth model in which the particles
jump to both left and right. The base discrete analog has Ft as

F2s(z) = 1 + β+z, F2s+1(z) = 1 + β−/z. (4.9)

(We can talk about alternatively choosing the four base F functions as well, but to keep
things concise, we only consider two of them here.)
We consider αk = 1, k ∈ Z and some smooth positive increasing functions a(t), b(t) with
a(0) = b(0) = 0. Then, let β+

t = ȧ(t), β−t = ḃ(t), then the left jump rate of particle
k is β+

t αk = ȧ(t), while the right jump rate is β−t /αk = ḃ(t). Then slightly modifying
the arguments in [5], and combine with those in remarks 4.1 and 4.2, by factoring out
ea(t)−b(t) in kernel K, see (3.4), and using the geometric averaging mentioned in remark
3.3, we will obtain the corresponding expression for (3.7),

S(w) = −η lnw + ν ln(1− w) +
a(t)

L
w − b(t)

L(1− w)

= −η lnw + ν ln(1− w) + ã(τ)w − b̃(τ)
1

1− w
. (4.10)

We assume the increments of a (resp. of b) for partitions of R+ are mutually inde-
pendent, which can be provided by any one-dimensional Lévy process. As L → ∞, the
convergence of ã(τ), and b̃(τ) are tail event, so by Kolmogorov’s zero-one law, it either
converges almost surely (for example, if we choose them to be Lévy processes) or diverges
almost surely. We assume the geometric averages may converge to some ã, b̃. Then we
can compute the domain, and the critical points. With these we obtain the expressions
for (3.21) as follows:

h(ν, η, τ) =
1

π

(
−νθ2 + η(π − θ1) + τ Im Ω

(
ã+

b̃

|1− Ω|2

))
. (4.11)

Another construction is discussed in [1]: for any two continuous functions a(τ), b(τ)
on R+ with a(0) = b(0) = 0, consider the limit as ε → 0 of the Markov chain with
alternating Ft as in (4.9),

β+(t) = εa(εt), β−(t) = εb(εt).

Then the Markov chain converges to a continuous time Markov chain, whose generator
at time s is a(s) times the generator of the left jumping Markov chain plus b(s) times he
generator of the right jumping Markov chain. And we will get similar results as (4.11).

Remark 4.4. Notice that in (4.3), (4.7), and τ ’s coefficient in (4.11), we can rewrite
the imaginary part of Ω as (sin θ1 sin θ2)/(sin θ3). Hence we can directly compute the
Hessian of v = v(hν ,hη), and it is of signature (−1, 1); by [16], both of the continuous
growth models mentioned above are anisotropic in KPZ class.
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Remark 4.5. It is shown in [1] that the h([(ν − η)L] + 1
2 , [ηL], τL) has a mean-zero

normal distribution with variance growing as ln(L). And this can be seen as a corollary
of theorem 3.4 using remark 4.1. We have a similar assertion about the left jumping and
alternating jumping cases.

The final main result in [1] is that Ω is a map from D to H such that on space-like
submanifolds, the multi-point (with order assumptions about η, τ−components) fluctu-
ations of the height function are asymptotically equal to those of the pullback of the
Gaussian free (massless) field on H:

Theorem 4.1. For any N = 1, 2, · · · , let κj = (νj , ηj , τj) ∈ D be any distinct N triples
such that τ, η satisfies condition (3.39):

τ1 ≤ τ2 ≤ · · · ≤ τN , η1 ≥ η2 ≥ · · · ≥ ηN .

Denote

HL(ν, η, τ) :=
√
π(h([(ν − η)L] +

1

2
, [ηL], τL)− Eh([(ν − η)L] +

1

2
, [ηL], τL))

Ωj = Ω(νj , ηj , τj), and G(z, w) = − 1

2π
ln

∣∣∣∣z − wz − w̄

∣∣∣∣ .
Then

lim
L→∞

E(
N∏
j=1

HL(κj)) =

{∑
σ∈FN

∏N/2
j=1 G

(
Ωσ(2j−1),Ωσ(2j)

)
, N is even

0, N is odd
(4.12)

where FN denotes the set of all pairings on [N ].

Since by Duits’ argument, theorem 4.1 may hold whenever the process has a determi-
nantal kernel, and it is possible that the process has such a kernel without assumption
(3.39). We are interested in whether such a kernel exists without any restriction, or
equivalently, the above theorem holds without assumption (3.39), we run simulations to
test if the following conjecture:

Conjecture 4.1. Without assumption (3.39), theorem 4.1, in particular (4.12), still
holds.

5 Simulation results

Denote by M(n)(t) the measure for the evolution on S(n). Obviously S(n) ⊂ S(n′) for
n ≤ n′, and by the definition of the evolution, M(n)(t) is a marginal of M(n′)(t) for
any t ≥ 0. So we can think of M(n)’s as marginals of the measure M = lim←−M

(n) on

S = lim←−S
(n).
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5.1 Simulation for the continuous case

Algorithm
Inspired by the flash demonstration in [2], we design the simulation algorithm as follows:

Given κ1, · · · ,κN and L, set T = L ·max(τj)j∈[N ] and n = L ·max(ηj)j∈[N ] as the
time upper bound and the size of marginal for our simulation.
• Approximate the distribution of the exponential clocks’ rings by generating a sequence
of exponential random variables s1, · · · , sr of rate N which sums up to less than or equal
to T such that including one more such random variable will make the sum greater than
T , and let ti =

∑i
l=1 sl for i ∈ [r], and assign ti to some xkm as a time of its clock ring

independently, uniformly at random.
• Simulate the process according to the rings with the time-increasing order and the
dynamic given in Section 1. Evaluate h for each κ and the given L by counting at the
given time τL on the given row [ηL]. For the run of simulation, save a evaluation set(
h([(ν1 − η1)L] + 1

2 , [η1L], τ1L), · · · , (h([(νN − ηN )L] + 1
2 , [ηNL], τNL)

)
.

• Run the above procedures for many times and get the estimated expectation of
Eh([(νj − ηj)L] + 1

2 , [ηjL], τjL), and demean by these expectations each evaluation set(
h([(ν1 − η1)L] + 1

2 , [η1L], τ1L), · · · , (h([(νN − ηN )L] + 1
2 , [ηNL], τNL)

)
, gaining sets

of the form (HL(κ1), · · · , HL(κN )), each for one specific run of simulation, and gain
E(
∏N
j=1HL(κj)).

5.2 Numerical results

The numerical results from our simulation agree with our conjecture:

• For N to be odd, we take N = 3, (κ1;κ2;κ3) = 1
100((4, 1, 5); (2, 4, 6); (8, 7, 10)) (with

the η, τ -components violating assumption (3.39)), when L ≥ 2000, and the estimated
expectation taking over 10000 runs, the resulting E(

∏3
j=1HL(κj)) is very close to 0

(with deviation within ± 0.01).
• For N to be even, we take N = 2 and N = 4, and we tave (κ1;κ2;κ3;κ4) =

1
100((4, 1, 5); (2, 4, 6); (8, 7, 10); (6; 3; 8)) such that all η, τ -components are pair wisely vi-
olating assumption (3.39). Then we have

G(Ω1,Ω2) = 0.11762, G(Ω3,Ω4) = 0.27125,

G(Ω1,Ω3) = 0.16789, G(Ω2,Ω4) = 0.17242,

G(Ω1,Ω4) = 0.27163, G(Ω2,Ω3) = 0.21047.

We do simulations for (κ1;κ2), (κ3;κ4), and (κ1;κ2;κ3;κ4). The only pairing for {1, 2},
{3, 4}, and {2, 4} are {1, 2}, {3, 4}, and {2, 4} respectively; the pairings for {1, 2, 3, 4}
are {(1, 2), (3, 4)}, {(1, 3), (2, 4)}, and {(1, 4), (2, 3)}. We can easily get the correspond-
ing values of the r.h.s of (4.12) for these two cases are 0.11762, 0.27125, 0.17242, and
0.11832, respectively.

We obtain the expected product by running more runs for larger L to achieve enough
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accuracy in the limit.
For N = 2, take the pair (κ1;κ2) = 1

100((4, 1, 5); (2, 4, 6)).
Taking L = 200, the expected product is 0.165± 0.03;
taking L = 500, the expected product is 0.160± 0.02;
taking L = 2000, the expected product is 0.150± 0.001;
taking L = 5000, the expected product is 0.142± 0.004;
taking L = 6000, the expected product is 0.136± 0.01.
Then take the pair (κ3,κ4) = 1

100((8, 7, 10); (6, 3, 8)). We obtain expected product
0.341± 0.03 at L = 1000; 0.270± 0.015 at L = 2000.
Next we take the pair (κ2,κ4) = 1

100((2, 4, 6); (6, 3, 8)). We obtain expected product
0.185± 0.01 at L = 1000, and 0.189± 0.01 at L = 2000.

ForN = 4, our evaluation set is (κ1;κ2;κ3;κ4) = 1
100((4, 1, 5); (2, 4, 6); (8, 7, 10); (6; 3; 8)).

Taking L = 200, the expected product is 0.342± 0.003;
taking L = 500, the expected product is 0.28± 0.01;
taking L = 1000, the expected product is 0.14± 0.01;
taking L = 2000, the expected product is 0.23± 0.02.

So we observe that E(HL(κ3)(HL(κ4))) converges to 0.271, E(HL(κ1)(HL(κ2)))
should converge to some value near 0.118, and E((HL(κ1))(HL(κ2))(HL(κ3))(HL(κ4)))
is likely to converge to some value in the interval [0.08, 0.18] as L grows large.

We have another set of trials dealing with the same κ set with κ1 replaced by
κ′1 = (4, 2, 5), and the new results are not so satisfactory.
For N = 2, (κ′1,κ2) = 1

100((4, 2, 5); (2, 4, 6)), we have G(Ω′1,Ω2) = 0.16943.
When L = 500, the expected product is 0.241± 0.005;
when L = 2000, the expected product is 0.229± 0.006;
when L = 10000, we have one estimated value for the product, 0.220 (over 60000 runs).
We observe that E(HL(κ′1)HL(κ2)) is likely to converge to some value less than 0.2.

For N = 4, the r.h.s of (4.12) for (κ′1,κ2,κ3,κ4) is 0.21306.
When L = 200, the expected product converges to 0.174± 0.001;
when L = 500, the expected product converges to 0.184± 0.001;
when L = 2000, the expected product converges to 0.19± 0.02.
So we observe that E(HL(κ′1)

∏4
j=2HL(κj)) converges to 0.21.

But something weird happens when we increase L further. We have trials for
L = 5000 and L = 10000 with ∼ 105 runs. When L = 10000, then {([νL], [ηL], [τL])}
equals to {(400, 200, 500), (200, 400, 600), (800, 700, 1000), (600, 300, 800)}; we obtain an
estimated mean of the expected product as 0.410. By the simulation, the estimated
average heights are 134.274, 350.525, 469.645, 210.166, and it is not rare (∼ 0.5%) that
in some simulations, all four heights deviate from the average heights by more than 1,
e.g. (136, 352, 471, 212). Since HL is scaled by constant

√
π, the product is scaled
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by π2, so the example will result in a product 20.096. The standard deviation of this
105 products is huge: 4.973, and the standard deviation barely decreases as we increase
the number of runs from 100 to 105, which is not the case for relatively small L. We
observe that when we remove the 40 extreme simulated products (mostly lying on the
right tails) outside ±10 standard deviations interval centered at the mean 0.410, the
mean decreases to 0.320 , and the standard deviation to 3.094; when we remove the 500
products (with the newly removed locate relatively balanced on the two tails) outside
±5 standard deviations interval centered at 0.410, the mean decreases to 0.234, and the
standard deviation to 2.486. One thing we should mention is that although each HL is
Gaussian, we do not expect their product to be Gaussian as they are weakly correlated.
The case when L = 5000 is less dramatic: the original mean and standard deviation
from the simulation is 0.383, and 3.518. The results are similar: when we remove the
10 s.d. tails, mean decreases to 0.295 and s.d. to 2.559; the 6, 7 s.d. tails are quite
balanced on the two sides in size.

Interpreting the Results
N = 2: Notice that the Gaussian free field is the unique Gaussian process which satisfies

E(F (x1), F (x2)) = G(x1, x2),

it suffices to check for N = 2, as the higher moments of Gaussian processes can always
be written in terms of the moments of order 2. By the simulation result of N = 2, the
conjecture is true asymptotically.

Comparing the convergence of the trials, we find that as L grows, the expected prod-
uct of (κ3,κ4) converges to the r.h.s of (4.12) more quickly. One needs to note that this
can be explained by the norm of this pair is greater than the norms of the other pairs as
the convergence depends on the size of κ’s and L. We first compare the convergence of
(4.12) for (κ1,κ2) and (κ′1,κ2). We observe that the rays of (κ1,κ2) are farther apart in
the Euclidean space than (κ′1,κ2), and actually the former pair has faster convergence
of (4.12) than the latter.

One thing we observe by taking different sets of (κα,κβ)’s with (where the κα has
similar Euclidean norms), is that fixing κβ, when the two rays of κα and κβ starting
from the origin in D are farther apart in R3

+, then E(HL(κα)(HL(κβ)) converges to
G(Ωα,Ωβ) more quickly with L’s growth. Same for the case when there are four κ’s:
if the rays of κ1, · · · ,κ4 (with κ2,κ3,κ4 fixed) are farther apart, then the expected
product converges to

∑
pairings G(Ωσ(1),Ωσ(2))G(Ωσ(3),Ωσ(4)) more quickly. Thus we form

the following conjecture:

Conjecture 5.1. For the non-coinciding κ1, · · · ,κn, fix κ2, · · · ,κn, and let
−−→
0κ1 of fixed

length rotate in the domain. Then when the rays of κ1 are farther apart from the rays
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of κ2, · · · ,κn in D, the convergence rate of

E(HL(κ1) · · · (HL(κn))
L→∞−−−−→

{∑
σ pairings

∏N/2
j=1 G

(
Ωσ(2j−1),Ωσ(2j)

)
(n even)

0 (n odd)

(5.1)
is faster.

The statement farther apart should be made more clearly, for example, in terms
of weighted coulomb potential energy, weighted norm, or sum of weighted squares of
differences in the three coordinates.

Another thing that we are interested in is the convergence of products of HL to its
expected value. We want to see if there is a there is a relationship between the angles of
rays through origin, on which lie the points where the HL’s are evaluated, and the con-
vergence rate of sample mean of the product (over runs of simulations) to its expected
value. So we do lots of tests about the more complicated case when N = 4.

N = 4: We capture a new phenomenon which is not significant in N = 2 case, that
is, the large tails and large standard deviation of the distribution. And it is quite possi-
ble that using other large L or other κ’s will result in deviation of the estimated expected
product of HL’s to values smaller than the result given by r.h.s of (4.12). Since the stan-
dard deviation is quite large when the sample size is ∼ 105, we might need increase the
size to ∼ 107 or even larger in order to observe its convergence to the predicted value.
The results of (κ1,κ2,κ3,κ4) and (κ′1,κ2,κ3,κ4) supports the conjecture:

Conjecture 5.2. When the rays of κ1, · · · ,κn are farther apart, the convergence of the
sample mean of

∏n
i=1HL(κi) to its expected value is faster.

5.3 Simulation for the discrete case

We do similar simulations on the discrete case to test the counterpart of conjecture 4.1
for the discrete case where Ft(z) = 1 − β−/z. The algorithm is different from that for
the continuous case in the following sense: the jumping time (which we assume to be in
N for the discrete case); there is no such clock-ring; each round of update goes from row
1 to row n thoroughly.

We take the same evaluation points as before, and choose Ft(z) = 1 + 0.5z−1; our
results so far are listed below.

N = 2: Our first evaluation set is (κ1;κ2).
When L = 500, the expected product is 0.132± 0.01;
when L = 1000, the expected product is 0.129± 0.007;
when L = 2000, the expected product is 0.131± 0.01.
Our second evaluation set is (κ3;κ4), where we only run the simulation for L = 1000,
and obtain the expected product as 0.29± 0.01.
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N = 4: We take the evaluation set to be (κ1;κ2;κ3;κ4). When L = 1000, the ex-
pected product is 0.138± 0.02; when L = 2000, the expected product is 0.134± 0.01.

Possible future research topics

Some further interesting topics for simulation might be testing the conjecture 5.1, 5.2
and quantitatively examine the following fact: as the two points move away from each
other along the characteristic ray, the correlation of their HL’s should eventually become
finite. The variance part (for two coinciding points) is given in theorem 3.4.

Note that a similar study has been carried out by Prähofer and Spohn in [18], ob-
taining

lim
t→∞

Var (h(x, t)− h(x’, t)) ∼ ln |x− x’|, (x and x’ are in R2),

for large |x − x’| → ∞, but not growing with t. But we are interested in the problem
for more general comparisons.

It may also be worthwhile to study about what happens to covariance on space-time
rays that are preimages under Ω of the same point in H. Another topic is the convergence
of the discrete growth model with alternating Ft’s.

Remark 5.1. We recently realize (thanks to Professor Borodin) that the determinan-
tal structure of the correlations functions holds for a much more general class of two-
dimensional growth models than the one we focus on. Recent results in [19] show that the
determinantal structure holds for less strict assumption than (3.39). Since our proof in
this paper using Duits’ arguments just require the existence of the determinantal struc-
ture, the scaled fluctuation of the random surface should converge to some Ω−pullback
of the Gaussian free field on H for a family of two-dimensional growth models with less
restrictions. By our simulation result, we do expect that the same result holds without
any assumption on the evaluation points (in space-time).
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(2008), 1162-1172.

[16] A.- L. Barabasi, H. E. Stanley, Fractal concepts in surface growth, Cambridge Uni-
versity Press, 1995.

[17] S. Janson, Gaussian Hilbert spaces, volume 129 of Cambridge Tracts in Mathemat-
ics, Cambridge University Press, 1997.

[18] M. Prähofer and H. Spohn, An exactly solved model of three-dimensional surface
growth in the anisotropic KPZ Regime, J. Stat. Phys. 88 (1997), 999-1012.

[19] S. S. Poghosyan, A. M. Povolotsky, V. B. Priezzhev, Universal exit probabilities in
the TASEP, arXiv:1206.3429v1.

29


	Introduction
	The model
	Main results
	Limit shape of the growing surface
	Gaussian fluctuations and Gaussian free field
	Proof of theorem 3.4

	Continuous case
	Simulation results
	Simulation for the continuous case
	Numerical results
	Simulation for the discrete case

	References

