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Abstract

In optimal transport, Caffarelli famously constructed a Lipschitz map between two log-
concave densities f = e−V and g = e−W using the quadratic cost c(x, y) = −xy. We
considered variations of this problem. Firstly, we built foundations for extending this result
to the transport between unequal dimensions T : Rn → R. We found an analog to the Monge-
Ampère Equation and conditions that guarantee continuity to its unique solution. Secondly,
we recovered Caffarelli’s result for the perturbed cost function c(x, y) = −xy − ε|x|2|y|2,
which suggests the possibility of constructing contraction maps for a greater variety of costs.

Summary

Optimal transport theory studies how to minimize the total cost of transporting masses
from a source to a target. Particularly, researchers became interested in settings where
this optimal transportation contracts, meaning that after any two points are mapped to
the target region, the distance between them shrinks. In the past, studies have analyzed
scenarios where the cost equals the distance moved from source to target and were able to
construct contracting maps. We modified this cost function by adding small error terms and
recovered the same contracting map. As optimal transport is closely related to differential
geometry, our contracting maps provide insights on how to smoothly transform between
surfaces. Whereas in the other sciences, optimal transport is widely applied to particle
systems, economic models, and deep learning.



1 Introduction

Optimal Transportation Theory has its applications in numerous fields: predicting par-

ticle systems, analyzing stochastic models, and establishing gradient flows in deep learning

models [1]. Most famously, the Wasserstein Distance is widely applied to AI models such as

the generative model WGAN [2].

The original problem of optimal transport considers how to move masses from different

locations to destinations such that the quota is satisfied for each destination and the total cost

is minimized. Our work concerns optimal transport between continuous rather than discrete

mass distributions such that the transport map is Lipschitz, meaning that the distance

between any two points shrinks by at least a certain factor after the mapping.

In the past, Lipschitz properties have been proven for the optimal transport between

Euclidean spaces Rd of equal dimensions with the quadratic cost c(x, y) = 1
2
|x− y|2, includ-

ing Carlier, Figalli, and Santambrogio’s work [3] as well as Caffarelli’s contraction theorem

(Theorem 2 in [4]). Caffarelli constructed a contracting optimal transport with the quadratic

cost, and the probability measures µ = e−V dx and ν = e−Wdx. We establish parts of this

result in more generalized settings of unequal dimensions and non-quadratic costs, following

the convention of assuming the domains X and Y to be open and connected.

Firstly, we seek a contraction map between unequal dimensions. We consider optimal

transport from Rn to R by analyzing the more complicated PDE derived in [5] by McCann

and Pass for unequal dimension transports. We show that the quadratic cost retains conti-

nuity on T in Section 3.1. Then, we present a localized PDE similar to the Monge-Ampère

Equation in Section 3.2, stated in Theorem 3.2.

Secondly, we analyze the case of equal dimensions but varying costs. Transport on spheres

and other surfaces operates under different metrics than Euclidean spaces, motivating us

to understand transport under various costs. So far, a contraction is known for only the

quadratic cost, described in Caffarelli’s theorem [4]. We generalize this result to a perturbed

version of the quadratic cost c(x, y) = −xy− ε|x|2|y|2 in Theorem 4.3, which operates under
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a framework similar to the original proof of Caffarelli’s Theorem.

Finally, in Section 5, we suggest some future directions as well as more distant specula-

tions in the fields of differential geometry, quantum mechanics, and economics.

2 Preliminaries

In Section 2.1, we define measures in preparation for introducing optimal transport. In

Section 2.2, we first formulate the two versions of the optimal transport problem: the Monge

and Kantorovich problems. Then, we introduce Brenier’s theorem [6] as foundations for

Section 4.1, where we outline Caffarelli’s theorem of contracting transport maps [4]. Finally,

we identify the dual of the Kantorovich problem, which we heavily rely on in Section 3 and

4’s proofs. In Section 2.3, we introduce Lipschitz functions as preparation for Section 4 (not

required for reading Section 3).

2.1 Measures

Without getting into excessive details, a measure µ can be seen as a function that takes

a set as an argument equivalent to a real-valued and globally non-negative function f . For

a domain X, we have

µ(A) =

∫
A

f(x)dx

for any A ⊆ X. Any measure µ possesses countable additivity, meaning that

µ(
∞⋃
k=1

Ak) =
∞∑
k=1

µ(Ak)

for any sequence of disjoint sets {Ak} with countably infinite length.

Specifically, the d-dimensional Lebesgue measure λd is used in Section 3. It can be defined

on the Euclidean space Rd as

λd(E) = inf

{
∞∑
k=1

vol(Ck) | E ⊂
∞⋃
k=1

Ck

}
,

where Ck is a d-dimensional cuboid and vol denotes its volume. The Lebesgue measure
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essentially measures the amount of space occupied by any set E ∈ Rd.

Now with an understanding of measures, we may introduce optimal transport.

2.2 Optimal Transport

Gaspard Monge first proposed a version of the optimal transport problem in 1781 [7].

In his formulation, we have T : X → Y transporting masses in X described by the density

measure µ(A) =
∫
A
f(x)dx, onto Y described by the density measure ν(A) =

∫
A
g(y)dy. We

require T to be a push-forward map from µ to ν, meaning that

µ(T−1(A)) = ν(A)

for any A ⊆ Y . Figure 1 illustrates how a push-forward T preserves the area of the region

when going reversely ν to µ.

Figure 1: µ(T−1(y)) and ν(y) represents equal areas for any interval y (Adapted from [8]).

Suppose the transportation cost can be described by c(x, T (x)) ∈ R. Then a solution to

the problem is a map T (x) that minimizes the total cost∫
X

c(x, T (x))dµ(x).

When X, Y ⊂ Rd, the Monge-Ampère Equation, first studied by Monge and later André-
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Marie Ampère [9], gives the optimal transport map by the following PDE.

det(∇T (x)) =
f(x)

g(T (x))
.

However, in certain compact domains X and Y , this PDE does not yield a continuous

optimal mapping. Leonid Kantorovich later proposed a more relaxed version of the Monge

Problem [10] to resolve the issue of discontinuity. We call a measure γ a coupling if πX(x, y) =

x pushes forward γ to µ and πY (x, y) = y pushes forward γ to ν. Let the set of couplings be

Γ(µ, ν). Such couplings allow masses at any location in X to split to different destinations

in Y , so that the total cost can be rewritten as∫
X×Y

c(x, y)dγ(x), γ ∈ Γ(µ, ν).

Figure 2: An optimal transport mapping to four discrete point destinations where the mass
splits (Adapted from [8])

In Figure 2, several intervals in X have masses transported to more than one of the

four destinations in Y . Only the Kantorovich problem encompasses this form of optimal

transport. Whereas in Figure 1, the curve outlined by T is a one-to-one mapping with no

masses splitting.

The Kantorovich formulation has a dual problem in terms of real-valued potential func-

tions u, v. The minimum of the Kantorovich problem equals the maximum of its dual, as
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in

inf

{∫
X×Y

c(x, y)dγ(x) | γ ∈ Γ(µ, ν)

}
=

sup

(∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y) | u(x) + v(y) ≤ c(x, y)

)
.

It has been shown that the solution to the dual problem always satisfies c-convexity in

the sense that

Du(x) +Dxc(x, y) = 0, and D2u(x) +Dxxc(x, y) ≥ 0.

More recently, Yann Brenier [6] showed that the optimal transport map for the quadratic

cost function c(x, y) = −xy can always be expressed as T = ∇φ where φ is convex. This

optimal T uniquely exists for the Kantorovich formulation while the masses never split. For

the quadratic cost, the original PDE becomes

det
(
D2φ

)
g(∇φ) = f. (1)

Brenier’s result allows more variations in choosing the density functions f and g, as T is guar-

anteed to be differentiable. More broadly, Brenier unified the Monge and Kantorovich prob-

lems, as he proved that masses will never split in the optimal transport for the quadratic cost.

Consequently, the quadratic cost setting is relatively more well-researched: the aforemen-

tioned theorems by Caffarelli and Figalli were able to impose regularity conditions stricter

than differentiability for T , namely Lipschitz continuity.

2.3 Lipschitz Functions

A function T : Rm → Rn is called Lipschitz if it satisfies

|T (x1)− T (x2)| ≤ L|x1 − x2|, for any x1, x2 ∈ dom(T )

given a certain positive number L called the Lipschitz constant. The Lipschitz property can

also be understood as a strict global upper bound |∇T | ≤ L. It is a regularity condition,

such as continuity or smoothness, but stronger than both.
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As an example, consider the following picture distinguishing between Lipschitz and non-

Lipschitz 1D functions. If the cross y = ±1.2x at every point on the function covers the

entire curve on the left and right quadrants, it is Lipschitz with Lipschitz constant 1.2. Here,

f(x) = x
1+e−x is Lipschitz but g(x) = x2

1+e−x is not, which can be verified by computing ∇f

and ∇g.

Figure 3: Example of a Lipschitz function
with Lipschitz constant 1.2

Figure 4: Example of a non-Lipschitz func-
tion

3 Rn → R Transport

We outline a derivation of the PDE for optimal transport similar to the generalized case

of Rm → Rn by McCann and Pass [5], which was also reproduced by Cassini and Hamfeldt

[11]. Given our special case of transporting from n-dimensions to one dimension, we establish

necessary conditions for the transport to be continuous. Then, we reduce the PDE to a more

simplified form.

3.1 Continuity of the transport from Rn to R

We impose continuity on T using the condition of nestedness introduced by Chiappori,

McCann, and Pass in [12], as nestedness has demonstrated capabilities of gaining a variety of

regularity conditions when combined with other restrictions to (c, µ, ν). First, denote level
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sets of c as

X=(y, k) := {x ∈ X | cy(x, y) = k},

and similarly denote sub-level sets as

X≤(y, k) := {x ∈ X | cy(x, y) ≤ k}.

The same notation applies to ≥, <,>. Define k(y) : Y → R as the unique function that

satisfies

µ(X≤(y, k(y))) = ν((−∞, y]), for any y ∈ Y.

In other words, k(y) forms sub-level sets that divide µ at the same ratio as y divides ν.

We may now establish the notion of nestedness, which has appeared in numerous studies

in the field, including [12, 13, 14].

Definition 3.1. The triple (c, µ, ν) is nested if for any y0 < y1,

X≤(y0, k(y0)) ⊆ X<(y1, k(y1)).

Using nestedness, we prove the following proposition.

Lemma 3.1. If µ, ν are absolutely continuous with respect to Lebesgue measure, the optimal

transport for the cost function

c(x, y) =
n∑

i=1

1

2
(xi − y)2

is always continuous on the interior of X.

Proof. We show that the quadratic cost is in pseudo-index form. That is, c(x, y) = α(x) +

σ(I(x), y), where α : X → R, σ : R×Y → R, and I : Rn → R are C1 functions. Proposition

4.3 in [12] showed that for any absolutely continuous measures µ and ν, the triplet (c, µ, ν)

is nested as long as c is in pseudo-index form and D2
xyc never vanishes. Taking

α =
1

2

n∑
i=1

x2
i , I(x) =

n∑
i=1

xi, σ(r, y) = ry +
n

2
y2,

we observe that quadratic cost is in pseudo-index form.

Thus, by Theorem 4.2 in [12], nestedness implies continuity of T on the interior of X.
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3.2 Analog of the Monge-Ampère Equation

Theorem 3.2. For sets X ⊂ Rn, Y ⊂ R, denote λd(x) as the d-dimensional Lebesgue

measure on X and

X1(y, v
′(y)) = {x ∈ X | v′(y) + ny =

n∑
i=1

xi}, for all y ∈ Y.

Suppose f, g are absolutely continuous. If a c-convex potential function v satisfies

g(y) =
2n−1(n−1

2
)!

π
n−1
2

∫
X1(y,v′(y))

(v′′(y) + n)√
n

f(x)dλn−1(x),

then the optimal transport dual’s solution T : X → Y is uniquely optimal.

Proof. By the push-forward property of T ,∫
Y

Φ(y)g(y)dy =

∫
Y

Φ(y)f(T−1(y))dy

=

∫
X

Φ(T (x))f(x)dx for all Φ ∈ L1(Y ).

(2)

Since Y ⊂ R, note that the Jacobian JT =
√
det(∇T (x)∇T (x)T ) = |∇T |. So, we can use

the coarea formula to transform the right-hand side to∫
X

Φ(T (x))f(x)dx =

∫
X

(
Φ(T (x))f(x)

|∇T |
· |∇T |

)
dx

=

∫
R

∫
T−1(Y )

Φ(T (x))f(x)

|∇T |
dHn−1(x)dy

=

∫
R
Φ(y)

∫
T−1(Y )

f(x)

|∇T |
dHn−1(x)dy,

where Hn−1 is the (n− 1)-dimensional Hausdorff measure. Since the equation holds for any

test function Φ, we may eliminate it. We have simplified Equation (2) to

g(y) =

∫
T−1(Y )

f

|∇T |
dHn−1(x) (a.e.). (3)

Now, consider the dual problem of optimal transport, which is to find a pair of c-convex

functions (u, v) ∈ C0(X) × C0(Y ) such that u(x) + v(y) + c(x, y) ≥ 0 with equality at

T (x) = y. In our setting, such a pair would satisfy

Dy(u(x) + v(y) + c(x, y)) = 0,

8



where y = T (x). Differentiating this equation, we get

Dyyv(T (x))∇T (x) +Dyyc(x, T (x))∇T (x) +Dxyc(x, T (x)) = 0.

Note that in the equation, terms of ∇T have scalar coefficients, so we conclude that

∇T (x) = − T (x) +∇(Dyc(x, T (x)))

Dyyv(T (x)) +Dyyc(x, T (x))
.

On the other hand, the Hausdorff measure is a rescaling of the Lebesgue measure λd. So,

switching T−1(Y ) for X and Hd for λd, we can write Equation (3) as

g(y) =

∫
T−1(Y )

Dyyv(T (x)) +Dyyc(x, T (x))

|∇(Dyc(x, T (x))|
f(x)dHn−1(x)

=
2n−1(n−1

2
)!

π
n−1
2

∫
T−1(Y )

(v′′(y) +Dyyc(x, y))
f(x)

|∇Dyc(x, y)|
dλn−1(x).

(4)

Note that we still require c-convexity, namely D2
yy(v(y) + c(x, y)) ≥ 0, y ∈ T−1(Y ). While

incorporating this condition into the differential equation, we attempt to localize the domain

of integration by restricting certain regularities.

Define the following sets:

∂cv(y) :=

{
x ∈ X | v(y) + c(x, y) = inf

z∈Y
{v(z) + c(x, z)}

}
X1(y, v

′(y)) := {x ∈ X | v′(y) + cy(x, y) = 0}

X2(y, v
′(y), v′′(y)) := {x ∈ X1 | v′′(y) + cyy(x, y) ≥ 0}

.

The first set is referred as the c-subgradient of v.

McCann and Pass have shown in Theorem 4.2(b) of [12] that for a nested triplet (c, µ, ν),

these sets are all equal to T−1(Y ). Furthermore, when replacing T−1(Y ) with X1(y,∇v(y))

in the integration domain in Equation (4), the PDE always produces the solution to the op-

timal transport problem by solving Equation (4) for a unique v and then solving v′(T (x)) +

cy(x, T (x)) = 0 for T . Using Lemma 3.1, the quadratic cost gains nestedness for any abso-

lutely continuous µ and ν. Hence, for the quadratic cost, Equation (4) becomes

g(y) =
2n−1(n−1

2
)!

π
n−1
2

∫
X1(y,v′(y))

(v′′(y) + n)√
n

f(x)dλn−1(x),
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while

X1(y,∇v(y)) = {x ∈ X | v′(y) + ny =
n∑

i=1

xi}.

Hereby, we produce a version of the Monge-Ampère Equation that analyzes transport

between unequal dimensions. In summary, starting from the push-forward equation, we get

a PDE considering equal dimensions through the coarea formula. Then, we utilize properties

of the Kantorovich dual problem to ensure that T is optimal. Finally, we apply the previous

lemma to adjust the PDE to be local.

3.3 Cases where higher regularity fails

Now, with our version of the Monge-Ampère Equation, we come back to the idea of

seeking Lipschitz transport maps. Intuitively, a contraction ought to be easily attainable

when transporting from a higher dimension to a lower one, taking the projection map as an

example. We briefly present a possible counter example to this idea.

Consider the optimal transport from the sphere Sn to its diameter D = [−1, 1]. By

considering the patterns of the first Neumann eigenvalue (see Appendix A for more details),

this transport from Sn to R seems unlikely to contract. This is because

λ1(Sn) = n ≥ λ1(D) =
π2

4
,

which implies that any smooth transformation should make the surface expand. Therefore,

more analysis is needed for the case of transport between unequal dimensions.

4 Perturbation of the quadratic cost

In this section, we first sketch a proof of Cafferelli’s theorem of contraction. Following

a similar structure, we compute the necessary components for the perturbed quadratic cost

before proving Theorem 4.3 by applying the Ma-Trudinger-Wang tensor from their work in

[15].
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4.1 Cafferelli’s theorem

Theorem 4.1. Let T = ∇φ be the optimal transportation mapping pushing forward a prob-

ability measure µ(x) = e−V dx onto a probability measure ν(y) = e−Wdy for V,W ∈ C2 with

respect to cost c(x, y) = −xy. If

sup
x∈Rn

e∈Sn−1

Vee ≤ M and |D2W | ≥ K,

then T is Lipschitz. In particular, if µ is the standard Gaussian measure and K ≥ 1, then

T is a contraction.

In the spirit of reducing the complexity of Theorem 4.3, we sketch a proof of Cafferellli’s

contraction theorem in Appendix B with notations similar to the ones used in our proof of

Theorem 4.3.

4.2 Setting up the perturbed quadratic cost

To start, consider the original Monge-Ampère Equation

det(∇T (x)) =
f(x)

g(T (x))
.

The potential function u of the dual problem satisfies −Dxc(x, T (x)) = ∇u(x). Differ-

entiating this once gives us −Dxxc(x, T (x)) − Dxyc(x, T (x))DT (x) = D2u(x). Therefore,

substituting this into the Monge-Ampère Equation,

det
(
D2u+Dxxc

)
= | det (Dxyc) |

f(x)

g(T (x))
. (5)

Note that D2u+Dxxc is positive definite as a consequence of c-convexity. We work from this

equation for the rest of this section. Before further computation, we introduce the notations

in [15] of writing cij = (Dxxc)ij and ci,j = (Dxyc)ij, as well as

cijk =
∂

∂xk

cij, cij,k =
∂

∂yk
cij,

cijkl =
∂2

∂xkxl

cij, cij,kl =
∂

∂ykyl
cij, cijk,l =

∂

∂xkyl
cij.
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The same applies to matrices w and D2u. Also, write

Ti,j =
∂

∂xj

Ti, (ci,j)
−1 = ci,j, (wij)

−1 = wij.

With the simplified notation, we compute the derivatives of the perturbed quadratic cost,

which yield

cij = −δij2ε|T |2, ci,j = −δij − 4εxiyj, cii,k = −4εyk, ci,kk = −4εxi, cii,jj = −4ε. (6)

From there, we may also compute

det(ci,j) = (−1)n(1 + 4εxy), ci,j = −δij +
4εxiyj

1 + 4εxy
. (7)

Any other form of derivatives yield 0.

Now, we may introduce the Ma-Trudinger-Wang Tensor:

S(x,y)(ξ, η) :=
∑

i,j,k,l,p,q,r,s

(cij,pc
p,qcq,rs − cij,rs) c

r,kcs,lξiξjηkηl, ξ, η ∈ Rn. (8)

The following lemma is true for our perturbed quadratic cost.

Lemma 4.2. The cost c = −xy − ε|x|2|y|2 satisfies

S(x,y)(ξ, η) ≥
16ε

(1 + 4εR2)3
|ξ|2|η|2

for any ξ, η ∈ Rn.

Proof. The tensor can now be expressed as

S(x,y)(ξ, η) =
∑

i,j,k,l,p,q,s,t

(
16ε2xqyp
1 + 4εxy

·
(
−δpq +

4εxpyq
1 + 4εxy

)
+ 4ε

)

·
(
−δsk +

4εxsyk
1 + 4εxy

)
·
(
−δtl +

4εxtyl
1 + 4εxy

)
· ξiξjηkηl

=
∑

i,j,k,l,s,t

4ε

1 + 4εxy
·
(
−δsk +

4εxsyk
1 + 4εxy

)
·
(
−δtl +

4εxtyl
1 + 4εxy

)
ξiξjηkηl

≥ 4ε

1 + 4εR2

∑
i,j,k,l,s,t

(
−δsk +

4εxsyk
1 + 4εxy

)
·
(
−δtl +

4εxtyl
1 + 4εxy

)
ξiξjηkηl

≥ 16ε

(1 + 4εR2)3
|ξ|2|η|2.
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Note that the last inequality holds because if we write ξ or η as (r cos t, r sin t), we obtain∑
i,j

ξiξj = r2(cos t+ sin t) ≤ 2r2 = 2|ξ|2.

With this lemma, we may present our proof to Theorem 4.3.

4.3 Extension of Caffarelli’s theorem

Theorem 4.3. Let T : X → Y be the optimal transportation mapping pushing forward a

probability measure µ(x) = e−V dx onto a probability measure ν(y) = e−Wdy for V,W ∈ C2

with respect to cost c(x, y) = −x · y − ε|x|2|y|2. Suppose X, Y ⊆ BR ⊂ R2 where BR is the

open ball with radius R and εR2 → 0 but R is sufficiently large. If

sup
x∈R2

e∈S1

D2
eeV ≤ M, |∇W | < R, and |D2W | ≥ K > 0,

then T is Lipschitz with Lipschitz constant bounded by

Lip(T ) <
M

K
.

Proof. Now, we consider only the optimal transport in between R2 and let w be the 2 × 2

matrix satisfying wij = uij + cij. This w is analogous to D2φ in our proof of Theorem 4.1,

but without Brenier’s results on the quadratic cost, computations become more microscopic

and we need to consider individual entries of w.

Similar to thep roof of Theorem 4.1, we take the log of Equation (5) when f(x) = e−V ,

and g(y) = e−W . We obtain

φ := log (w11w22 − w12w21) = log |1 + 4εx1y1 + 4εx2y2|+W (T (x))− V (x)

= log |1 + 4εx · T (x)|+W (T (x))− V (x).

13



Differentiating once along the direction of x1, we obtain

φ1 =
w11,1w22 + w11w22,1 − w12,1w21 − w12w21,1

det(w)

=
4εx1T1,1 + 4εT1

1 + 4εxT
+∇W (T ) · ∂T

∂x1

− V1.

(9)

Differentiating again, we obtain

φ11 =
w11,11w22 + w11w22,11 − w12,11w21 − w12w21,11

det(w)
− φ2

1 +
2w11,1w22,1 − 2w12,1w21,1

det(w)

= −(4εx1T1,1 + 4εT1)
2

(1 + 4εxT )2
+

8εT1,1 + 4εx1T1,11

1 + 4εxT
+D2W (T )

(
∂T

∂x1

)2

+∇W (T ) · ∂
2T

∂x2
1

− V11.

(10)

Assume that the quantity

G(w, t) = w · [cos t, sin t] · [cos t, sin t]T

attains its maximum at x0 ∈ X and t0 ∈ [0, 2π). By a shift along the t-axis, we may further

assume that t0 = 0. Thus,

∂

∂t
G(w, t) = −2w11 cos t sin t+ (w12 + w21)(cos

2 t− sin2 t) + 2w22 cos t sin t = 0

implies that w12 + w21 = 0, as Gt(w, 0) = 0. Assuming continuity on w, we can exchange

the indices of w. So, w12 = w21 = 0 and w is diagonal. This exchangeability also establishes

w12,1w21,1 = w2
12,1 ≥ 0. Notice that if t0 = 0, we also have w11,i = 0 and w11,ij ≤ 0 for

i, j = 1, 2 at the maximum point x0.

With these assumptions at the maximal point x0, Equation (10) gives the inequality

φ11 ≤
w11,11

w11

+
w22,11

w22

≤ w22,11

w22

. (11)

Now, our goal is to convert this inequality to a bound on w11 in terms of the derivatives

of c and φ. First, we compute the fourth derivatives of w.

The relation −Dxxc(x, T (x))−Dxyc(x, T (x))∇T (x) = D2u(x) implies that for any i, j,

wij = ci,1T1,j + ci,2T2,j. (12)
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Differentiating again, we have

wij,k =
2∑

p,q=1

cik,pTp,j + ci,pqTp,jTq,k + ci,pTp,jk. (13)

Taking one more derivative, we have

w22,11 = u2211 + c2211 + 2c221,1T1,1 + 2c221,2T2,1 + c22,1T1,11

+ c22,2T2,11 + c22,11T
2
1,1 + 2c22,12T1,1T2,1 + c22,22T

2
2,1. (14)

We try to express all derivatives of T in terms of derivatives of w and c before returning to

Equation (11). Repeating the identity (12) for different indices and inverting the equations,

we have

Tp,i = cp,1w1i + cp,2w2i (15)

for any indices p, i. We run through a similar process for Equation (13) and see that

Tp,ij =
2∑

k=1

cp,kwij,k +
2∑

k,s,t=1

cp,k(2cki,sTs,j + cij,sTs,k + ck,stTs,iTt,j). (16)

Combining this fact with w12 = w21 = 0, det(Dxyc) = 1 − Ω(ε) and our computations (6)

and (7), we may infer that

ci,j, c
i,j ∼ εR2 + δij, cii,k, ci,kk ∼ εR, ciijj ∼ ε. (17)

From Equation (15), we also have

Tp,i ∼ w11(εR
2 + δij). (18)

Now, starting from inequality (11), we recover the Ma-Trudinger-Wang tensor at the

point x0. By substituting in Equation (14) and noting that cijk,l = 0, we obtain

0 ≥ −(c22,1T1,11 + c22,2T2,11 + c22,11T
2
1,1 + 2c22,12T1,1T2,1 + c22,22T

2
2,1)w

22 + φ11.

Then, Equation (15) plus the estimates (17) and (18) reduces Equation (16) to

Tk,11 =
∑
l,s,t

ck,lcl,stTs,1Tt,1 + Ω(ε2R3).

With these computations, the Ma-Trudinger-Wang tensor emerges by taking ξ = (0,
√
w22)
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and η = (w11, 0). After applying Equation (8), our original inequality becomes

0 ≥
∑
k,l,s,t

w22(ck,lc22,kcl,st − c22,st)c
s,1ct,1w2

11 + φ11 + Ω(ε3R4)

= S(x,y)(ξ, η) + φ11 + Ω(ε3R4).

Finally, we apply Lemma 4.2 and conclude that

16ε

(1 + 4εR2)3
w2

11w
22 + φ11 + Ω(ε3R4) ≤ 0.

Since w22 ≥ w11, we may simplify our error term into Ω(εw11 + ε3R4). Again, we apply

Equation (10) and estimate derivatives of T by Equations (16) and (18) before absorbing

the ε terms of higher degrees, resulting in

C(εKR2w11 + ε2R4w22) + w2
11 ≤

V11

K

for an arbitrary constant C. Recall that wii = uii−2ε|T |2 and u11 = −c11+c1,1T1,1+c1,2T2,1,

so we replace w11 with T1,1, absorb ϵ terms, and yield

(εCR2 + 1)|T1,1| ≤
√

V11

K

Since |D2
eeu| ≤ |u11| for any direction e, we may bound T ’s Lipschitz constant by

Lip(T ) < sup
x∈R2

e∈S1

D2
eeV (x)

K

for sufficiently small ε.

Thus, we conclude with a Lipschitz bound that resembles Cafferelli’s theorem. In sum-

mary, similar to Caffarelli’s proof, we start by taking the log of the Monge-Ampère Equa-

tion and differentiate it twice. Then, we apply the maximum principle and operate at a

specific maximal point x0, providing conditions on the derivatives of the potential func-

tion u. However, without the result of Brenier (T = ∇φ), we work with the relation

Du(x)+Dxc(x, T (x)) = 0, which complicates certain computations. Eventually, we apply the

Ma-Trudinger-Wang tensor, a tensor of c that is upper-bounded for c(x, y) = −xy−ε|x|2|y|2,

bounding the first derivative of T .
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5 Future Directions

Nenna and Pass pointed out that the optimal transport between unequal dimensions can

potentially map between strategy spaces in Cournot-Nash equilibria [14].

On the other hand, our study also has its profound impact on differential geometry.

We potentially contribute to current works looking at the Shing-Tung Yau conjecture [16]

through the lenses of optimal transport.

Conjecture 5.1. The first eigenvalue of any compact embedded minimal surface Σ in Sn+1

is n.

Ultimately, the goal is to construct a transport map T : Sn+1 → Σ that is Lipschitz.

Furthermore, if T satisfies the Lipschitz property for L = 1, the map is a contraction, and

Theorem 1.7 in Milman’s work [17] gives

Lλ1(Σ) ≥ λ1(Sn+1) = n.

This proves the conjecture. Both of our directions help gain insights to this ultimate goal.

First, since Sn+1 is a dimension higher than its embedded minimal surface, a transport

map between unequal dimensions is potentially needed. Despite establishing a local PDE, the

conventional techniques used in Caffarelli’s theorem, Figalli’s theorem [3], and Theorem 4.3

do not naturally generalize to the optimal transport of unequal dimensions. In particular, our

PDE is non-linear, making the tactic of taking the log and differentiating twice insufficient.

Future work on linearizing the equation in Theorem 3.2 may be crucial.

From a different perspective, the Monge-Ampère Equation on non-Euclidean manifolds

includes a term to describe the metric, which we may simulate by using specific cost functions.

In the future, we hope to first generalize our perturbed quadratic cost result to maps of

Rn → Rn. Then, we may attempt to generalize our perturbation to cost functions in the

form of

c(x, y) = −xy − εf(x)g(y).

17



From there, we can potentially motivate contraction maps for a greater variety of costs,

especially costs that simplify the problem of optimal transport in non-Euclidean spaces. For

example, the reflector antenna cost c(x, y) = −2 log ∥x− y∥ simplifies optimal transport on

a sphere [18].

18



Acknowledgements

I would like to express my deepest gratitude to my mentor, Shrey Aryan, for proposing

this project and guiding me through the past month with great insights. I would also like

to express my appreciation to Dr. Tanya Khovanova, Prof. David Jerison and Dr. Jenny

Sendova for their weekly feedback on my progress and their inspirational views on conducting

mathematical research. I also thank last week’s teaching assistants Mihika Dusad and Viktor

Kolev as well as Hanming Ye and Assylbek Olzhabayev for their invaluable advice on my

drafts. My gratitudes also extend to the first teaching assistants Srikara Vishnubhatla,

Lauren Shen, and Ella Lan for their instructions on using Latex and Beamer. Finally, I thank

the Center for Excellence in Education (CEE), the Massachusetts Institute of Technology

(MIT), the Research Science Institute (RSI), and my sponsor, Princetonow Education, for

making this once-in-a-lifetime research opportunity.

19



References

[1] J. Carrillo. Optimal Transport and Partial Differential Equations. University of Oxford.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN, 2017. URL https://

arxiv.org/abs/1701.07875. 1701.07875.

[3] G. Carlier, A. Figalli, and F. Santambrogio. On optimal transport maps between 1/d-
concave densities, 2024. URL https://arxiv.org/abs/2404.05456. 2404.05456.

[4] L. Caffarelli. Monotonicity properties of optimal transportation and the FKG and
related inequalities. Comm. Math. Phys., 214(3):pp. 547–563, 2000.

[5] R. J. McCann and B. Pass. Optimal transportation between unequal dimensions.
Archive for Rational Mechanics and Analysis, (238):p. 1475–1520, 2020. URL https:

//doi.org/10.1007/s00205-020-01569-5.

[6] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued func-
tions. Communications on Pure and Applied Mathematics, (44):pp. 375–417, 1991.
URL https://doi.org/10.1002/cpa.3160440402.
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Appendix

A The First Neumann Eigenvalue

First define the Laplacian operator ∆ on a function u : Rd → R as

∆u =
d∑

i=1

∂2u

∂x2
i

.

For a bounded region Ω ∈ Rd with boundary ∂Ω, denote N(x) as the unit normal vector

at point x ∈ Ω. Then, Neumann eigenvalues are non-negative numbers λ that produce C2

solutions to the set of differential equations

−∆u(x) = λu(x) x ∈ Ω,

∇u(x) ·N(x) = 0 x ∈ ∂Ω.

Hence, for any surface S embedded in a Euclidean space, we have a sequence of eigenvalues

{λk} such that

0 = λ0(S) ≤ λ1(S) ≤ . . .

We call λ1(S) the first Neumann eigenvalue of S.

B Complete Proof of Theorem 4.1

Proof. Since we are free to rotate the coordinates, assume that φee, the second directional

derivative with respect to unit vector e, takes its maximum when e is in the direction of x1.

Thus, ∇φ11 = 0 and D2φ11 ≤ 0.

Now, we start with the Monge-Ampère Equation after applying Brenier’s Theorem, which

is Equation (1).

e−V = e−W (∇φ) det
(
D2φ

)
From now on, denote the matrix D2φ as w and D2

(
∂φ
∂xi

)
as wi. Taking the log of both sides,

we get

V = W (T )− log(det(w)).
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Differentiating along the direction of x1, we have

V1 = ∇W (T ) · T1 −
∂1 det(w)

det(w)

= ∇W (T ) · T1 − tr
(
w−1w1

)
.

Differentiating along x1 again and noting that T11 = 0, we get

V11 = D2W (T ) · T 2
1 − tr

(
w−1w11

)
− tr

(
w−1w1ww

−1
1

)
Note that (w · w−1)1 = w1w

−1 + ww−1
1 = 0, so tr(w−1w1ww

−1
1 ) = −tr((w−1w1)

2) ≤ 0. Since

φ is convex, w is positive definite and tr(w−1w11) ≤ 0. Thus,

V11 ≥ D2W (T ) · T 2
1 ≥ KT 2

1 .

The same argument applies to bounding Ti for any principal direction xi. Therefore, |∇T |

is upper bounded and T is Lipschitz. Furthermore, when V is the standard Gaussian e−
|x|2
2 ,

V11 = 1. Thus, K ≥ 1 guarantees that Lip(T ) ≤ 1.
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