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Abstract

Knots that are topologically but not smoothly slice are of great interest to geometric
topologists. To determine the smooth sliceness of a knot, we study its slice genus, which is
related to knot invariants like the grid index g(K) and the maximal Thurston–Bennequin
number tb(K). It has been conjectured that g(K) and tb(K) detect roughly the same
information. In this paper, we establish a connection between g(K) and tb(K) and give an
explanation as to why the Thurston-Bennequin number gives a better approximation of the
grid index when compared to other knot invariants and strategies. We also find an infinite
sequence of topologically slice knots with slice genus approaching infinity. As such knots are
topologically slice but not smoothly slice, applying knot surgery to each knot gives rise to
an exotic R4.

Summary

Geometric topologists like to study knots that are topologically slice but not smoothly
slice, as such knots give rise to exotic R4’s. To determine the smooth sliceness of a knot,
we study its slice genus, which is related to knot invariants like the maximal Thurston–
Bennequin number and the grid index. Existing knot invariants and strategies give weak
bounds on the grid index. Instead, we use the Thurston-Bennequin number to study the grid
index, as they detect similar features of a knot. Additionally, we use the Thurston-Bennequin
number to construct a sequence of knots whose slice genera approach infinity.



1 Introduction

Generalizations of the Poincaré Conjecture are of great interest to mathematicians study-

ing geometric topology. The generalized Poincaré Conjecture roughly states that any man-

ifold that is homotopy equivalent to a sphere is equivalent to a sphere, where the notion

of equivalence can be taken as topological or smooth. The conjecture has been solved for

dimensions 5 and above by the work of Milnor [1] and Kervaire-Milnor [2] (smooth) and

Smale [3] (topological) up to determining the stable homotopy groups of spheres. However,

for lower dimensions, the conjecture is much harder to solve. In the topological case, the

work of Freedman [4] (dimension 4) and Perelman [5, 6, 7] (dimension 3) confirms that the

conjecture is true. Moreover, Perelman’s proof also works for the smooth three-dimensional

case. However, it remains unknown whether the smooth four-dimensional Poincaré conjec-

ture holds.

Since the work of Freedman, topologists have tried to use knot surgery to construct exotic

4-spheres, counterexamples to the smooth Poincaré conjecture in dimension 4 [8, 9]. This

technique relies on the notion of smooth sliceness of a knot, which determines if a knot

embedded in S3 is the boundary of a smoothly embedded disc in a 4-ball. However, it turns

out that proving a certain knot is not smoothly slice is also very difficult: for example,

a proof that the Conway knot is not smoothly slice has only been recently obtained by

Piccirillo [10] using sophisticated tools such as Khovanov homology [11] and the Rasmussen

s-invariant [12]. In [9], Manolescu and Piccirillo pursued this approach, and found five knots

that yield exotic four-spheres if slice. Manolescu and Piccirillo computed some properties of

these knots of interest, shown in Table 3.

In this paper, we introduce a new method that can determine non-sliceness of a knot

using a simple knot representation called the grid diagram. The crucial observation is that

the minimal grid diagram of a knot is closely related to its maximal Thurston-Bennequin

number (which is an invariant), giving a lower bound on the slice genus.

The main machinery we use in this paper are the Slice-Bennequin inequality and an
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inequality due to Matsuda [13]. The Slice-Bennequin inequality provides a lower bound for

the slice genus of a knot, and Matsuda’s inequality relates the grid index of a knot with its

maximal Thurston-Bennequin number. With these tools, we demonstrate that our method

recovers the slice genus bound for torus knots obtained by Kronheimer-Mrowka [14] and

Rasmussen [15], and we construct a family of topologically slice but not smoothly slice knots

with arbitrarily large slice genus. In addition, applying knot surgery to any knot in this

family gives rise to an exotic R4 [16].

Knot Invariant K1 K2 K3 K4 K5

Crossing number cr(K) 29 29 32 29 32

Alexander polynomial 1 1 1 1 1

τ ϵ, and ν invariants 0 0 0 0 0

Rasmussen s invariant 0 0 0 0 0

Lipshitz-Sarkar Sq1 s-invariants 0 0 0 0 0

Seifert genus 2 2 2 2 2

Total rank 65 65 193 65 193

Table 1: Properties of Manolescu and Piccirillo knots [9].

2 Preliminaries

In this section, we define some necessary concepts. First, we must define the concept

of knot invariants and sliceness, and then we introduce grid index, Thurston-Bennequin

number, and results used in our research involving these quantities.

2.1 Knots, Invariants, and Sliceness

Let Bn = {x ∈ Rn : |x| ≤ 1} denote the n-dimensional ball and Sn−1 = {x ∈ Rn : |x| =

1} denote its boundary.

Definition 2.1 (knot). A knot is a smooth embedding of S1 into R3.
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In other words, a knot is a closed non-self-intersecting curve in three dimensions. The

inclusion of the smoothness constraint excludes “wild knots”, which exhibit pathological

behavior and cannot be represented using grid diagrams. A link is a collection of non-

intersecting knots that could be intertwined but do not intersect. To visualize knots, we

tend to think of them in terms of their projections onto a plane. Since knots can yield many

different representations by projection onto different planes, it is hard to distinguish knots

using solely their knot representations. Naturally, mathematicians want to find a way to

determine when two representations of knots are actually topologically distinct. The main

tools used to distinguish knots based on their representations are knot invariants.

Definition 2.2 (knot invariant). A knot invariant is an expression φ(K) in terms of a knot

K such that if the knots K1 and K2 are equivalent by ambient isotopy, then φ(K1) = φ(K2).

For a knot K, we mainly study three knot invariants: the slice genus gs(K), the grid

index g(K), and the maximal Thurston-Bennequin number tb(K).

Definition 2.3 (slice genus). The slice genus of a knot K ⊂ S3 is the smallest integer

gs(K) such that K is the oriented boundary of a smooth oriented surface Σ of genus gs(K)

embedded in B4.

We define the notions of smoothly and topologically slice knots.

Definition 2.4 (smooth sliceness). A knot K ⊂ S3 is smoothly slice if it is the boundary of

some smoothly embedded disk in B4.

By definition, a knot is smoothly slice if and only if its slice genus is 0.

Definition 2.5 (topological sliceness). A knot K ⊂ S3 is topologically slice if it is the

boundary of some locally flat embedded disk in B4.

By definition, any smoothly slice knot must also be topologically slice. In [17], the

converse is shown to be false. We are interested in finding new families of knots that are
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topologically slice but not smoothly slice, as such knots can be used to construct exotic

smooth structures in R4 [18] and could potentially be used to construct exotic 4-spheres [8].

The Alexander polynomial (see [19] for more details) is a knot invariant that is useful in

detecting topological sliceness of knots.

Theorem 2.6 ([4]). If a knot K has Alexander polynomial 1, then K is topologically slice.

On the other hand, it is notoriously difficult to detect the smooth sliceness of a given knot

[17]. Even for simple knots like the Conway knot or the (2, 1)-cable of the figure-eight knot,

it was only determined recently that they were not smoothly slice [10, 20]. For many other

simple examples like the Whitehead double of the figure-eight knot, it is still not known

whether they are smoothly slice.

2.2 Grid Index and its Relations to Other Knot Invariants

Knot invariants can be used to dinstinguish knots, but each knot invariant is used to

detect different properties of a knot. In this paper, we primarily study three knot invariants:

the grid index g(K), the arc index α(K), and the maximal Thurston-Bennequin number

tb(K). The first is the grid index g(K), based on the minimal size of a knot representation

known as the planar grid diagram.

Definition 2.7 (grid diagram). A planar grid diagram is an n× n grid with n distinct cells

labelled with an X and n distinct cells labelled with an O such that the following conditions

are satisfied.

• No cell has both an X and an O.

• Each row has exactly one X and exactly one O.

• Each column has exactly one X and exactly one O.

If we connect all X’s and O’s in the same row or column and place the vertical strand on

top of the horizontal strand at each crossing, we obtain a knot K. We call G the (planar)

grid diagram of K.
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Figure 1: Grid diagram of the figure-eight knot.

Definition 2.8 (grid index). The grid index of a knot K is the minimum grid size among

all grid diagrams of K.

Grid diagrams are related to another type of knot representation known as an arc pre-

sentation.

Definition 2.9 (open book decomposition). An open book decomposition of S3 is a binding

of half-planes using the Cartesian z-axis as the binding axis.

Definition 2.10 (arc presentation). An arc presentation of a knot K is an embedding of K

into the pages of an open book decomposition of the sphere S3, with exactly one arc on each

page. The arc index α(K) is the smallest number of pages necessary in an arc presentation

of knot K.

There exists a well-known bijection between arc presentations and grid diagrams of a

knot implying that g(K) = α(K) for all knots K [21]. This result allows us to use historical

bounds involving the grid index and arc index interchangeably. For the rest of the paper,

we will use the terms “grid index” and “arc index” interchangeably unless otherwise stated.

A front projection of a Legendrian knot is a knot representation with no vertical tangents,

no non-smooth points other than the cusps, and at every crossing, the understrand has

positive slope and the overstrand has negative slope.
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Figure 2: A front projection of a Legendrian knot has three types of singularities. From left
to right, they are right cusps, left cusps, and crossings [22].

For simplicity, we call a front projection of a Legendrian knot a Legendrian knot repre-

sentation. The main property of Legendrian knot representations we study is the Thurston-

Bennequin number.

Definition 2.11. The Thurston-Bennequin number of a Legendrian knot representation L

is defined as

tb(L) = wr(L)−#(right cusps),

where the writhe wr(L) is the number of positive crossings minus the number of negative

crossings.

Definition 2.12. Denote by L(K) the set of all Legendrian representations of a knot K.

Define the maximal Thurston-Bennequin number to be

tb(K) = max
L∈L

tb(L).

Legendrian knots have a convenient relationship to grid diagrams. One could obtain

a Legendrian representation of a knot K embedded in a grid diagram by rotating it 45◦

clockwise and smoothing out the corners (using cusps when necessary).

Theorem 2.13 ([13]). The Thurston-Bennequin number of a knot is related to the grid index

by the following equation:

−α(K) ≤ tb(K) + tb(K),

where K denotes the mirror image of K.

Moreover, equality is conjectured to hold.
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Conjecture 2.14 ([23]). For every knot K, −α(K) = tb(K) + tb(K).

There are no counterexamples to this conjecture up to crossing number 11 [23]. If this

conjecture is true, Thurston-Bennequin number should detect roughly the same properties of

a knot as the arc index. A lower bound on the slice genus can be given using the Thurston-

Bennequin number of any representation of the knot.

Theorem 2.15 ([22]). Given a Legendrian representation L of a knot K, the Thurston-

Bennequin number is related to the slice genus by the following equation:

gs(K) ≥ 1

2
(tb(L) + |r(L)|+ 1),

where r(L) is half the difference between the number of left cusps and right cusps.

This inequality is derived from Lisca and Matić [24] and Akbulut and Matveyev [25]’s

work on the Thurston-Bennequin number. We will refer to Theorem 2.15 as the Slice-

Bennequin Inequality.

3 Methods to Lower Bound the Grid Index

Another common way knots can be represented in a grid is by using a knot mosaic. These

knot representations are related to grid diagrams, but they have looser conditions.

Definition 3.1. A knot mosaic of a knot K or link L is an n×n grid filled with the following

tiles such that the tiles form K or L (see Figure 3).

Figure 3: Tiles in a knot mosaic [26].

The main difference between knot mosaics and grid diagrams is that unlike grid diagrams,

knot mosaics allow multiple strands of a knot to be in the same row or column and the

overstrand at each crossing can be either horizontal or vertical.
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In [9], Manolescu and Piccirillo gave the mosaic diagrams of five knots that, if smoothly

slice, were candidate knots for a construction that could yield exotic 4-spheres, potential

counterexamples to the smooth four-dimensional Poincaré conjecture. These diagrams are

shown in Figure 4. All five knots are hyperbolic knots and are thus prime [9]. We give bounds

for the grid indices of these knots. Given the mosaic diagrams of the Manolescu-Piccirillo

knots, each crossing can be thought of as a horizontal or vertical bridge based on which

strand lies on top. The goal is to use local modifications to correct all horizontal bridges to

vertical bridges while maintaining as few distinct horizontal strands as possible.

See Table 3 in Appendix A for the enumeration of all prime knots with grid index less

than 13 or crossing number less than 14. Since no prime knots with grid index less than 13

have a crossing number less than 29, the Manolescu-Piccirillo knots must all have grid index

at least 13. The grid diagrams achieving the upper bounds of the Manolescu-Piccirillo knots

in Theorem 3.2 are shown in Figures 8, 9, 10, 11, and 12. The upper bound constructions

can be found in Appendix A.

Figure 4: Manolescu and Piccirillo’s knots [9].

Theorem 3.2. The grid index of the Manolescu-Piccirillo knots can be bounded as follows:

13 ≤ g(K1) ≤ 20,

13 ≤ g(K2) ≤ 20,

13 ≤ g(K3) ≤ 21,

13 ≤ g(K4) ≤ 22,

13 ≤ g(K5) ≤ 25.
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We also calculated lower bounds on the grid index based on several other strategies,

including several knot invariants. Let c(K) denote the crossing number of knot K. A square-

root bound is obtained by recognizing that no crossings can occur on the boundary of the

grid diagram, yielding the inequality c(K) ≤ (g(K) − 2)2, which is weaker than the lower

bound of 13. In addition, grid diagrams give rise to a knot Floer homology. A deduction

from the work of Ozsváth, Stipsicz, and Szabó [27] shows that the quantity (g(K) + 1)! is

greater than the rank of the knot Floer homology of K. This bound is also weaker than the

lower bound of 13. Morton and Beltrami [28] gave a lower bound on the grid index using

the Kauffman polynomial.

Theorem 3.3 ([28]). Let the spread sprv denote the difference between the maximum and

minimum exponents of v. Let fL(v, z) denote the Kauffman polynomial of the link L. Then

α(L) ≥ sprv(fL(v, z)) + 2.

The Kauffman polynomial is computationally expensive to calculate for the large number

of crossings in the Manolescu-Piccirillo knots, as it relies on recursive skein relations [29].

The last method is to write the knot as a connected sum of two smaller knots and use the grid

indices of each portion to find a lower bound on the grid index. This method does not work

for the Manolescu-Piccirillo knots, as they are prime and any way to express these knots as

a connect sum must have the unknot as a summand. See Table 2 for a table outlining the

drawbacks of the lower bounds on g(K) due to these knot invariants and strategies.

Strategy Used Drawback

Square-root bound Too weak

Rank of Heegaard Floer homology Too weak

Kauffman Polynomial Computationally expensive

Cutting the knot Weak for prime knots

Table 2: Methods used for the lower bound.
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The weakness of these bounds suggests that some property of the Manolescu-Piccirillo

knots is captured by the grid index but not other canonical knot invariants like the Heegaard

Floer homology and the Kauffman polynomial. Although grid diagrams are simple ways to

depict knots, they reflect subtle features of certain knots, as demonstrated by their relation

to knot Floer homology and the maximal Thurston-Bennequin number, which detect subtler

properties of knots.

4 Bounds on the Slice Genus of Potentially Slice Knots

In this section, we use the Slice-Bennequin Inequality to generate knots with large slice

genus. Since the slice genus of a knot is bounded below by half the Thurston-Bennequin

number, it is natural to consider grid diagrams where the Thurston-Bennequin number of a

knot K is maximized. This method could be used to find bounds on the slice genera of torus

knots and knots with small crossing number. For such knots, one way to achieve a large slice

genus is to consider the relationship between grid index and Thurston-Bennequin number.

Theorem 4.1 ([30]). The Thurston-Bennequin number of a knot K is maximized by a grid

diagram of K with minimal grid size.

Conversely, it is also natural to study the maximum possible value of the Thurston-

Bennequin number given a fixed grid size. The maximum is conjectured to be achieved by

a special type of knot.

Definition 4.2. Let p and q be positive integers. The (p, q)-torus knot T (p, q) (or link if

gcd(p, q) ̸= 1) is a knot embedded on the surface of a torus that revolves p times around the

axis of symmetry of the torus and q times around the interior of the torus.

The Slice-Bennequin Inequality gives a lower bound on slice genus, and thus can be used

to find slice genera of certain families of knots. One such case is the positive torus knot

T (p, q) with p, q > 0, in which the slice genus was conjectured to be 1
2
(p− 1)(q − 1) [31]. In
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Figure 5: Gluing together opposite edges of the figure on the left yields the torus knot T (5, 3).
The figure on the right is a grid diagram of T (5, 3).

1993, Kronheimer and Mrowka [14] used gauge theoretic methods to prove this conjecture.

In 2004, Rasmussen [15] found a purely combinatorial proof using Khovanov homology. To

gauge the effectiveness of using the grid index to give a bound on this slice genus, we give a

simpler combinatorial proof of the Milnor Conjecture.

Matsuda [13] and Etnyre and Honda [32] showed that the grid index of a torus knot

T (p, q) with p, q > 0 is p + q and the maximal Thurston-Bennequin number of its mirror is

−pq, respectively. The maximal Thurston-Bennequin number of T (p, q) then satisfies

tb(T (p, q)) ≥ −α(T (p, q))− tb
(
T (p, q)

)
= −(p+ q)− (−pq)

= pq − p− q.

Note that this lower bound matches the lower bound obtained by taking the Lee et al.

[26] construction of a minimal grid diagram of T (p, q), shown in Figure 6. Applying the

Slice-Bennequin Inequality, we obtain

gs(T (p, q)) ≥
1

2
(pq − p− q + 1),

confirming the slice genus calculated by Kronheimer and Mrowka [14] and Rasmussen [15].

This shows that our method is effective at giving strong bounds on the slice genus.
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Figure 6: A grid diagram for T (p, q) of size p + q [26]. Notice that the rotation number is
zero, achieving equality.

The second strategy is to find a knot K with very small maximal Thurston-Bennequin

number. If K satisfies Conjecture 2.14, tb(K) will have a very large Thurston-Bennequin

number, from which K must have large slice genus. This method is useful because it could

be used to characterize knots with positive slice genus among all knots with small crossing

numbers. Another potential strategy is to find knots K such that the maximal Thurston-

Bennequin numbers ofK andK are as far apart as possible, as such knots give a large positive

maximal Thurston-Bennequin number and thus a large slice genus. If Conjecture 2.14 is true,

then torus knots should achieve the largest difference between tb(K) and tb(K).

Moreover, we use the relationship between the grid diagram and the Thurston-Bennequin

number to construct an infinite sequence of knots whose slice genera approach infinity. Given

a knot K, let Kn denote the connected sum of Kn−1 and K, where K1 = K.

Theorem 4.3. If a knot K has a Legendrian knot representation L satisfying tb(L)+|r(L)| ≥

−1
2
, the sequence

gs(K
1), gs(K

2), gs(K
3), . . .

approaches infinity. Specifically, gs(K
n) ≥ 1

4
(n− 2) for all positive integers n.

Proof. Let Ln denote the connected sum of n copies of the Legendrian knot L using the
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recursive definition Ln = Ln−1#L, where # denotes the connected sum operation. Ob-

serve that the connected sum of two Legendrian knots L1 and L2 satisfies the following two

properties [22].

• tb(L1#L2) = tb(L1) + tb(L2) + 1.

• r(L1#L2) = r(L1) + r(L2).

By induction, tb(Ln) = n tb(L) + (n− 1) and |r(Ln)| = n|r(L)|. Using the Slice-Bennequin

Inequality, we obtain

gs(K
n) ≥ 1

2
(tb(Ln) + |r(Ln)|+ 1) =

1

2
(n tb(L) + n|r(L)|+ (n− 1)) .

Since tb(L) + |r(L)| ≥ −1
2
,

1

2
(n tb(L) + n|r(L)|+ (n− 1)) ≥ 1

2

(
−1

2
n+ (n− 1)

)
=

1

4
(n− 2).

Hence, the lower bound for gs(K
n) is at least 1

4
(n − 2), which approaches infinity as n

approaches infinity.

This sequence is especially interesting when the knot K has Alexander polynomial 1. The

Alexander polynomial of a connected sum of two Legendrian knots L1 and L2 is equal to

the product of the Alexander polynomials of each individual knot. Therefore, the connected

sums of any knot K with Alexander polynomial 1 would also have Alexander polynomial 1

and are thus topologically slice.

Using Knotscape [33], we checked all knots with up to 16 crossings that have Alexander

polynomial 1. Among these knots, there is one prime knot 16n196836 whose corresponding

grid diagram in [34] gives rise to a Legendrian knot representation satisfying the condition

for Theorem 4.3.

Theorem 4.4 (Main result). The sequence

(16n196836)
3, (16n196836)

4, (16n196836)
5, . . .
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Figure 7: The grid diagram of 16n196836.

consists of knots that are topologically slice and not smoothly slice. Moreover, the slice genera

of the knots in the sequence approach infinity.

Proof. A grid diagram for 16n196836 is shown in Figure 7. The Legendrian knot represen-

tation 16n′
196836 obtained by rotating it 45◦ clockwise and smoothing out the corners has

5 right cusps and a writhe of 4, from which we obtain tb(16n′
196836) = −1. Additionally,

|r(16n′
196836)| = 1

2
, so the condition for Theorem 4.3 is satisfied. Applying Theorem 4.3, we

found that for n ≥ 3, the slice genus of (16n196836)
n is at least 1 and therefore (16n196836)

n

is not smoothly slice. Moreover, since 16n196836 has Alexander polynomial 1, every knot

in the sequence also has Alexander polynomial 1. By Theorem 2.6, all of these knots are

topologically slice. Hence, the knots in this sequence are topologically slice but not smoothly

slice, and they have slice genera that approach infinity.

There are several important implications of our main result. Applying knot surgery on

these knots yield exotic R4 [16]. Mathematicians have known of the existence of exotic

R4’s for decades using gauge theoretic techniques, but our recursive construction using our
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strategy of connecting the slice genus to the grid index via the Thurston-Bennequin number

is novel in finding infinite families of these exotic structures that can only exist in four-

dimensional space [35].

5 Conclusion

In our project, we devised a new strategy to provide lower bounds on the slice genera

of knots by using known minimal grid diagrams. we also determined a relation between

the size of a grid diagram and its maximal Thurston-Bennequin number and explored the

effectiveness of this bound in relation to other bounds and knot invariants. By constructing

a sequence of knots via connected sums, we found an infinite sequence of topologically slice

knots with Alexander polynomial 1 that have slice genera approaching infinity. Since the

knots in this infinite sequence are topologically slice but not smoothly slice, they generate

a new infinite family of exotic R4’s [18] and could potentially be used to construct exotic

4-spheres [8].

Our method can also be extended to recursive constructions other than the connected

sum. For example, knot infection (see [36] for more details) could be used in place of

connected sums. Setting the original knot to have Alexander polynomial 1 and repeatedly

applying infection gives an infinite sequence of knots with a fixed Alexander polynomial

and slice genera approaching infinity. If the fixed Alexander polynomial is 1 as well, this

construction could also potentially yield exotic R4’s.

It would be interesting to consider using existing slice genus data in [37] and explore the

maximal Thurston-Bennequin numbers of knots similar to torus knots. To this extent, it

could be possible to find a metric that measures how similar a knot is to a torus knot. Knots

similar to a torus knot should have Thurston-Bennequin numbers close to the maximum

and thus must pass the conditions in Theorem 4.3. As a result, Theorem 4.3 could also be

applied to such knots.
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Appendix A Constructions for Theorem 3.2

Grid Index

5 6 7 8 9 10 11 12 13 14 15 Subtotal
C
ro
ss
in
gs

3 1 1

4 1 1

5 2 2

6 3 3

7 7 7

8 1 2 18 21

9 2 6 41 49

10 1 9 32 123 165

11 4 46 135 367 552

12 2 48 211 627 1288 2176

13 49 399 1412 3250 4878 9988

14 17 477 3180

15 1 22 441 6216

16 7 345 7955

17 1 192 10283

18 75 8584

19 12 6063

20 3 3540

21 3 1284

22 761

23 124

24 1 132

25 39

26 3

27

28 1

Subtotal 1 1 3 8 29 240 2335 50327

Table 3: Enumeration of prime knots K with g(K) < 13 or c(K) < 14 [34].
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Figure 8: Grid diagram of K1 with size 20.
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Figure 9: Grid diagram of K2 with size 20.
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Figure 10: Grid diagram of K3 with size 21.
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Figure 11: Grid diagram of K4 with size 22.
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Figure 12: Grid diagram of K5 with size 25.
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