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Abstract

A local system describes the behavior of a multi-valued function around n punctures of
a sphere. We can represent a rank m Fp-local system as an n-tuple of matrices in GLm(Fp),
but this representation is not unique. In particular, we can relate the representations of
these local systems under conjugation and the action of the braid group. In this paper, we
explore the orbits of the braid group action on the conjugacy classes n-tuples of matrices
in GLm(Fp). Specifically, we find lower and upper bounds for the number of orbits, and we
provide a description for the possible sizes of orbits when n = 2 and n = 3. In addition, we
find explicit formulas for the number of orbits when n = 2, and we explore the nature of the
orbits for particular cases when n = 3.

Summary

Consider a function which maps each point on a sphere to a single value. As we move
around the sphere, the function outputs a different value, but if we revisit any point we
have already been to, it will output the same value it did before. Instead of a single-valued
function, we can also define a multi-valued function anchored at a particular point on the
sphere called a “puncture.” Now, this function can output multiple different values at the
same point, but how do we know what the output will be? Let us imagine, instead of a flat
surface around the puncture, a 3-dimensional spiral staircase centered around the puncture.
As we move around the puncture back to the same spot, we end up changing flights on the
spiral staircase, but if we move around without circling the puncture, we stay on the same
flight. These different flights correspond to different outputs of the multi-valued function,
and the behavior of such a staircase around a puncture is called a “monodromy.” We can
express types of multi-valued functions of n monodromies on the sphere as orbits of the braid
group action on n-tuples of m×m matrices with entries modulo a prime. In this paper, we
find bounds and formulas for the number of orbits when n and m are small.



1 Introduction

Braid groups generate a subgroup of the mapping class group of surfaces through Dehn
twists, as described in detail in [1]. Braid groups arise in various areas of geometry under
several guises [2–4]. In recent years, fascinating connections to arithmetic geometry are also
beginning to be understood, such as in the works of [5–9]. One important reason why they
appear is because they are closely related to the study of local systems over surfaces.

A local system of rankm over a disk with n punctures can be represented as an equivalence
class of n-tuples of m × m matrices whose product is the identity. Each matrix can be
considered as the monodromy of a rank m local system along the 1-cycles that the generators
of the fundamental group represent. Such a local system can be identified with another
through conjugation of each element in the tuple by another matrix. Now, the geometry of
the base space—the disk with n punctures—allows us to define an action of the braid group
on the set of local systems. As explained in [4], the mapping class group of the underlying
surface acts on the equivalence classes of these local systems, and this action has surprising
consequences in the field of Diophantine equations and the Gauss-Manin connection of certain
algebraic systems.

Previous work, for example that of [10], which concerns the Painlevé VI equations, has
focused on the algebraicity of the sections of the local systems, and thus have been confined
to the case of C-local systems. For this reason, it is natural to ask what happens for the
case of Fp-local systems, or in general, local systems with coefficients in a finite ring. In this
paper, we explore the nature of the orbits of the braid group action on similar n-tuples of
matrices in GLm(Fp) whose product is the identity.

The paper is organized as follows: In Section 2, we formalize the problem we are studying
and explain its geometric consequences. We also introduce notation which will be used
throughout the paper. In Section 3, we establish general lower and upper bounds on the
number of orbits of the braid group action on n-tuples of matrices in GLm(Fp). In Section 4,
we examine the nature of the orbits when the dimension of the matrices is 1, and express
the number of orbits as a combinatorial problem about counting necklaces. In Section 5,
we find a formula for the number of orbits of pairs of dimension 2 and 3 matrices under
the braid group action and provide a general, but rather cumbersome method to calculate
the number of orbits for matrices of an arbitrary dimension. In Section 6, we strengthen
the general lower bound on the number of orbits for triples of matrices, and we provide the
numbers and lengths of specific cases of triples of matrices under the braid group action.

2 Preliminaries

The concept of monodromy describes the behavior of a multi-valued function around a
singularity, where “running around” the singularity in a closed path results in a different
output of the multi-valued function, whereas a closed loop not containing the singularity
maintains the same output. For example, consider the branched 2 : 1 covering map between
Riemann spheres z 7→ z2 : CP1 → CP1 pictured in Figure 1, which has branch points over
z = 0 and z = ∞. One can look at the monodromy along the closed loop from a point reiθ

to reiθ, which changes the output from
√
rei

θ
2 to

√
rei(

θ
2
+π), or vice versa. Consequently, we
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say that the monodromy transformation at every point for z
1
2 around 0 is multiplication by

eiπ.

Figure 1: A 3-dimensional projection of the multi-valued function z
1
2 over C \ {0}.

For our purposes, a local system is a multi-valued function on a disk with n punctured
points which behaves as a single-valued function locally, but undergoes monodromy around
punctured points, but a mathematically precise definition of local systems can be found
in Farb and Margalit’s book [1]. More formally, let π1(D

2 \ {p1, . . . , pn}) denote the fun-
damental group of a disk D2 with n punctures, which is isomorphic to the free group on
n generators, where each generator corresponds to the class of loops which enclose a sin-
gle puncture. We can think of elements in the fundamental group as closed loops which
start at a fixed point, where two loops are equivalent if we can smoothly deform one to
another without crossing any punctures. We define a local system as a homomorphism
ρ : π1(D

2 \ {p1, . . . , pn}) → GLm(Fp), where ρ sends the loop around all punctures to the
identity. Because the monodromy along the boundary of the unit disk is the identity, one
can actually extend this local system over the point ∞ ∈ CP1, shrinking the boundary to a
removable singularity to form a Riemannian sphere.

We call x ∈ D2 \ {p1, . . . , pn} a base point if it is on the boundary of the disk. Given
a choice of x and an ordering of punctures, we can represent a local system as a tu-
ple of matrices (A1, A2, . . . , An) such that A1A2 · · ·An = Id, where Ai is the monodromy
transformation around the ith puncture at the point x. Let x′ be a different choice of
base point such that X is the transformation matrix from the point x′ to x. Then, un-
der the base point x′ and the same ordering of punctures, we find the separate repre-
sentation (XA1X

−1, XA2X
−1, . . . , XAnX

−1) of the local system. Switching the ordering
of the i and (i + 1)th punctures results in the tuple (A1, . . . , AiAi+1A

−1
i , Ai, . . . , An) or

(A1, . . . , Ai+1, A
−1
i+1AiAi+1, . . . , An), which we we can describe using“under” and “over” ad-

jacent twists in the braid group.

Definition 2.1. The braid group Bn on n strands is generated by the adjacent twists
σ1, σ2, . . . , σn−1 which satisfy the relations σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2 and
σkσℓ = σℓσk for |k − ℓ| ≥ 2. That is,

Bn := ⟨σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σkσℓ = σℓσk : |k − ℓ| ≥ 2⟩.

One can imagine an element of the braid group as a series of adjacent twists of n strands,
where each generator σi of the braid group corresponds to twisting the ith strand over the
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(i + 1)th strand. This provides an intuitive understanding of the braid relations, which are
illustrated in Figure 2.

i i+ 1 i+ 2

σi

σi+1

σi

=

i i+ 1 i+ 2

σi+1

σi

σi+1

k k + 1 ℓ ℓ+ 1

σk

σℓ

=

k k + 1 ℓ ℓ+ 1

σℓ

σk

Figure 2: The braid relations.

We define the action of the braid group Bn on n-tuples of matrices as follows:

σi(A1, A2, . . . , An) = (A1, A2, . . . , AiAi+1A
−1
i , Ai, . . . , An).

Let
Sn,m,p := {(A1, A2, . . . , An) | Ai ∈ GLm(Fp), A1A2 · · ·An = Id}

be the set of representations of local systems on a disk which fix a base point and the ordering
of the punctured points. As a different choice of base point changes the representation by
conjugation of some matrix over each element in the tuple, we consider the set of local
systems Tn,m,p := Sn,m,p/ ∼ where (A1, A2, . . . , An) ∼ (A′

1, A
′
2, . . . , A

′
n) if there exists some

X ∈ GLm(Fp) such that (A1, A2, . . . , An) = (XA′
1X

−1, XA′
2X

−1, . . . , XA′
nX

−1). The action
of the braid group Bn relates n-tuples of Tn,m,p which represent the same local system with
respect to reordering the monodromies. In other words, if two n-tuples are in the same orbit,
there is a diffeomorphism between the two local systems they represent.

Definition 2.2. The orbit number of Tn,m,p is the number of orbits of the action of the braid
group Bn on Tn,m,p, which we denote by cn,m,p.

In this paper, we explore the nature of the orbit number cn,m,p for various values of n,m,
and p, which counts the number of diffeomorphic rank m Fp-local systems of spheres with n
punctured points.

Before we begin, we recall shorthand notation which we will use throughout the paper.
Let A be a matrix in GLm(Fp). We denote by Cl(A) := {XAX−1 | X ∈ GLm(Fp)} the
conjugacy class of A. Let T ∈ Tn,m,p be an n-tuple of matrices in GLm(Fp). We denote by
Orb(T ) := {σT | σ ∈ Bn} the orbit of T under the braid group action Bn.

3 Initial Bounds

In this section, we provide lower and upper bounds for the number of orbits of the braid
group action on Tn,m,p. Before we discuss these bounds, we introduce an important result
about the nature of the braid group action.

Lemma 3.1. Let A := (A1, . . . , An) ∈ Tn,m,p, and let M := AiAi+1 Then

σ2k
i (A) = (A1, . . . ,M

kAiM
−k,MkAi+1M

−k, . . . , An) (1)

and
σ2k+1
i (A) = (A1, . . . ,M

k+1Ai+1M
−(k+1),MkAiM

−k, . . . , An). (2)
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Proof. We proceed by induction. It follows by the definition of the braid group action that
the identities hold when k = 1. Now, suppose the identities are true for some arbitrary k.
Then, we have

σ2k+2
i (A) = (A1, . . . , (M

k+1Ai+1M
−(k+1))(MkAiM

−k)(Mk+1Ai+1M
−(k+1))−1,

Mk+1Ai+1M
−(k+1), . . . , An)

= (A1, . . . ,M
k+1Ai+1M

−1AiMA−1
i+1M

−(k+1),Mk+1Ai+1M
−(k+1), . . . , An)

= (A1, . . . ,M
k+1AiM

−(k+1),Mk+1Ai+1M
−(k+1), . . . , An),

which implies that identity (1) holds for k+1. Using this derivation and applying the braid
group action once more, we get

σ
2(k+1)+1
i = (A1, . . . , (M

k+1AiM
−(k+1))(Mk+1Ai+1M

−(k+1))(Mk+1AiM
−(k+1))−1,

Mk+1AiM
−(k+1), . . . , An)

= (A1, . . . , (M
k+1AiAi+1A

−1
i M−(k+1),Mk+1AiM

−(k+1), . . . , An)

= (A1, . . . ,M
k+2Ai+1M

−(k+2),Mk+1AiM
−(k+1), . . . , An),

as desired, which proves identity (2).

To establish a lower bound, we consider the case of simultaneously diagonalizable n-
tuples. When a tuple of matrices (A1, A2, . . . , An) is simultaneously diagonalizable, the
braid group acts by permutation, as one can see from the computation

σi(A1, . . . , Ai, Ai+1, . . . , An) = (A1, . . . , AiAi+1A
−1
i , Ai, . . . , An)

= (A1, . . . , (X
−1DiX)(X−1Di+1X)(X−1D−1

i X), Ai, . . . , An)

= (A1, . . . , X
−1DiDi+1D

−1
i X,Ai, . . . , An)

= (A1, . . . , Ai+1, Ai, . . . , An)

where Dk = XAkX
−1 is a diagonal matrix for all k.

Lemma 3.2. Let (A1, A2, . . . , An) ∈ GLm(Fp) be simultaneously diagonalizable. Then the
orbit of (A1, A2, . . . , An) under the action of the braid group Bn consists of the union of the
conjugacy classes of all permutations of (A1, A2, . . . , An).

Proof. Since a generator of the braid group σi acts by swapping the adjacent matrices
Ai and Ai+1 and adjacent transpositions generate all permutations, any permutation of
(A1, A2, . . . , An) is in the orbit of (A1, A2, . . . , An). As each element in Bn can be written as
a composition of transpositions, the only tuples in the orbit of (A1, A2, . . . , An) are in the
conjugacy classes of its permutations.

If two simultaneously diagonalizable tuples in Tn,m,p are not in the same conjugacy class
under permutation, they are not in the same orbit, so the number of unordered tuples of
diagonal matrices whose product is the identity is a lower bound on the orbit number cn,m,p.

Proposition 3.3. The number of orbits cn,m,p of the action of the braid group Bn on Tn,m,p

is bounded below by
1

n− 1

((p+m−2
m

)
+ n− 2

n− 1

)
≤ cn,m,p.
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Proof. Let N denote the number of unordered tuples of diagonal matrices whose product is
the identity. We show that

1

n− 1

((p+m−2
m

)
+ n− 2

n− 1

)
≤ N.

As diagonal matrices are conjugate to each other by permutation of the entries in the diag-
onal, by the “stars and bars” technique, there are

(
(p−2)+m

m

)
conjugacy classes which contain

a diagonal matrix. Since the product of the matrices in an n-tuple must be the identity, a
choice of the first n−1 entries determines the final matrix. Again using the “stars and bars”

technique, we find
((p+m−2

m )+n−2

n−1

)
unordered (n−1)-tuples of diagonal matrices whose product

is not necessarily the identity. By completing the last entry of these (n − 1)-tuples, we get
our desired set of n-tuples whose product is the identity. However, we are overcounting, as
it is possible that at most n− 1 such n-tuples are equal under permutation, so dividing by
n− 1 yields a lower bound for N .

As n-tuples in the same conjugacy class are by definition in the same orbit, the number
of conjugacy classes in Tn,m,p provides an upper bound on the number of orbits. To count
the number of such conjugacy classes, we use a known result about the number of conjugacy
classes of GLm(Fp).

Lemma 3.4. [11] The number of conjugacy classes Cm,p of GLm(Fp) is given by the gener-
ating function ∞∑

m=1

Cm,px
m =

∞∏
k=1

1− xk

1− pxk
.

Proposition 3.5. The number of conjugacy classes of n-tuples in Tn,m,p is

|Cm,p| · |GLm(Fp)|n−2.

Proof. For each conjugacy class C of GLm(Fp), pick a representative MC . This choice gives
rise to a representative of each conjugacy class of n-tuples, as we can uniquely write an
n-tuple whose first matrix is in the conjugacy class C as (MC , A2, . . . , An) for matrices
A2, . . . , An ∈ GLm(Fp). There are |Cm,p| · |GLm(Fp)|n−2 tuples of this form, since n-tuples in
Tn,m,p must multiply to the identity, which determines the final matrix An.

Corollary 3.6. The number of orbits cn,m,p of the action of the braid group Bn on Tn,m,p is
bounded above by

cn,m,p ≤ |Cm,p| · |GLm(Fp)|n−2.

The bounds provided in Proposition 3.3 and Corollary 3.6 are not tight, as the lower
bound grows as a polynomial function of p, whereas the upper bound is on the order of
pm · (pm2

)n−2 = pm
2n−2m2+m.

4 The Orbits for m = 1

In this section we discuss the orbits of the action of the braid group Bn on n-tuples of 1×1
matrices. As these matrices commute with each other, elements of Bn act by permutation
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on n-tuples. Consequently, counting the number of orbits is equivalent to the combinatorial
problem of counting how many unordered n-tuples of integers there are from 1 to p − 1
whose product is 1 modulo p. This problem is surprisingly difficult, and there seems to be
no closed-form solution.

Remark. Since for any prime p, there exists a primitive root g such that {g, g2, . . . , gp−1} =
{1, 2, . . . , p− 1} modulo p, the orbit number cn,m,p is equivalent to the number of partitions
of multiples of p− 1 with n parts of size less than or equal to p− 1.

Our computations suggest that the number of orbits is also equivalent to a combinatorial
problem of counting necklaces, which are arrangements of colored beads considered to be
equivalent under rotation.

Conjecture 4.1. The orbit number cn,m,p is the number of necklaces with n white beads and
p− 1 black beads.

We provide a bijection between the set of orbits and the set of necklaces for when n and
p− 1 are coprime.

Theorem 4.2. Suppose gcd(n, p − 1) = 1. Then the orbit number cn,m,p is the number of
necklaces with n white beads and p− 1 black beads.

Proof. We construct a bijection between the unordered n-tuples of integers from 1 to p −
1 whose product is 1 modulo p and the necklaces with n black beads and p − 1 white
beads. Let g be a primitive root modulo p, and let T := (ga1 , ga2 , . . . , gan) be an unordered
tuple such that ga1ga2 · · · gan = 1. Let the necklace which corresponds to this tuple be
(b, wc(1), b, wc(2), b, . . . , b, wc(n)) where c(i) denotes the number of occurrences of the element
gi in T . It is easy to see that each necklace has a corresponding tuple. To see that this map
is injective, observe that if two tuples correspond to the same necklace, we may write them
as (ga1 , ga2 , . . . , gan) and (ga1+k, ga2+k, . . . , gan+k) for some 1 ≤ k ≤ p− 2. Since the product
of each tuple is 1, we have that gnk = 1, which is only true if k = p − 1 when n and p − 1
are coprime, a contradiction.

5 The Orbits for n = 2

In this section, we discuss the case where the number of punctures n equals 2. We find
a closed formula for the number of orbits of T2,2,p and T2,3,p, and we provide a method for
calculating the number of orbits for T2,m,p for anym given the decomposition of the conjugacy
classes of GLm(Fp).

We begin by noting that because tuples in Tn,m,p multiply in order to the identity, we
can write the final matrix An in (A1, A2, . . . , An−1, An) ∈ Tn,m,p as A−1

n−1A
−1
n−2 · · ·A−1

1 . In
particular, we can write the tuples of T2,m,p in the form (A,A−1). We discover that the braid
group acts by permutation on these tuples, so the length of each orbit is at most 2.

Proposition 5.1. Let (A,A−1) be an element of T2,m,p. Then

1. |Orb((A,A−1))| = 1 if A−1 ∈ Cl(A);

2. |Orb((A,A−1))| = 2 if A−1 /∈ Cl(A).

6



Proof. Suppose A−1 ∈ Cl(A). Then

σ1(A,A
−1) = (AA−1A−1, A)

= (A−1, A)

∼ (A,A−1).

In this case, σ1 acts as the identity, so (A,A−1) is the only element in Orb((A,A−1)).
Now, suppose that A−1 /∈ Cl(A). Then, σ1(A,A

−1) = (A−1, A) ̸∼ (A,A−1), so there are
at least two elements in Orb((A,A−1)). Since

σ2
1(A,A

−1) = σ1(A
−1, A)

= (A,A−1),

the group element σ2
1 acts as the identity, and therefore, Orb((A,A−1)) has exactly two

elements.

As Cl(A−1) = {M−1 | M ∈ Cl(A)}, a conjugacy class can be identified with its “inverse
conjugacy class.” The orbits of Tn,m,p collapse conjugacy classes with their inverse conjugacy
class. Consequently, the number of orbits of Tn,m,p under the braid group action is sum of
the number of conjugacy classes of GLm(Fp) whose inverse is itself and half of the remaining
conjugacy classes. More formally, let

Cinv := {Cl(A) | Cl(A−1) = Cl(A), A ∈ GLm(Fp)},
and let

C¬inv := {Cl(A) | Cl(A−1) ̸= Cl(A), A ∈ GLm(Fp)}.

Corollary 5.2. The orbit number c2,m,p is given by

|Cinv|+
1

2
|C¬inv|.

The problem of counting the number of orbits of the action of B2 on T2,m,p now reduces
to identifying the number of conjugacy classes whose inverse conjugacy class is itself. We do
this by considering whether the inverse of a representative element of each conjugacy class
under the field extension Fpm is in the same class.

In general, polynomials in Fp[x] do not factor into linear terms. However, it is known that
a polynomial of degree m splits completely under the field extension Fpm [x]. As a Jordan
normal form for a matrix exists when its characteristic polynomial factors completely, for
any M ∈ GLm(Fp), there exists P, J ∈ GLm(Fpm) such that J = PMP−1 and J is in Jordan
normal form. Accordingly, we consider the Jordan normal form representatives for each
conjugacy classes in the field extension GLm(Fpm).

The distribution of conjugacy classes of GL2(Fp) is a known result, as we here describe.

Lemma 5.3. [12] The conjugacy classes of GL2(Fp) are given in Table 1, where the count
refers to the number of conjugacy classes with a Jordan normal form representative in
GL2(Fp2) (a ̸= b ∈ Fp and α ∈ Fp2 \ Fp).

Theorem 5.4. The number of orbits of the action of the braid group B2 on T2,2,p is given
in Table 2, for p > 2.
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Representative Count(
a 0
0 a

)
p− 1(

a 1
0 a

)
p− 1(

a 0
0 b

) (
p−1
2

)(
α 0
0 αp

)
p2−p
2

Table 1: The distribution of conjugacy classes in GL2(Fp).

Representative # Elements of Cinv # Elements of C¬inv # Orbits(
a 0
0 a

)
2 p− 3 p+1

2(
a 1
0 a

)
2 p− 3 p+1

2(
a 0
0 b

)
p−1
2

p2−4p+3
2

(p−1)2

4(
α 0
0 αp

)
p−1
2

p2−2p+1
2

p2−1
4

Table 2: The number of orbits of B2 ↷ T2,2,p by conjugacy class.

Proof. We tackle each case individually by finding the number of conjugacy classes whose
inverse conjugacy class is itself. Since X

(
a 0
0 a

)
X−1 =

(
a 0
0 a

)
for all X ∈ GL2(Fp), a matrix(

a 0
0 a

)
is in its inverse class precisely when

(
a 0
0 a

)
=
(
a−1 0
0 a−1

)
, which occurs when a = ±1, so

there are 2 conjugacy classes of this type in Cinv.
Since the inverse of the matrix

(
a 1
0 a

)
is
(
a−1 −a−2

0 a−1

)
which is conjugate to

(
a−1 1
0 a−1

)
, we

again find 2 conjugacy classes which are stable under inversion, when a = ±1.
The only diagonal matrices in Cl

(
a 0
0 b

)
are

(
a 0
0 b

)
and

(
b 0
0 a

)
, so the inverse of

(
a 0
0 b

)
is

conjugate to itself when a = a−1 and b = b−1 or a = b−1. Since a and b must be different and
order does not matter, we count 1 possibility for the former case (when a = 1 and b = −1)
and p−3

2
possibilities for the latter case, which yields p−1

2
possibilities in total.

As the inverse of A :=
(
α 0
0 αp

)
must also have an irreducible characteristic polynomial and

each conjugacy class of this type has a different characteristic polynomial, these conjugacy
classes are stable under inversion when the characteristic polynomial is stable under inversion.
That is, when

x2 − Tr(A)x+ det(A) = x2 − Tr
(
A−1

)
x+ det

(
A−1

)
= x2 − Tr(A)

det(A)
x+

1

det(A)
.

The equations Tr(A) = Tr(A)
det(A)

and det(A) = 1
det(A)

hold when either det(A) = 1 or Tr(A) = 0

and det(A) = −1. If the latter were true, the characteristic polynomial would be x2 − 1,
which is always reducible for every p. Hence, the number of conjugacy classes which are
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Representative Count Representative Counta 0 0
0 a 0
0 0 a

 p− 1

a 1 0
0 a 0
0 0 b

 (p− 1)(p− 2)a 1 0
0 a 0
0 0 a

 p− 1

a 0 0
0 b 0
0 0 c

 (
p−1
3

)
a 1 0
0 a 1
0 0 a

 p− 1

α 0 0
0 αp 0
0 0 a

 p2−p
2

· (p− 1)a 0 0
0 a 0
0 0 b

 (p− 1)(p− 2)

α 0 0
0 αp 0

0 0 αp2

 p3−p
3

Table 3: The distribution of conjugacy classes in GL3(Fp).

stable under inversion is the number of irreducible polynomials x2 + kx+ 1. Since there are
p total polynomials of this form and p+1

2
distinct possibilities for the value r + r−1, which

correspond to the possible reducible polynomials (x − r)(x − r−1) = x2 − (r + r−1)x + 1,
there are p−1

2
irreducible polynomials of the form x2 + kx+ 1.

Each entry of the second column of Table 2 follows from the first column and Lemma 5.3,
and we find the number of orbits for each conjugacy class type in the third column using the
formula given in Corollary 5.2.

We arrive at a formula for the total number of orbits by taking the sum of the third
column of Table 2

Corollary 5.5. The orbit number c2,2,p =
p2+p+2

2
, for p > 2.

To find the number of orbits of the action of the braid group B2 on T2,3,p, we perform a
similar analysis on the conjugacy classes of GL3(Fp).

Lemma 5.6. [13] The conjugacy classes of GL3(Fp) are given in Table 3, where the count
refers to the number of conjugacy classes with a Jordan normal form representative in
GL2(Fp3) (a ̸= b ̸= c ∈ Fp and α ∈ Fp3 \ Fp).

Theorem 5.7. The number of orbits of the action of the braid group B2 on T2,3,p is given
in Table 4, for p > 2.

Proof. The arguments for the conjugacy classes represented by
(

a 0 0
0 a 0
0 0 a

)
,
(

a 1 0
0 a 0
0 0 a

)
,
(

a 1 0
0 a 1
0 0 a

)
,(

a 0 0
0 a 0
0 0 b

)
, and

(
a 1 0
0 a 0
0 0 b

)
are symmetric to the arguments for the conjugacy classes with repre-

sentatives
(
a 0
0 a

)
,
(
a 1
0 a

)
, and

(
a 0
0 b

)
in Theorem 5.4, so for the sake of concision, we omit the

argument here.
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Representative # Elements of Cinv # Elements of C¬inv # Orbitsa 0 0
0 a 0
0 0 a

 2 p− 3 p+1
2a 1 0

0 a 0
0 0 a

 2 p− 3 p+1
2a 1 0

0 a 1
0 0 a

 2 p− 3 p+1
2a 0 0

0 a 0
0 0 b

 2 p2 − 3p p2−3p+4
2a 1 0

0 a 0
0 0 b

 2 p2 − 3p p2−3p+4
2a 0 0

0 b 0
0 0 c

 p− 3 p3−6p2+5p+12
6

p3−6p2+17p−24
12α 0 0

0 αp 0
0 0 a

 p− 1 p3−2p2+p−2
2

p3−2p2+3p−2
4α 0 0

0 αp 0

0 0 αp2

 0 p3−p
3

p3−p
6

Table 4: The number of orbits of B2 ↷ T2,3,p by conjugacy class.
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Since the diagonal matrices in the same conjugacy class as
(

a 0 0
0 b 0
0 0 c

)
are just the matrices

with a, b, and c permuted and a ̸= b ̸= c, we find without loss of generality that a = a−1 and
b = c−1, of which there are 2 · p−3

2
= p − 3 conjugacy classes of this type whose inverse is

itself.
The number of Jordan blocks

(
α 0
0 αp

)
which are fixed under inversion is p−1

2
by Table 2,

and since a = ±1, there are p−1
2

· 2 = p − 1 conjugacy classes with representative
(

α 0 0
0 αp 0
0 0 a

)
which are stable under inversion.

Following the argument in Theorem 5.4, we find when the characteristic polynomial

p(x) = x3 + a2x
2 + a1x+ a0 of

( α 0 0
0 αp 0

0 0 αp2

)
is the same as the characteristic polynomial of its

inverse. That is, when

x3 + a2x
2 + a1x+ a0 = x3 +

a1
a0

x2 +
a2
a0

x+
1

a0
,

which occurs either when p(x) = x3 + a1x
2 + a1x + 1 or p(x) = x3 − a1x

2 + a1x − 1. In
the former case, we have p(x) = (x + 1)(x2 + (a1 − 1)x + 1), and in the latter, p(x) =
(x−1)(x2− (a1−1)x+1). As such, the characteristic polynomial is always reducible, which
yields no possible conjugacy classes of this type which are fixed under inversion.

Corollary 5.8. The orbit number c2,3,p =
p3+p+6

2
, for p > 2.

The explicit formulas in Corollary 5.5 and Corollary 5.8 are corroborated by the compu-
tational results in Table 7, which can be found in Appendix A.

In general, given a Jordan normal form representative which has at least two Jordan
blocks from a conjugacy class of GLm(Fp), we can deduce the number of conjugacy classes
which are stable under inversion by taking the product of the number of stable conjugacy
classes for each Jordan block, which have smaller dimension. This gives us a recursive
procedure for creating all entries of an orbit decomposition table of B2 ↷ T2,m,p by conjugacy
class (except for when there is a single Jordan block with roots in the field extension) based
on orbit decomposition tables for smaller m. If the dimension m is odd, we provide a formula
for the number of orbits of the conjugacy classes with one Jordan block with roots in the
field extension.

Proposition 5.9. Let Cα be the conjugacy class in GLm(Fp) whose elements are conjugate
to the representative

Aα :=

α 0 0

0
. . . 0

0 0 αpm


in the field extension Fpm. There are

pm−p
2m

orbits in T2,m,p under the action of the braid group
Bn whose elements are of the form (A,A−1) where A ∈ Cα for any α ∈ Fpm \ Fp.

Proof. We first note that there are pm−p
m

conjugacy classes Cα, since we have pm − p choices

of α ∈ Fpm \ Fp, but we divide by m, as for each α, the choice αpi corresponds to the same
conjugacy class. It is known that given Aα’s characteristic polynomial

χ(Aα) := xm + am−1x
m−1 + · · ·+ a1x+ a0,
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the characteristic polynomial of A−1
α is given by

χ(A−1
α ) := xm +

a1
a0

xm−1 + · · ·+ am−1

a0
x+

1

a0
.

As a result, Cα is stable under inversion when the following equations hold:

a0 =
1

a0
,

a1 =
am−1

a0
,

...

am−1 =
a1
a0

.

As a0 = ±1, we have two cases. If a0 = 1, then we have

χ(Aα) = χ(A−1
α ) = xm + a1x

m−1 + a2x
m−2 + · · ·+ a2x

2 + a1x+ 1

= (xm + 1) + a1x(x
m−2 + 1) + a2x

2(xm−4 + 1) + · · ·+ am−1
2
x

m−1
2 (x+ 1)

= (x+ 1)

(
m−1∑
k=0

(−x)k + a1x
m−3∑
k=0

(−x)k + a2x
2

m−5∑
k=0

(−x)k + · · ·+ am−1
2
x

m−1
2

)
and if a0 = −1, then we have

χ(Aα) = χ(A−1
α ) = xm − a1x

m−1 − a2x
m−2 − · · ·+ a2x

2 + a1x− 1

= (xm − 1)− a1x(x
m−2 − 1)− a2x

2(xm−4 − 1)− · · · − am−1
2
x

m−1
2 (x− 1)

= (x− 1)

(
m−1∑
k=0

xk − a1x
m−3∑
k=0

xk − a2x
2

m−5∑
k=0

xk − · · · − am−1
2
x

m−1
2

)
.

Either way, the characteristic polynomial is reducible, which is a contradiction. Thus, there
are no conjugacy classes Cα which are fixed under inversion. Thus, all pm−p

m
conjugacy classes

move under the braid group action B2, so there are pm−p
2m

orbits in T2,m,p of the form (A,A−1)
for some A ∈ Cα.

For odd m, given the orbit decomposition tables for B2 ↷ T2,k,p for k < m, we can now
count the orbits of B2 ↷ T2,m,p given the distribution of conjugacy classes of GLm(Fp).

6 The Orbits for n = 3

In this section, we consider the case when the number of matrices n equals 3. We provide
a bound on the lengths of orbits and classify the numbers and lengths of the orbits generated
by n-tuples of 2× 2 matrices which contain matrices of the form a · Id where a ∈ Fp.

We begin with a description of the orbits T3,2,2 under the action of the braid group B3.

Example 6.1. There are 6 elements in GL(2,F2), generated by two elements (which we call
σ and τ):(
1 0
0 1

)
, σ =

(
0 1
1 0

)
, τ =

(
1 0
1 1

)
, στσ =

(
1 1
0 1

)
, στ =

(
1 1
1 0

)
, τσ =

(
0 1
1 1

)
.
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Representative Count
(1, 1, 1) 1
(1, στ, τσ) 2
(στ, 1, τσ) 2
(στ, τσ, 1) 2
(στ, στ, στ) 2
(1, σ, σ) 3
(σ, 1, σ) 3
(σ, σ, 1) 3
(σ, στ, τ) 6
(σ, τ, τσ) 6
(τσ, σ, τ) 6

Table 5: The conjugacy classes of T3,2,2.

Orbits
(1, 1, 1) (1, στ, τσ) (στ, στ, στ) (1, σ, σ) (σ, στ, τ)

(στ, 1, τσ) (σ, 1, σ) (σ, τ, τσ)
(στ, τσ, 1) (σ, σ, 1) (τσ, σ, τ)

Table 6: The orbits of B3 ↷ T3,2,2.

Observe that this group is isomorphic to S3, and our generators σ, τ are transpositions.
There are 3 conjugacy classes in GL2(F2): (Id), (σ, τ, στσ), and (στ, τσ).

As illustrated in Table 5, there are 36 ordered triples of elements in GL2(F2) whose
product is the identity, but only 11 equivalence classes under conjugation.

Under the action of B3, these 11 conjugacy classes collapse into 5 orbits, as shown in
Table 6.

When p > 2, there are a substantial number of cases when one of the matrices of the
3-tuple contains a matrix of the form a · Id. We turn to describe the orbit counts and lengths
for some of these cases.

Theorem 6.1. Let (A,B,B−1A−1) ∈ T3,2,p such that A = a · Id for some a ∈ Fp. Let OLℓ

denote the number of orbits of length ℓ. The following are true:

1. Suppose B = b · Id for some b ∈ Fp. Then,{
OL1 = 3,OL3 = p− 4 if p ≡ 1 mod 3

OL1 = 1,OL3 = p− 2 if p ≡ 2 mod 3

and OL6 =
(p−2)(p−3

6
.

2. Suppose B is conjugate to
(
b 1
0 b

)
for some b ∈ Fp. Then, OL1 = 0, OL3 = p − 1, and

OL6 =
(p−1)(p−2)

2
.
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It is not only the case that the lengths of the orbits are either 1,3, or 6 when one of the
matrices in the triple is of the form a · Id. In fact, for triples of matrices in T3,m,p, orbits can
only have length 1, 3, or 6.

Theorem 6.2. Let (A1, A2, A
−1
2 A−1

1 ) ∈ T3,m,p. Then |Orb((A1, A2, A
−1
2 A−1

1 ))| ∈ {1, 3, 6}.

Proof. Using Lemma 3.1(1), we find that

σ2
1(A1, A2, A

−1
2 A−1

1 ) = (A1A2A1A
−1
2 A−1

1 , A1A2A
−1
1 , A−1

2 A−1
1 )

∼ (A2A1A2, A2, A
−1A−1

2 )

∼ (A1, A2, A
−1
2 A−1

1 )

and
σ2
2(A1, A2, A

−1
2 A−1

1 ) = (A1, A
−1
1 A2A1, A

−1
1 A−1

2 )

∼ (A1, A2, A
−1
2 A−1

1 ).

Therefore, σ2
1 = σ2

2 = 1 when we consider the action of the braid group B3 on tuples
in T3,m,p. As a result, since σ1σ2σ1 = σ2σ1σ2, there are at most 6 unique braid actions:
B3 = {1, σ1, σ2, σ1σ2, σ2σ1, σ1σ2σ1}, which implies that there are at most 6 elements in any
orbit.

If there are less than 6 elements in Orb((A1, A2, A
−1
2 A−1

1 )), then one of the braid group
actions σ1, σ2, σ1σ2, σ2σ1, σ1σ2σ1 must act as the identity. If σ1σ2σ1 = 1, then σ2σ1σ2 = 1
as well, so σ1 = σ2 = 1, which implies that |Orb((A1, A2, A

−1
2 A−1

1 ))| = 1. If σ1 = 1, then
B3 = {1, σ2, σ1σ2}. In this case, if either σ2 = 1 or σ1σ2 = 1, then B3 = {1}, so we must
have |Orb((A1, A2, A

−1
2 A−1

1 ))| ∈ {1, 3}. The proof is symmetric the case when σ2 acts as the
identity.

Using the upper bound of 6 on the length of orbits in T3,m,p in conjunction with upper
bound of the number of conjugacy classes of triples of matrices as formulated in Proposi-
tion 3.5, we arrive at a tight bound on the number of orbits of the braid group action on
T3,m,p.

Corollary 6.3. The number of orbits c3,m,p of the action of the braid group B3 on T3,m,p is
bounded as follows:

1

6
|Cm,p| · |GLm(Fp)| ≤ c3,m,p ≤ |Cm,p| · |GLm(Fp)|.

In Section 5, we found that the length of any orbit of T2,m,p is at most 2, so that the
number of orbits for n = 2 is bounded below by half of the number of conjugacy classes. For
both n = 2 and n = 3, computational data (Table 7 and Table 8 in Appendix A) suggest
that as p grows large, the ratio of the number of conjugacy classes to the number of orbits of
Tn,m,p approaches n!. Intuitively, this means that most of the orbits of Tn,m,p have maximal
length (2 when n = 2 and 6 when n = 3).

Conjecture 6.4. Suppose n = 2 or n = 3, and fix m. Then,

lim
p→∞

C(Tn,m,p)

cn,m,p

= n!,

where C(Tn,m,p) denotes the number of conjugacy classes of n-tuples of matrices in Tn,m,p.

14



We also propose a generalization of this conjecture, but we are less confident about its
validity, because it is unclear whether the action of the braid group Bn on the n-tuples of
matrices Tn,m,p is finite for n ≥ 4. Even for n = 4, we do not have enough computational
data to trust that this conjecture generalizes.

Conjecture 6.5. Fix n and m. Then,

lim
p→∞

C(Tn,m,p)

cn,m,p

= n!,

where C(Tn,m,p) denotes the number of conjugacy classes of n-tuples of matrices in Tn,m,p.

We conclude with the observation that the results Proposition 5.1, Theorem 6.2, and
Corollary 6.3 do not depend on the dimensions of our matrices or which field they belong to.
In fact, these results generalize to give us a bound on the lengths and numbers of orbits of
rank m K-local systems with 2 and 3 punctures, where K describes an arbitrary field, such
as R,C, or Fq.

7 Conclusion

For small cases, we have managed to provide a strategy in which we can classify the orbits
of n-tuples of matrices in GLm(Fp) under the action of the braid group. However, it seems
that our strategies are insufficient for a complete classification when n ≥ 3. For example,
one question left for future work is to identify the necessary and sufficient conditions for
when the length of a given orbit is 1, 3, or 6. Another possible question would be to carry
on the classification for n = 4, which is the case that generalizes the Painlevé VI equation.
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A Computations of Conjugacy Classes and Orbits

Using depth-first search in the programming language Julia, we computationally find the
number of conjugacy classes and orbits when 2-, 3-, 4-, and 5-tuples of m×m matrices with
entries in Fp for small values of m and p. Specifically, we list [# conjugacy classes]/[# orbits]
for T2,m,p in Table 7, for T3,m,p in Table 8, T4,m,p in Table 9, and T5,m,p in Table 10.

p \m 2 3
2 3/3 6/5
3 8/7 24/18
5 24/16 120/-
7 48/29
11 120/67

Table 7: Conjugacy classes and orbits when n = 2.

p \m 2 3
2 11/5 197/53
3 136/36
5 2336/451

Table 8: Conjugacy classes and orbits when n = 3.

p \m 2
2 49/9
3 4888/-

Table 9: Conjugacy classes and orbits when n = 4.

p \m 2
2 251/12

Table 10: Conjugacy classes and orbits when n = 5.
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