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Abstract

A quandle is an algebraic object that is used to define the colorings of knots because quandles
axioms ensures that the number of coloring remain invariant. Schlank and Davis showed
that the average number of colorings is asymptotically a polynomial, which is the Hilbert
Polynomial. They also demonstrated the behavior of quandles of up to size 4 and computed
the Hilbert Polynomial. We further examine the computations of quandles of size 6 by
generalizing constructions of quandles of size 6 except for few, and use the decompositions
to compute the Hilbert Polynomial.

Summary

For each knot’s arc, we can assign an element from a set. We call this coloring. We may
color the knots with multiple different settings. When the knot’s crossings are colored, the
colorings of arcs need to follow the rule of the set. We call the set with a rule a quandle.
Schlank and Davis showed that the average number of coloring can be represented by a
polynomial. Based on their finding, we examine further into quandles of size 6. Furthermore,
we use new methods to decompose a quandle into smaller quandles. Finally, for all the
quandles with 6 elements, we identify the decomposition or show the exotic nature, and
compute the polynomial for quandles of size 6.



1 Introduction

A quandle is an algebraic object, first introduced by Joyce [1], that is useful for defining
colorings of oriented link diagrams. The quandle axioms ensure that the total number of
colorings of an oriented link diagram by a quandle Q remain invariant under Reidemeister
moves, so that we may speak of colorings by Q as an oriented link invariant ColQ(−). An
subclass of quandles called involutive quandles, first defined by Kei [2], define an invariant
of unoriented links.

(a) Link Diagram of Trefoil
Knot [3]

(b) Colored Trefoil Knot [4]

Figure 1: Coloring of Trefoil Knot

Recently, Schlank and Davis [5] have studied the “average” number of colorings cQ(n)
of the closure of a random braid σ ∈ Bn on n strands (where the average is taken with
respect to the Haar measure on the profinite completion B̂n). In particular, they show that
cQ(n) is asymptotically a polynomial in n, which they call the Hilbert Polynomial associated
to Q. Schlank and Davis show how the Hilbert Polynomial behaves under certain Quandle
operations, and compute the Hilbert Polynomial for small quandles of size ≤ 4.

In this work, we take a first step in extending the computations of Schlank and Davis by
examining the Hilbert polynomials of involutive quandles of size 6. Our work is helped by the
work of Vojtěchovský and Yang [6] who have calculated the total number of quandles of size
up to 13 up to isomorphism. However, it is not immediately clear from their computations
which larger quandles can be decomposed as to be amenable to the techniques of [5] for
computing Hilbert polynomials. We are able generalize the constructions of [5] to express
all size 6 involutive quandles except for few in terms of smaller quandles, and in most cases
use such decompositions to compute the Hilbert polynomial.

2 Preliminaries

Definition 2.1. An quandle Q is a set with a binary operation (x, y) 7→ xy satisfying

1. xx = x

2. x(−) is an bijective map
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3. x(yz) = (xy)(xz).

The quandle Q is involutive if
x(xy) = y

for all x, y ∈ Q. A morphism of quandles is a function f : Q1 → Q2 such that for all
x, y ∈ Q1,.

f(xy) =f(x) f(y).

Example 2.1. The trivial quandle Tn on n elements is the set {1, . . . , n} with the following
binary operator.

For all x, y ∈ X,x y = y

Example 2.2. The Dihedral quandle D3 has set {0, 1, 2} with binary operation xy = 2x− y
i.e.:

xy x
1 2 3

1 1 3 2
y 2 3 2 1

3 2 1 3

The formula xy = 2x − y defines a quandle structure on the elements of any abelian
group, but the resulting quandle is in general not involutive.

Example 2.3. Let G be a group. Then there is a canonical quandle structure on G given
by conjugation hg := hgh−1 that satisfies all quandle axioms. This extends to a functor
Conj : Grp → Qdl.

Construction 2.1. The set Qn admits an action by the braid group on n strands Bn such
that

σi(x1, . . . , xi, xi+1, . . . , xn) = (x1, . . . ,
xixi+1, xi, . . . , xn)

where σi is the braid that swaps strands i and i + 1 by sending strand i + 1 underneath
strand i; see [5, Proposition 2.19].

Theorem 2.1 ([5]). Let AQ,n = Qn/Bn. Then there exists a polynomial PQ(n) ∈ Q(n) such
that PQ(n) = |AQ,n| for all n≫ 0.

The size of AQ,n can be interpreted as the average number of colorings of the closure of a
random braid on n strands according to [5, §2]. For finite quandles, a more refined invariant
than the Hilbert polynomial is the generating function:

Definition 2.2. Let Q be a finite quandle. We define the generating function for Q as

ηQ(t) =
∞∑
t=0

|AQ,n| · tn ∈ ZJtK

Schlank and Davis show that the Hilbert polynomials of products and disjoint unions of
quandles can be computed as follows:
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Theorem 2.2. Let Q and R be finite quandles. The set Q × R has a natural quandle
structure

(x,y)(x′, y′) = (xx′,y y′).

Proposition 2.3. Let Q and R be finite quandles. Then for all n ∈ N there is an equality:

PQ(n) · PR(n) = PQ×R(n).

Theorem 2.4. Let Q,R be quandles. The disjoint union ,Q ⊔ R, has a natural quandle
structure given by

(x, y) ∈ Q ⊔R :x y =

xy x ∈ Q x ∈ R
y ∈ Q xy y
y ∈ R y xy

Proposition 2.5 ([5]). Let quandles Q and R . Then,

ηQ⊔R = ηQ(t) · ηR(t).

Let Q be a finite quandle and ψ ∈ Aut(Q) such that for all x ∈ Q

φψ(x) = φ(x).

Proposition 2.6. Let Q be a quandle and ψ ∈ Aut(Q) as above. Then

xy x = ∗ x ∈ Q
y = ∗ * *
y ∈ Q ψ(y) xy

is a quandle structure on the set Q⊔∗. We denote this by Q⊔ψ∗. The canonical embedding
of Q into Q⊔ψ∗ is a morphism of quandles.

Example 2.4. Let Q = T2 = {a+, a−} and let ψ be the non-trivial permutation. Then
J := T2⊔ψ has structure given by

xy x
a+ a− b

a+ a+ a+ a−

y a− a− a− a+

b b b b

This J was first introduced by Joyce [1, §6] as an example of a quandle that does not
embed into Conj(G) for any group G.
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3 Quandles of size 6

From computations of Yang and Vojtěchovský [6], we have that there are 73 quandles of
size 6, 41 of which are involutive, as summarized in Appendix A. The notation describes the
permutations of Q under the action of each of its elements; note that since Q is involutive
no such permutation can have a cycle of length more than 2.

Appendix A shows which quandles are able to be written in terms of the ingredients in
Section 2. In order to describe more quandles, we introduce the following constructions:

Definition 3.1. Let f1 : Q1 → R and f2 : Q2 → R be Quandle morphisms. The fiber
product is

Q1 ×R Q2 = {(q1, q2) ∈ Q1 ×Q2 : f1(q1) = f2(q2)}.

Proposition 3.1. The fiber product Q1 ×R Q2 inherits a natural quandle structure.

Proof. We check that Q1 ×R Q2 is a subquandle of Q1 ×Q2. If (x1, x2), (y1, y2) ∈ Q1 ×R Q2,
we have

f1(
x1y1) =

f1(x1)f1(y1) =
f2(x2)f2(y2) = f2(

x2y2)

as desired.

Proposition 3.2. Definition 3.1 is the categorical pullback.

Proof. This is easily verified in identical fashion to [5, Proposition 5.2].

Definition 3.2. Let ψ(−) : Q→ Aut(Conj(R)) and φ(−) : R → Aut(Conj(Q)) be morphisms
of quandles such that

rr′ = ψq(r)r′ for all q ∈ Q, r, r′ ∈ R
qq′ = φr(q)q′ for all r ∈ R, q, q′ ∈ Q

The twisted disjoint union Q φ⊔ψ R is defined by

xy x ∈ Q x ∈ R
y ∈ Q xy φx(y)
y ∈ R ψx(y)

xy

Proposition 3.3. The twisted disjoint union Q φ⊔ψ R admits a natural quandle structure.

Proof. The only nontrivial axiom to check is the third axiom. For q, q′ ∈ Q, r ∈ R we have
that

q(q
′
r) = q(ψq′(r)) = ψq(ψq′(r)) = (ψqψq′ψ

−1
q )(ψq(r)) =

(qq′)(qr).

q(rq′) = q(φr(q
′)) = φr(q)(φr(q

′))

= (rq)(rq′) = φr(q)(φr(q
′)) = φr(

qq′)

= r(qq′) = ψq(r)(qq′)

= (qr)(qq′).
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Unfortunately, we do not have a method for computing the hilbert polynomial of general
fiber products and disjoint unions.

Example 3.1. The quandle on the set {1, 2, 3, 4} whose elements act by the permutations

(34), (34), (12), (12)

can be written as the fiber product J ×T2 J where the two maps J → T2 are given by

a+ 7→ 1, a− 7→ 1, b 7→ 2

a+ 7→ 2, a− 7→ 2, b 7→ 1.

It can also be written as the twisted disjoint union T2 φ⊔ψ T2 where ψ and φ are the constant
functions with value the “swap” automorphism (1, 2).

Proposition 3.4. The Hilbert polynomial of the above quandle is PQ(n) = 4n.

Proof. We claim that the orbit representatives of Qn/Bn of the form

(1, . . . , 1, 2, . . . , 2) including (1, . . . , 1) and (2, . . . , 2)

(3, . . . , 3, 4, . . . , 4) including (3, . . . , 3) and (4, . . . , 4)

(1, . . . , 1, 3, . . . , 3)

(1, . . . , 1, 4, 3, . . . , 3) including (1, . . . , 1, 4).

Given a coloring consisting of all 1’s and 2’s, we may act by a braid moving all the 1
strands to the left to obtain a representative of the first form above. It is clear there is a
distinct orbit for each number of 1’s that appear independent orbits since the elements act
trivially on each other, so no 1 can be changed to a 2 and vice versa. The same reasoning
applies to orbits of the second form above.

Now suppose we are given a coloring with elements of both {1, 2} and {3, 4}. First, let
us act by a braid moving all the {1, 2} strands to the left and {3, 4} strands to the right.
Then, we may change all the {3, 4} strands to 3’s by passing the rightmost 1 or 2 strand all
the way to the right under all the {3, 4} strands, then back over the 4 strands and under the
3 strands, as shown below:

1 3 4

3 4 1

2 3 3

Similarly, we may do the same in reverse to obtain a representative of the third or fourth
form. Finally, we note that a coloring of the third form cannot be mutated to a coloring of
the fourth form: in order to keep the {1, 2} and {3, 4} colors separated, we must act by a

5



braid with an even number of crossings between and {1, 2} and {3, 4}, which will preserve
the parity of the sum of all the elements.

To obtain the Hilbert polynomial, we count the orbits: there are (n+ 1) orbits each of the
first two forms, and (n− 1) each of the last two forms, for a total of 4n.

In total, using the above constructions we are able to decompose almost every quandle
of size 6 as summarized in Appendix A. The exceptions are the quandle whose elements act
as

• (34)(56), (36)(45), (14)(26), (13)(25), (16)(24), (15)(23)

• (34)(56), (34)(56), (12), (12), (12), (12)

• (56), (34)(56), (56), (56), (), ()

• (), (36)(45), (24)(56), (26)(35), (23)(46), (23)(45)

though they are unknown whether these are fiber products.

4 Discussion

The computations of the Hilbert polynomials of the involutive quandles of size 6 remains
unfinished, as does the classification of the quandles above.

A similar examination of involutive or general quandles of size 7 and larger may prove
fruitful in identifying patterns in the behavior of the Hilbert polynomials of quandles, in
addition of the calculation of the degree performed in [5].
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Appendix

A Quandles of size 6 with classification

Quandle Decomposition Hilbert Polynomial

[ (), (), (), (), (), () ] T6
(n+1)(n+2)(n+3)(n+4)(n+5)

120

[ (), (), (), (), (), (3,5) ] T5⊔ψ∗
(3,5)

(n2+4n+3)(n2+4n+4)
12

[ (), (), (), (3,5), (), (3,5) ] J ′ ⊔ T2 n4+14n3+47n2+58n+24
24

[ (), (3,5), (), (3,5), (), (3,5) ] J ′⊔ψ∗
(3,5)

[ (3,5), (3,5), (), (3,5), (), (3,5) ] (J ′⊔ψ∗
(3,5)

)⊔ψ∗
(3,5)

[ (), (3,4)(5,6), (), (), (), () ] T5⊔ψ∗
(3,4)(5,6)

[ (3,4)(5,6), (3,4)(5,6), (), (), (), () ] T2 × J 2n2 + 3n+ 1
[ (), (), (1,2)(5,6), (1,2)(5,6), (1,2)(3,4), (1,2)(3,4) ] (J ×T2 J)⊔ψ∗

(1,2)

[ (3,4)(5,6), (3,4)(5,6), (1,2)(5,6), (1,2)(5,6), (1,2)(3,4), (1,2)(3,4) ] (J × J)×T3 J
[ (3,4)(5,6), (3,5)(4,6), (), (), (), () ] (T4⊔ψ∗

(3,4)(5,6)
)⊔ψ∗

(3,5)(4,6)

[ (3,4)(5,6), (3,4)(5,6), (), (), (1,2), (1,2) ] (J ′⊔ψ∗
(3,4)(5,6)

)⊔ψ∗
(3,4)(5,6)

[ (3,4)(5,6), (3,4)(5,6), (1,2), (1,2), (1,2), (1,2) ] exotic

[ (), (), (5,6), (5,6), (3,4), (3,4) ] (J ×T2 J) ⊔ T2 2n3+6n2+4n
3

[ (), (5,6), (), (), (3,4), (3,4) ] J ′⊔ψ∗
(5,6)

[ (), (5,6), (5,6), (5,6), (3,4), (3,4) ] (J ×T2 J)⊔ψ∗
(5,6)

[ (), (3,4)(5,6), (), (), (3,4), (3,4) ] J ′⊔ψ∗
(3,4)(5,6)

[ (), (3,4)(5,6), (5,6), (5,6), (3,4), (3,4) ] (J ×T2 J)⊔ψ∗
(3,4)(5,6)

[ (5,6), (5,6), (), (), (3,4), (3,4) ] (J ′⊔ψ∗
(5,6)

)⊔ψ∗
(5,6)

[ (5,6), (5,6), (5,6), (5,6), (3,4), (3,4) ] ((J ×T2 J)⊔ψ∗
(5,6)

)⊔ψ∗
(5,6)

[ (5,6), (3,4), (), (), (), () ] J ⊔ J 2n3 + 6n2 + 7n+ 3
[ (5,6), (3,4), (), (), (3,4), (3,4) ] (J ′⊔ψ∗

(5,6)
)⊔ψ∗

(3,4)

[ (5,6), (3,4), (5,6), (5,6), (3,4), (3,4) ] ((J ×T2 J)⊔ψ∗
(5,6)

)⊔ψ∗
(3,4)

[ (5,6), (3,4)(5,6), (), (), (), () ] (T4⊔ψ∗
(3,4)(5,6)

)⊔ψ∗
(5,6)

[ (5,6), (3,4)(5,6), (), (), (3,4), (3,4) ] (J ′⊔ψ∗
(3,4)(5,6)

)⊔ψ∗
(5,6)

[ (5,6), (3,4)(5,6), (5,6), (5,6), (), () ] exotic
[ (5,6), (3,4)(5,6), (5,6), (5,6), (3,4), (3,4) ] ((J ×T2 J)⊔ψ∗

(3,4)(5,6)
)⊔ψ∗

(5,6)

[ (3,4)(5,6), (3,4)(5,6), (), (), (3,4), (3,4) ] (J ′⊔ψ∗
(3,4)(5,6)

)⊔ψ∗
(3,4)(5,6)

[ (3,4)(5,6), (3,4)(5,6), (5,6), (5,6), (3,4), (3,4) ] ((J ×T2 J)⊔ψ∗
(3,4)(5,6)

)⊔ψ∗
(3,4)(5,6)

[ (), (), (), (5,6), (4,6), (4,5) ] T3 ⊔D3 n3 + 3
2
n2 + 5

2
n+ 1

[ (), (), (), (2,3)(5,6), (2,3)(4,6), (2,3)(4,5) ] T2 ⊔ψ(2,3)
D3

[ (), (), (), (2,3)(5,6), (1,3)(4,6), (1,2)(4,5) ] T3φ⊔ψD3
D3

[ (2,3)(5,6), (1,3)(4,6), (1,2)(4,5), (2,3)(5,6), (1,3)(4,6), (1,2)(4,5) ] T2 ×D3 6n+ 6
[ (5,6), (5,6), (1,2), (1,2), (3,4), (3,4) ] (J+ × J+)×ψ T4
[ (5,6), (5,6), (1,2), (1,2), (1,2)(3,4), (1,2)(3,4) ] (J+ × J+)×ψ′ T4
[ (5,6), (5,6), (1,2)(5,6), (1,2)(5,6), (1,2)(3,4), (1,2)(3,4) ] (J+ × J+)×ψ′′ T4
[ (), (3,6)(4,5), (2,4)(5,6), (2,6)(3,5), (2,3)(4,6), (2,5)(3,4) ] exotic
[ (2,3), (), (), (5,6), (4,6), (4,5) ] D3 ⊔ J 6n2 − 6n+ 7
[ (2,3), (), (), (2,3)(5,6), (2,3)(4,6), (2,3)(4,5) ] (D3 ⊔ψ T2)⊔ψ∗

(2,3)

[ (3,4)(5,6), (3,6)(4,5), (1,4)(2,6), (1,3)(2,5), (1,6)(2,4), (1,5)(2,3) ] exotic
[ (2,3), (1,3), (1,2), (5,6), (4,6), (4,5) ] D3 ⊔D3 36n− 72
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