
On Longest Geometrically Increasing Sequences

Deyan Hadzhi-Manich

Under the direction of

Yuchong Pan
Department of Mathematics

Massachusetts Institute of Technology

Research Science Institute
August 1, 2023



Abstract

We consider a problem that comes up in the analysis of the discrete Newton’s algorithm
for submodular line optimization. It has to deal with finding longest geometrically increasing
sequences, that is finding the longest sequence of partial sums of the elements of a real
vector a with n entries, such that each subsequent partial sum is at least twice as large
as the previous one. It is known that if we restrict a to contain nonnegative components
only, then such a sequence can contain at most n subsets, and that the maximum length is
1
2
n log2 n±O(n log log n) in the general case. This result leads us to consider how the number

of negative components in a affects the longest geometrically increasing sequences. We define
G(n, k) to be the largest m ∈ N such that there exist a ∈ Rn with exactly k negative
components and T1, . . . , Tm ⊆ [n] for which a(T1), . . . , a(Tm) form a geometrically increasing
sequence. In this paper, we prove several bounds on G(n, 1), G(n, n− 1) and G(n, n/2), as
well as several inequalities between different values of G(n, k). In addition, we report results
from a computational study in which the vector a is drawn from a normal distribution,
implying the conjecture that the maximum length in this case grows logarithmically.

Summary

Imagine that we have a list of numbers, and we want to create a sequence of positive numbers
in which each number is a sum of some of the numbers from the list, and at least twice as big
as the previous one. Although seemingly simple, solving this problem turns out to be crucial
in analyzing the running time of an algorithm called the discrete Newton’s algorithm that is
used in many optimization problems. It is known that if all numbers from the initial list are
nonnegative, then any sequence we can construct has at most the number of elements from
the initial list. However, if we allow negative numbers, things become more interesting. In
this paper, we study how the number of negative elements affects the longest sequence we
can construct in our problem. We prove several lower and upper bounds on the maximum
length such a sequence can have, with some connections between different parameters. We
have also conducted computational experiments which shed some light on the nature of the
problem.



1 Introduction

Given some n-dimensional vector a, for a sequence of sets T1, . . . , Tm ∈ [n] to be geo-
metrically increasing, we need the sequence a(Ti), where we denote a(S) =

∑
j∈S aj, to be

positive and increasing with at least a factor of 2. We consider the following problem of
finding the longest geometrically increasing sequence.

Problem 1.1. For a fixed n, across all a = (a1, . . . an) ∈ Rn, what is the largest number m
of sets T1, . . . , Tm ⊆ [n] with a(T1) > 0 and a(Ti+1) ≥ 2a(Ti) for all i ∈ [m− 1]?

Given n, we denote with G(n) the largest length, i.e., the answer to Problem 1.1.

Example 1.1. Let a = (1, 2, 3) and T1 = {1}, T2 = {2}, and T3 = {1, 2, 3}. Then

a(T1) = a1 = 1,

a(T2) = a2 = 2,

a(T3) = a1 + a2 + a3 = 6.

The sequence T1, . . . , Tm is geometrically increasing since 2 ≥ 2× 1 and 6 ≥ 2× 2.

Example 1.2. Now let a = (4, 5,−3) and T1 = {1, 3}, T2 = {2, 3}, T3 = {1}, T4 = {1, 2}.
Then

a(T1) = 4− 3 = 1,

a(T2) = 5− 3 = 2,

a(T3) = 4,

a(T4) = 4 + 5 = 9.

In fact, this is the longest a geometrically increasing sequence can be when n = 3, i.e.,
G(3) = 4.

If a is nonnegative (i.e., each component of a is nonnegative), then it is commonly
known, and there is an elementary proof, that there exist at most n subsets of [n] which
form a geometrically increasing sequence, and this upper bound is tight in the sense that
given n ∈ N, one can construct some nonnegative a ∈ Rn and n subsets of [n] that form a
geometrically increasing sequence with respect to a.

For general vectors a, there exist ”almost tight” lower and upper bounds on G(n). In
1992, using polyhedral theory, Goemans (see [1]) proved that

G(n) ≤ O(n log n).

However, with a more careful analysis using Hadamard’s inequality, their technique indeed
gives

G(n) ≤ 1

2
n log2 n+O(n). (1)

This bound was mentioned in Goemans’ talk at Tutte’s 100th Distinguished Lecture Series
at the University of Waterloo [2], but the proof is not found in the literature. In Section
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2, we adapt the proof in [1] to show this bound. An almost matching lower bound for n
being a power of 2 was given by Goldmann in 1993 (see [3]) using Hadamard matrices and
a Fourier-analytic construction from H̊astad [4]:

G(n) ≥ 1

2
n log2 n−O(n log log n). (2)

As mentioned in [4], this sharp bound is not known to exist when n is not a power of
2, and it is an open problem whether there exists a Hadamard matrix of order 4k for every
k ∈ N. However, (2) can be used to give a fairly good lower bound as follows:

G(n) ≥ G
(
2k
)
≥ 1

2
2kk + o

(
2kk

)
≥ 1

4
n log2 n+ o(n log n).

The linear bound for nonnegative vectors a and the bounds (1) and (2) lead us to consider
how the number of negative components in a affects the longest geometrically increasing
sequences. This specific question has not been studied in the literature. Concretely, we
study the following problem.

Problem 1.2. Given n ∈ N and k ∈ [n], we define G(n, k) to be the largest number
m ∈ N where there exists a = (a1, . . . , an) ∈ Rn with exactly k negative components and
T1, . . . , Tm ⊆ [n] such that a(Ti) > 0 and a(Ti+1) ≥ 2a(Ti) for all i ∈ [m − 1]. What does
the function G(n, k) look like? What values of k achieve the maximum in Problem 1.1?

This problem originated from the analysis of an algorithm called the discrete Newton’s
algorithm, which is used for solving certain optimization problems. More formally, it solves
the sumbodular line search problem: Given a submodular function f : 2V → R on some
finite ground set V with its associated polymatroid P (f), a vector x0 ∈ P (f) and a vector
a ∈ RV , find the largest δ such that x0 + δa ∈ P (f).1 Problem 1.1 is a crucial subproblem
in analyzing the running time of the discrete Newton’s algorithm.

In Section 2, we provide a more careful analysis of Goemans’ upper bound on G(n).
Then, in Section 3, we present results for some exact values of G(n, k) for small values
of n, obtained by a brute-force algorithm. We show a dependency between G(n, 1) and
G(n, n − 1), as well as some bounds regarding them in Section 4. In Section 5, we provide
a general inequality for different values of G(n, k). Further, we show a good lower bound
for G(n, n

2
) in Section 6, derived using Goldmann’s lower bound construction. In Section 7

we consider the behavior of the longest geometrically increasing sequences when a is chosen
from a normal distribution, which might help us gain some insight into the discrete Newton’s
algorithm.

2 A more careful analysis of Goemans’ upper bound on G(n)

For completeness, we present a more careful analysis of Goemans’ upper bound on G(n).
Radzik [1] cited Goemans’ upper bound G(n) ≤ O(n log n) as personal communication, and

1We say that a set function f : 2V → R on some ground set V is submodular if for all A,B ⊆ V , we have
f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B). The extended polymatroid associated to a submodular set function
f : 2V → R is defined to be the polyhedron P (f) =

{
x ∈ RV : x(S) ≤ f(S) ∀S ⊆ V

}
.
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included its proof. However, in Goemans’ talk at Tutte’s 100th Distinguished Lecture Series
at the University of Waterloo, this bound was mentioned as G(n) ≤ 1

2
n log2 n + o(n log n)

but no proof of this more careful analysis of Goemans’ bound was found in the literature.
In this section, we give this more careful analysis using Goemans’ polyhedral technique

combined with a direct application of Hadamard’s inequality. We start with the definition
of a polyhedron.

Definition 2.1. A polyhedron is a subset of Rn that can be represented by a finite system
of linear inequalities. More formally, a polyhedron in Rn is defined as

P = {x ∈ Rn | Ax ≥ b},

where A is an m × n real-valued matrix, x ∈ Rn, b ∈ Rm, and ≥ denotes element-wise
inequality.

A useful well-known property of polyhedra that we need for our proof is the following.

Lemma 2.1 (Rephrasing of Theorem 5.7 in [5]). Consider a polyhedron

P = {x ∈ Rn | Ax ≥ b}.

Extreme points of P are vectors in P which satisfy

A′x = b′

for some nonsingular n × n submatrix A′ of A and an n-dimensional subvector b′ of b. If
P does not contain a line, then it has at least one extreme point.

By embedding subsets in the Euclidean space as characteristic vectors and by scaling,
we can represent subsets as a matrix, formulating Problem 1.1 in the following equivalent
version.

Problem 2.2. For a given n ∈ N, what is the largest m ∈ N for which we can choose a
vector a = (a1, a2, . . . , an) ∈ Rn and a matrix A ∈ {0, 1}m×n with ri being the vector of the
ith row of A, such that

• r⊤1 a = 1,

• r⊤i a ≥ 2r⊤i−1a for all i ∈ {2, . . . ,m}?

In addition, we need the following version of Hadamard’s inequality.

Lemma 2.3 (Hadamard’s inequality, see [6]). If an n × n matrix M with entries (mij) is
such that |mij| ≤ B for all i and j, then

| detM | ≤ Bnnn/2.

Now we are ready to give a more careful analysis of the upper bound. As in [1], we give
an upper bound in a slightly more general problem in which we can add or subtract any
component of a in a subset.
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Theorem 2.4. Let a = (a1, a2, . . . , an) be an n-dimensional vector with nonnegative compo-
nents, and let y1,y2, . . . ,ym be vectors from {−1, 0, 1}n. If for all i = 1, 2, . . . ,m− 1,

0 < 2y⊤
i+1a ≤ y⊤

i a,

then m ≤ 1
2
n log2 n+O(n).

Proof. Consider the following polyhedron:

P = {c = (c1, c2, . . . , cn) ∈ Rn :

(yi − 2yi−1)
⊤c ≥ 0 for all i ∈ {2, 3 . . . ,m},

y⊤
1 c = 1,

ci ≥ 0 for all i ∈ [m]}

(3)

Let A and b denote the coefficient matrix and the right-hand side vector of the system
defining polyhedron P , respectively. Note that P is nonempty because it contains the vector
a/(y⊤

1 a).
From polyhedral theory (Lemma 2.1), we know that there exists a vector c∗ = (c∗1, . . . , c

∗
n)

such that there is an n×n nonsingular submatrix A′ of A and a subvector b′ of b such that
A′c∗ = b′. Then, from Cramer’s rule,

c∗i =
detA′

i

detA′ ,

where matrix A′
i is obtained from A′ replacing the ith column with b′. Due to the constraints

of our task |aij| ≤ 3 for every entry aij in the matrix A. Therefore, by Lemma 2.3,

| detA| ≤ 3nnn/2

(in [1] a weaker bound on the determinant is used). Hence.

c∗i =
detA′

i

detA′ ≤ 3nnn/2.

Therefore, we have for all j ∈ [m]

yj
⊤c∗ ≤ n3nnn/2,

and

1 = y⊤
1 c

∗ ≤ 1

2m−1
y⊤
mc

∗ ≤ 1

2m−1
n3nnn/2.

Hence,

m ≤ 1 + log2(n3
nnn/2) =

1

2
n log2 n+ (log2 3)n+ log2 n+ 1 =

1

2
n log2 n+O(n).

Theorem 2.4 implies the following more constrained version for Problem 2.2.
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Corollary 2.4.1. Let a = (a1, a2, . . . , an) ∈ Rn and let y1,y2, . . . ,ym be vectors from {0, 1}n.
If for all i = 1, 2, . . . ,m− 1,

0 < 2y⊤
i+1a ≤ y⊤

i a

then m ≤ 1
2
n log2 n+O(n).

In Problem 2.2, using the fact that we cannot have both −1 and 1 as coordinates in the
same component of two vectors, we can improve the factor before the term n, making the
bound G(n) ≤ 1

2
n log2 n+ n+ o(n).

Corollary 2.4.2. For all n, it holds that G(n) ≤ 1
2
n log2 n+ n+ o(n).

When the vector a is nonnegative, it is commonly known, that the maximal length of
a geometrically increasing sequence is n, or G(n, 0) = n. We include the proof of this for
completeness.

Theorem 2.5 (folklore). For all n, it holds that G(n, 0) = n.

Proof. For any i > 1,

a(Ti) ≥ 2a(Ti−1) ≥ a(Ti−1) + 2a(Ti−2) ≥ · · · ≥
i−1∑
j=1

a(Tj) + a(T1) >
i−1∑
j=1

a(Tj).

This means that Ti contains an element that is not contained in T1, T2, . . . , Ti−1. Therefore,
there can be no more than n sets. An easy construction that makes the bound tight is ai = 2i

and Ti = {i} for all i ∈ [n].

3 Exact values of G(n, k) for small values of n

To gain some insight into the problem, we used a brute-force algorithm to compute some
values for G(n, k) for small values of n. As a is not bounded, we are not able to iterate over
all possible values of a. In our brute-force algorithm, we fix n and m and iterate over all
possible sequences of subsets of [n]. Then we construct the polyhedron as in (3) and check
if it is nonempty in polynomial time. The results of the execution are presented in Table 1.

n
k

0 1 2 3 4 5

1 1 0
2 2 2 0
3 3 4 3 0
4 4 5 5 5 0
5 5 ≥ 7 ≥ 7 ≥ 7 ≥ 6 0

Table 1: Values of G(n, k) achieved by the brute-force algorithm

From Table 1, we observe that G(n, 0) = n for small values of n, and that in each column
the values increase as n increases. Furthermore, we observe that, in each row, the values
increase up to some point and decrease as k increases.
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4 The cases of G(n, 1) and G(n, n− 1)

We observe an interesting connection between G(n, 1) and G(n, n − 1), stated in the
following theorem.

Theorem 4.1. For all n, it holds that G(n, n− 1) ≤ max(G(n, 0), G(n, 1)).

Proof. Let n ∈ N. Let a = (a1, . . . , an) ∈ Rn and T1, . . . , Tm ⊆ [n] such that a has exactly
n − 1 negative components and T1, . . . , Tm form a geometrically increasing sequence with
respect to a. Without loss of generality, a1 > 0 and a2, . . . , an < 0. Since all a(Ti) > 0 for
all i ⊆ [n], then 1 ∈ T1, . . . , Tm. Let Si = Ti \ {1} and Fi = {2, . . . , n} \ Si. Then

a(Ti) = a1 + a(Si).

Let
p = a2 + a3 + · · ·+ an.

Then,
a(Si) = a({2, . . . , n})− a({2, . . . , n} \ Si) = p− a(Fi).

Hence, a(Ti) ≥ 2a(Ti−1) is equivalent to

a1 + p− a(Fi) ≥ 2(a1 + p− a(Fi−1)).

Let x = a1 + p. We consider two cases.

Case 4.1.1 Suppose x ≥ 0. Then for i ∈ {2, . . . ,m},

−a(Fi) ≥ x− 2a(Fi−1)

or equivalently,
−a(Fi) + 2a(Fi−1) ≥ x.

Since x ≥ 0, then F1, . . . , Fm ⊆ {2, . . . , n} is a geometrically increasing sequence
of sets with respect to −a. Since −a2, . . . ,−an > 0, this means that m ≤
G(n− 1, 0) = n− 1 ≤ G(n, 0).

Case 4.1.2 Suppose x < 0. Then we have for i ∈ {2, . . . ,m}

x− a(Fi) ≥ 2(x− 2a(Fi−1)) for i ∈ {2, . . . ,m}.

This shows that, with respect to the vector b = {x,−a2, . . . ,−an}, the sequence
of sets Q1, Q2, . . . , Qm, where Qi = Fi ∪ {1} for all i ∈ [m], is geometrically
increasing. Therefore, from our original construction with n− 1 negative com-
ponents in a, we give a new construction with one negative component in the
vector and a geometrically increasing sequence of sets having the same length.
This implies m ≤ G(n, 1).

This completes the proof.
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Next, we give lower bounds on G(n, 1) and G(n, n− 1) that are greater than n, showing
that even one negative component can give us some flexibility in constructing geometrically
increasing sequences.

Theorem 4.2. For all n, it holds that G(n, 1) ≥ n + ⌊log2(n − 1)⌋ and G(n, n − 1) ≥
n+ ⌊log2(n− 2)⌋.

Proof. We prove the theorem by constructing a suitable vector a = (a1, . . . , an) ∈ Rn.
For k = 1, let a1 = −2n−1 + 1 and ai = 2n−1 + 2i−2 − 1 for i ∈ {2, . . . , n}. Let

Ti = {1, i+ 1} for i ∈ [n− 1],

Ti = {2, 3, . . . , 2i−n + 1} for i ∈ {n, . . . , n+ ⌊log2(n− 1)⌋}.

Then for i ∈ [n− 1],

a(Ti) = a1 + ai+1 = −2n−1 + 1 + 2n−1 + 2i−1 − 1 = 2i−1.

Furthermore,
a(Tn) = a2 = 2n−1 + 20 − 1 = 2n−1

and for i ∈ {n, . . . , n+⌊log2(n−1)⌋} the sums a(Ti) are increasing as a2, . . . , an is increasing
and every sum has twice as many elements as the preceding sum.

For k = n−1, there is an analogous construction. Namely, let a′ = (a([n]),−a2, . . . ,−an)
and let

T ′
i = ([n] \ Ti) ∪ {1} for i ∈ [n− 1]

T ′
i = [n] \ {2, . . . , 2i−n + 2} for i ∈ {n, . . . , n+ ⌊log2(n− 2)⌋}

Note that a(Ti) = a′(T ′
i ) for i ∈ [n − 1] and the remaining sets are also geometrically

increasing. Then, T ′
i is a geometrically increasing sequence with respect to a′.

The intuition behind the construction was to fix the sets first so that the first n can be
computed as in a system of equations.

Theorem 4.2 implies that G(n, 1) > n = G(n, 0). Therefore, in Theorem 4.1, we can
replace max(G(n, 1), G(n, 0)) with G(n, 1), getting the following corollary.

Corollary 4.2.1. For any n, it holds that G(n, n− 1) ≤ G(n, 1).

Since the lower bound for G(n, 1) and G(n, n − 1) seems to be tight, at least for small
n, a natural step is to try to get an upper bound that is O(n). We provide a proof of the
bound G(n, 1) ≤ O(n) + log2(A), where A is the maximal absolute value of the components
in a.

Theorem 4.3. For any n, it holds that G(n, 1) ≤ O(n) + log2A, where A is the maximal
absolute value of the components in a when we scale them to integers.
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Proof. Let a = (a1, . . . , an) ∈ Rn. Without loss of generality, let a1 < 0 and a2, . . . , an > 0.
Then, let S ⊆ {2, . . . , n} be the set of indices of components of a which are larger than −a1.
If we add to a the elements aj + a1 for j ∈ S, we can swap every sum containing a1 and
some aj with j ∈ S, with a sum containing the element aj + a1. Therefore, this is a sum of
only positive numbers and we can bound the number of these sets by n. This means that to
prove a bound of at least O(n), we can, without loss of generality, assume a2, . . . , an < −a1.
Therefore, the maximal absolute value is A = |a1|. For Ti ∈ [n], we can bound

1 ≤ a(Ti) ≤ −na1.

Therefore, we can have at most log2(−na1) = log2 n+log2A sets. In total, we have G(n, 1) ≤
O(n) + log2 n+ log2A ≤ O(n) + log2A.

5 An inequality for G(n, k)

Furthermore, we establish a connection between the value of G(n, k) and those of G(n+
1, n− k) and G(n+ 1, n− k + 1). Similar bounds can help us gain insight into the behavior
of the function. Our result is the following.

Theorem 5.1. For any given n and k, it holds that G(n, k) ≤ max(G(n+ 1, n− k), G(n+
1, n− k + 1)).

Proof. The proof resembles that of Theorem 4.1. We aim to demonstrate that for any vector
a ∈ Rn with k negative components, we can construct a vector in Rn+1 with n−k or n−k+1
negative components, along with a geometrically increasing sequence with the same length
as the one constructed from a.

Without loss of generality, let a = (a1, . . . , an) ∈ Rn be such that a1, . . . , ak < 0 and
ak+1, . . . , an > 0, and let the sets T1, . . . , Tm ∈ [n] form a geometrically increasing sequence
with respect to a.

Let Si = Ti∩{1, . . . , k} and let Fi = Ti∩{k+1, . . . , n} for all i ∈ [m]. Then Ti = Si∪Fi

and Fi ∩ Si = ∅ for all i ∈ [m]. Therefore,

a(S1) + a(F1), . . . , a(Sm) + a(Fm)

form a geometrically increasing sequence. Let x = a1 + · · · + ak and y = ak+1 + · · · + an.
Define S ′

i = {1, . . . , k} \ Si and F ′
i = {1, . . . , k} \ Fi for every i ∈ [m]. Then

a(Si) + a(Fi) = x− a({1, . . . , k} \ Si) + y − a({k + 1, . . . , n} \ Fi)

= (x+ y)− a(S ′
i)− a(F ′

i ).

Let b = (−a1, . . . ,−an, x+ y). Then we have

(x+ y)− a(S ′
i)− a(F ′

i ) = bn+1 + b(S ′
i) + b(F ′

i ).

Define T ′
i = S ′

i∪F ′
i ∪{n+1} for all i ∈ [m]. Then T ′

1, . . . , T
′
m from a geometrically increasing

sequence with respect to b. Since b ∈ Rn+1 and b has n−k or n−k+1 negative components,
depending on the sign of x+ y, then either

G(n, k) ≤ G(n+ 1, n− k),
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or
G(n, k) ≤ G(n+ 1, n− k + 1).

This completes the proof.

6 A lower bound on G(n, n2 ) for n a power of 2

In this section, we analyze the Fourier-analytic approach construction of Goldmann (1993,
see [3]) using Hadamard matrices, giving a lower bound on G(n, n

2
) when n is a power of 2.

Theorem 6.1. Let n = 2p for some p ∈ N. Define Q as in the proof of the lower bound
by Goldmann (1993, see [3]), to be the Hadamard matrix of order n. Let the vector b =
(b1, . . . , bn) ∈ Rn be such that bi+1 ≥ 2pbi > 0 for i = 2, . . . , n − 1 and b1 > 0. Then, the
vector a ∈ Rn, such that Qa = b has exactly n

2
negative values.

Proof. We will prove the statement by induction on p.
For p = 1, i.e., n = 2, the Hadamard matrix of order 2 is

Q =

[
1 1
1 −1

]
.

Therefore, a1 + a2 = b1 and a1 − a2 = b2. The solutions to this are a1 = (b1 + b2)/2 and
a2 = (b1−b2)/2. Observe that b2 ≥ 2b1 and b2 ̸= 0, therefore a1 is positive and a2 is negative.

Assume we have proved the statement for every p ∈ [t] for some t ∈ N. Consider the case
for t+ 1. We can use Sylvester’s construction [7] to derive the Hadamard matrix Q of order
n using the Hadamard matrix Q′ of order n

2

Q =

[
Q′ Q′

Q′ −Q′

]
.

Since
Qa = b,

using row subtractions and additions we get

[
Q′ 0
0 0

]
a = c =

b1 + bn/2+1
...

bn/2 + bn

 ,

and [
0 0
0 Q′

]
(−a) = d =

−b1 + bn/2+1
...

−bn/2 + bn

 .

Let x = (a1, . . . , an/2) and y = (−an/2+1, . . . ,−an), we have

Q′x = c

9



and
Q′y = d.

Note that for all i ∈ {2, . . . ,m}

ci = bi + bn/2+i ≥ 2t+1bi−1 + 2t+1bn/2+i−1 ≥ 2t(bn/2+i−1 + bi−1) = 2tci−1,

and
di = −bi + bn/2+i ≥ (2t+1 − 1)bn/2+i−1 ≥ 2t(bn/2+i−1 − bi−1) = 2tdi−1.

By the inductive assumption, both x and y have n
4
negative components, therefore a has n

2

negative components.

The vector a, used in the lower bound construction of Goldmann [3] is the same as in
Theorem 6.1. This implies the following corollary.

Corollary 6.1.1. For n being a power of 2, it holds that G(n, n
2
) ≥ 1

2
n log2 n−O(n log log n).

7 The case when a is drawn from a normal distribution

Randomized inputs sometimes lead to nice mathematical behavior. Therefore, it is in-
teresting to study the case when a is chosen from a normal distribution, which might shed
some light on a better analysis of the discrete Newton’s algorithm when the input is normally
distributed. Concretely,

Problem 7.1. For a given n ∈ N, we define GN (n) to be the expected value of the largest
number m ∈ N where for a = (a1, . . . , an) ∈ Rn chosen from a normal distribution N =
N (0, σ2I) there exist T1, . . . , Tm ⊆ [n] such that a(Ti) > 0 for all i and a(Ti+1) ≥ 2a(Ti) for
all i ∈ [m− 1]. What does the function GN (n) look like?

To gain insight into the problem, we conducted a computational experiment using a
computer program to analyze the asymptotic behavior of GN (n). For the sake of efficiency,
the algorithm rounds the values chosen for the components of a, which allows the usage of
the knapsack algorithm. The obtained results are plotted in Figure 1. From Figure 1, we
observe that GN (n) grows at a similar rate as log2 n. Therefore, we conjecture that it grows
logarithmically.

Conjecture 7.2. For all n, it holds that GN (n) = O(log n).

8 Conclusion and discussion

In this work, we examined the problem of determining the length of the longest geomet-
rically increasing sequence. In particular, we analyzed what happens in the case of fixing
the number of negative values we use. We obtained some exact values of G(n, k) for small
values of n (n ≤ 4) using a computer program. We then presented a connection between
G(n, 1) and G(n, n − 1), as well as a lower bound for both of them. Further, we showed a
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Figure 1: Results from the numerical experiment using a computer program with σ ∈
{10000, 1000, 100}.

connection between different values of G(n, k), as well as a lower bound for G(n, n
2
). Fur-

ther, we conducted a computational experiment, analyzing the problem with the condition
that the numbers are drawn from a normal distribution. It led us to conjecture that the
function grows logarithmically in this case. For future work, we can try to prove a general
lower bound on G(n, k) that is generalized by the lower bound on G(n, 1) and G(n, n− 1).
Furthermore, it seems from the computational results that the lower bound for G(n, 1) and
G(n, n− 1) is tight. Therefore, we conjecture that G(n, 1) is asymptotically linear.

Conjecture 8.1. For all n, it holds that G(n, 1) = O(n).

For a fixed n, it seems that with k increasing, G(n, k) is also increasing up to some point
(G(n, 0) = n, G(n, 1) > n) and then is decreasing (G(n, n−1) > n, G(n, n) = 0). Therefore,
we may state this as a conjecture.

Conjecture 8.2. For all n, there exists t, such that

G(n, k) ≥ G(n, k − 1) for all k ∈ {2, . . . , t}

and
G(n, k) ≥ G(n, k + 1) for all k ∈ {t, . . . , n− 1}

It would be interesting to analyze this behavior and potentially find a good bound for
some interval of k’s. Therefore, we give this conjecture.
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Conjecture 8.3. There exist numbers 0 < c1 < c2 < 1, c3 ∈ R>0, such that for every n, for
every k ∈ [c1n, c2n] ∩ N,

G(n, k) ≥ c3n log2 n.

Another direction worth considering is analyzing ratios different from 2. In particular,
the values between 1 and 2 might be interesting, because as the factor tends to 1, the length
of the longest geometrically increasing sequence tends to 2n− 1, while when the factor tends
to 2, the length is O(n log n).

Lastly, similarly to considering the case when a is chosen from a normal distribution, it
will be interesting to consider the case when it is arbitrarily chosen.
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