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Abstract

A millimetric droplet can bounce indefinitely on a vibrating fluid bath and will self propel
along the surface influenced by its underlying wave field, provided the vibration frequency
is below the Faraday threshold. Every impact generates a new wave which adds towards the
piloting wave field and simultaneously the previously generated wave kernels decay over time.
Hence the dynamical system accumulates a total memory which correlates to the strength of
the exerted wave force. We focus on the case where the droplet is also subject to a harmonic
potential and its motion is constrained to a line. By analyzing the limit cycles in cases
of high memory, we observe wave dominated trajectories resembling a growth-relaxation
process that has been reported in previous literature studies in the absence of a spring force.
Heuristically, as we progress towards chaotic behavior, we extend this type of behavior to
unsteady walking dynamics where the quantized trajectory resembles a random walk. We
numerically implement a variational method for approaching periodic orbits in a general flow,
which we use for determining the nature of unstable periodic orbits arising in a random walk.
We thus provide an alternate understanding of this behavior as transitioning between the
neighborhoods of these unstable periodic orbits. Finally, we quantify the stability of these
by calculating their Floquet multipliers, and we relate their magnitude to the emerging
multimodal statistics in of the stationary points.

Summary

A droplet can jump indefinitely on a vibrating fluid bath without merging, and, when slightly
nudged, it will initiate a horizontal movement across the surface of the fluid. Each impact
generates a new wave in the total wave field and so its walking behaviour is modulated by the
particle’s surrounding waves, leading to either stable or completely chaotic trajectories. In
the chaotic regime, this particle-wave system is known for exhibiting quantum mechanical-
like behavior on a macroscopical scale. Examples of such behavior are quantum tunneling,
emerging statistics and quantized trajectories, all of which have been observed experimen-
tally. We work on the special case where the droplet is under the influence of a central force
and its motion is restricted to one line. By implementing an algorithm for finding unstable
periodic orbits and quantitatively assessing their stability, we seek to provide an alternative
understanding for random walk like behavior that arises.



1 Introduction

1.1 Pilot wave theory

In 1997, Qian and Law [1] experimentally showed that a droplet may float without coa-

lescenece on a vertically vibrating bath of fluid. At each impact of the droplet on the bath, a

capillary wave propagates away from the droplet, exciting a field of standing Faraday waves

[2], and thus adding to the existing field [3]. The first macroscopic realization, however, was

not completed until 2005 by Couder et al. [4]: an oil droplet may walk across the surface of a

vertically vibrating fluid bath, propelled by its own wave field. Figure 1 displays this physi-

cal phenomena. This horizontal movement has been understood because, for larger vibration

frequency, the bouncing droplet is destabilized and thus even small nudge in the droplet’s

position will lead to the bouncing state being unstable and initiating a horizontal movement.

The droplet, now called a walker, will now initiate a horizontal movement walking across the

surface of the bath, propelled at each impact by the slope of its associated wave field, being

directed by the pilot waves it generates. As the frequency of the bath vibration increases, so

does the decay time of the Faraday waves. This yields a path memory from previous droplet

impacts [5], leading to a macroscopic particle–wave interaction.

(a) (b)

Figure 1: (a) An oil droplet bouncing on a vibrating fluid bath (b) A self-propelled droplet walking
laterally across the surface of a bath, resonant by it’s interaction with the Faraday field. [6]
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Perrard et al. [7] developed an experimental technique for encapsulating a small quan-

tity of ferrofluid within a droplet, which enabled them to impart external forces to walkers

directly. For instance, by applying a vertical magnetic field with a radial gradient, they were

able to examine walker motion in a central harmonic potential. This was particularly inter-

esting because, at moderate memory, a variety of periodic and quasi-periodic states arose

when ranging over a large quantity of spring constants, including circles, lemniscates, tre-

foils and papillons. These periodic orbits were characterized in terms of their mean radius

and angular momentum, and found to be roughly quantized in both quantities. In the high-

memory regime, the walker was seen to switch intermittently between a number of these

weakly unstable periodic orbits, shadowing them. In this sense, the chaotic motion can be

considered as a superposition of periodic states. In other cases, such as in the Lorenz system,

there also exists a classification of the UPO’s [8].

1.2 Unstable periodic orbits in dynamical systems

Unstable periodic orbits (UPO’s) play an important role in the analysis of a chaotic

dynamical system; unstable periodic orbits can be seen as an islet of order in a dynamical

system [9]. However, direct analysis of the transitions between them is tedious and often

not precise because of the chaotic nature of the system. In fact, it wasn’t until 2022 that

an actual analysis of the shadowing in the Lorenz system was completed [10]. Hence, most

research is actually done on the asymptotical statistics of the system.

In the frame of pilot mechanics, researching the underlying UPO’s is a recurrent field of

study. For instance, Oza et al. [11] discuss footprints of periodical orbits in classical pilot

wave dynamics, justifying qualitatevely quantized behavior by unstability of periodic orbits.

Further, Harris and Bush [6] have studied experimentally the multimodal statistics that arise

within complex trajectories and quantized behaviour of the radius of curvature in a rotating

frame. Their data is displayed in Figure 2.
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(a) (b) (c)

Figure 2: (a) Observed stable circular trajectory, in a rotating frame (b) Complex observed tra-
jectory at the same rotation but with increased forcing, in the same rotating frame (c) Histogram
of local radius of curvature [6]

In our study, we investigate a particle constrained in a one-dimensional wave under the

influence of a harmonic potential. Motivated by the experimental data displayed in Figure

2 we also set foot on determining the periodic orbits in our dynamical system. We link the

stability of periodic orbits to emerging multimodal statistics.

The rest of the paper is organized as follows: In Section 2 we set up the model we are

analyzing. In Section 3 we describe the numerical tools we have implemented in order to

perform our analysis. In particular, we discuss a variational method for determining periodic

orbits, and then we discuss numerical implementation of Floquet theory for quantifying the

instability. In Section 4 give an overview of the system’s behaviour in terms of the memory,

and in Sections 5 and 6 we present our data analysis.

2 A generalized Stroboscopic model

Trajectories of a droplet in a classical pilot wave system have usually been studied under

the influence of a propelling wave force and an opposing drag force. Here, we consider an

idealized one dimensional pilot wave system in which a droplet of mass m is propelled by
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the guiding local slope of the wave field and resisted by drag force of coefficient D, with an

added harmonic potential centered at the origin.

The stroboscopic approximation given by Oza et al. [12] is the framework of our numerical

investigation. The resulting model, as published in 2013, is displayed in Definition 2.1 in its

full generality.

Definition 2.1 (Oza et al. [12]). Assume a droplet of mass m is being propelled by it’s self

generated pilot wave. Then, its position xp can be approximated by the following integro-

differential equation

m
d2xp(t)

dt2
+D

dxp(t)

dt
= − F

TF
∇
∫ t

−∞

H(xp(t)− xp(s))

|xp(t)− xp(s)|
· (xp(t)− xp(s))e

−(t−s)
TFMe ds.

Here F is the wave force averaged out over an oscillation period of length TF , H denotes

the wave kernel and Me the path memory.

In our study we project Definition 2.1 onto one dimension and add a central harmonic

potential. The governing equations then read as

m
d2xp
dt2

+D
dxp
dt

= −F ∂h(x, t)

∂x

∣∣∣∣
x=xp

−Kxp, (1)

h(x, t) =
1

TF

∫ t

−∞
cos(x(t)− x(s))e

− (t−s)
TFMe ds, (2)

where we have made the analysis considerably more treatable by choosing the wave kernel

H to be the cosine function [13].

Equations 1 and 2 can be understood visually from the horizontal force balance given in

Figure 3. In 2013, both Oza et al. [12] and Molaçek and Bush [14] concluded that we can

neglect the droplet’s vertical movement by averaging out over the droplet’s vertical bouncing

period. Thus, the total wave height h(x, t) in Equation 2, is calculated through continuous

integration of the multiple waves that are generated by the particle after every impact.

In the spirit of nondimensionalization [12], we now define a non dimensional parameter

space in a rescaled time frame. The main definitions are the following.

Definition 2.2 (Inertia). The inertia k0 of the droplet is defined as k0 = m
Dτ0
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(a) (b)

Figure 3: (a) Horizontal force balance of the droplet at time t and position xp(t). The forces that
are captured are: an attractive spring force kxp(t) centered at the origin, a drag force of modulus
Dv in the same direction of the velocity and the x - component of the wave force averaged over
one jump. (b) Experimental setup by [15]. A droplet of radius R bounces on a fluid bath vibrating
at a frequency of f

Definition 2.3 (Memory). The memory of system 4 is defined as Γ = 1−µ, where µ = 1
Me

Definition 2.4 (Spring constant). The spring constant is defined as k = K
D

Under Definitions 2.2, 2.3 and 2.4, we combine Equations 1 and 2 yielding

κ0ẍp(t) + ẋp(t) = −kxp(t) +

∫ t

−∞
sin(xp(t)− xp(s))e−µ(t−s)ds. (3)

The definition of each of k, k0, µ which will adopt a physical significance later on.

Recently Durey [16] transformed an expression similar to Equation 3 into a system of

three differential equations. Following his footsteps, we motivate the following definitions.

Definition 2.5 (Local wave amplitude).

a(t) := h (x(t), t) =

∫ t

−∞
cos (xp(t)− xp(s)) e−µ(t−s)ds,

Definition 2.6 (Local wave slope).

b(t) :=
∂a

∂x
= −

∫ t

−∞
sin(xp(t)− xp(s))e−µ(t−s)ds,
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By differentiating Equation 2.5 and 2.6 with respect to time, substituting ẋ = v and b into

3 and writing h(x, t) in terms of a(t) and b(t), we rewrite the integro-differential Equation in

terms of the position x, the velocity v, the local wave amplitude a and the local wave slope

b in the following manner.

ẋ = v

v̇ = − 1

k0

(kx+ v + b)

ȧ = 1− µa+ vb

ḃ = −va− µb,

(4)

In what follows we consider the spring constant k to be positive. The case of a repelling

spring force is left for further exploration elsewhere.

3 Numerical methods

We can write our system in vector form

dy

dt
= f(y) = Df(y0, t)y

where we have defined

y(t) =



x

v

a

b


and Df(y0, t) :=



0 1 0 0

− k
k0

− 1
k0

0 − 1
k0

0 b(t) −µ v(t)

0 −a(t) −v −µ


,

for the initial condition y0 = y(0)

In our research, we numerically solve Equations (4) by using a Runge Kutta 4 method. We

wish to understand chaotic trajectories from the fundamental periodic orbits in the system.

For this we need to i) determine the periodic orbits, and then ii) we need to quantify their

stability.

Subsection 3.1 explains the numerical method employed for step 1, and subsection 3.2

presents the background for a floquet multiplier analysis. To find an initial guess when
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scouting of these periodic orbits, we take the Poincaré section S through v = 0. If we require

the position to satisfy x(T + t) = x(t), we know by Rolle’s theorem that there must be a

moment in which ẋ = v = 0. Hence every periodic orbit must cross v = 0, an thus this

section S is so powerful.

3.1 Variational principles for locating periodic orbits in differen-

tial equations

Consider a general dynamical system of the form dy
dt

= v(y). In this method, we start

with an orbit which is approximately periodic and toggle it to approach the actual periodic

orbit O in the limit t→∞. We require an initial guess for:

• A set of n points {s1, . . . , sn} on a differentiable curve ỹ ∈ L such that parametrized

under s ∈ [0, 2π], such that

ỹn = ỹ(tn).

The orbit O in the form s ∈ {s1, . . . , sn} ∈ [0, 2π]n such that ỹ(sn) = ỹn.

• A scaling factor λ = Tp
2π

for the proportion between the periods of O and L. This

ensures that the loop increment in L is proportional to it’s counterpart in O.

Denote by ṽ the velocity ṽ(ỹ) = dỹ
ds

. Using a Newton–Raphson descent [17, 18], we alter ỹ

so that ṽ points in the same direction as v(y). Analytically, we are monotonically decreasing

the cost functional

F 2(ỹ) =
1

2π

∮
L(τ)

(ṽ(ỹ)− λv(ỹ))2 dỹ,

and thus in the limit t→∞, we get L = O.

This can be done by deforming the parametrized loop ỹ(s, τ) ∈ L according to the partial

differential equation

∂2ỹ

∂τ∂s
− λA∂ ỹ

∂τ
− v∂λ

∂τ
= λv − ṽ, (5)

where τ denotes a ficticious time deformation parameter.
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3.2 Quantifying the unstability of periodic orbits

Now that we are able to numerically find the periodic orbits, we are interested in using

them for understanding the chaotic trajectories. For this we first quantify how unstable

they are. To assess the stability of a periodic orbit O with period T , we are interested in

understanding a trajectory starting at an initially perturbed vector y0 + ∆y0 for a point

y0 ∈ O. We appeal to Lemma 3.1, the proof of which can be found in [19].

Lemma 3.1. Let ∆y(t) = f t(y0 + ∆y0) − f t(y0), and define the Jacobian matrix Jt by

∆y(t) = Jt∆y0. Then

dJt
dt

= Df(y0, t)Jt. (6)

Given y0 ∈ O, the matrix Df(y0, t) is periodic, and thus we get an instance of Floquet

theory.

Formal framework of Floquet theory

Following [19, 20], We briefly discuss some basic Floquet theory needed to quantify the

stability of periodic orbits in a dynamical system.

Theorem 3.2 (Floquet’s theorem). Let A be a T -periodic function that is continuous on all

of R. If Φ is a fundamental matrix solution to an equation of the form ẋ = A(t)x, then Ψ

can be written in the form:

Ψ(t) = P (t)eQt

where P is a T -periodic matrix and Q is a constant matrix. Further,

det Ψ(x) = det Ψ(x0) exp

(∫ x

x0

TrA(ξ)dξ

)
.

Given that Ψ(T + t) = eQTΨ(t), we are motivated to define the following.

Definition 3.1 (Monodromy matrix). The monodromy matrix is the normalized fundamen-

tal solution and satisfies

Ψ̇(t) = A(t)Ψ(t) and Ψ(0) = In.

8



The effect of the monodromy matrix is hence characterised by the following two.

Definition 3.2 (Floquet multipliers). The Floquet multipliers or characteristic multipliers

are defined as the eigenvalues λ1, λ2, . . . , λn of Ψ(T ), or equivalently, the eigenvalues of eQT .

Definition 3.3 (Floquet Exponents). A Floquet exponent is a µ ∈ C such that eµT is a

Floquet multiplier.

Finally, we also present the following result that can be found in [19].

Lemma 3.3. If a nonlinear system has a periodic solution, then one of it’s Floquet multi-

pliers is exactly 1. Conversly, if Ψ(t) has an eigenvalue of 1 then there is an orbit of period

t containing y0.

Numerical calculation of Floquet multipliers

In order to find the Floquet multipliers it is necessary to solve Equation 6 for Jt, and

then evaulate the eigenvalues after a period has elapsed. A standard way of Equation 6 is

by solving for the trajectory and the Jacobian at the same time. In our case, we would be

solving the following system of 20 differential equations:

y(tn+1) = Df(y0, tn)y(tn) and Jtn+1 = Df(y0, tn)Jtn .

This is useful because we only require an initial point an the period as inputs, and for fairly

stable orbits we get accurate results. However, when the orbit is considerably unstable, the

numerical error propagates quickly and leads to inaccurate solutions. We link this uncertainty

to to floating point error and truncation error. Thus we propose a new numerical method

for calculating the Floquet multipliers of JT . by solving a time-dependent equation.

The output of the variational method described in Section 3.1 is in the form

({y1,y2, . . . ,yn}, λ) for yi ∈ R4, 1 ≤ 1 ≤ n

where the points {y}1≤i≤n lie close to a periodic orbit O. Since we have our periodic orbit on

a grid, it is wise to use the Adams-Bashforth Two-Step method [21] for solving Equation 6.To
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find the time steps ∆tn, we can approximate them using a reverse Adams-Bashforth method

by solving for the already known trajectory as follows:

yn+1 − yn =

(
3

2
f(yn, tn)− 1

2
f(yn−1, tn−1)

)
∆tn,

where we determine both vectors yn+1 − yn and 3
2
f(yn, tn)− 1

2
f(yn−1, tn−1) from the input,

so we can get close to ∆tn by averaging out the proportions between each components of

the vectors in the left and right hand side.

4 The route to chaos

As shown in Definitions 2.2, 2.3 and 2.4, the system parameters k, k0, µ can be altered

relative to those corresponding to the physical fluid system. In this section, we will give an

overview of the dynamics that arise when solving Equations 4 over asymptotic values of Γ

in the parameter space. We begin by studying the effect on the stabilty of the fixed point,

and then we qualitatively assess the behaviour of the particles trajectory for large memory.

4.1 Linear stability analysis of the bouncing state

In Lemma 4.1 we state the bouncing state of the dynamical system where the point does

not move. We begin our investigation by characterizing its stability in terms of the memory

parameter Γ.

Lemma 4.1. The dynamical system displayed in Equation 4 has a unique fixed point at

(xp, v, a, b) = (0, 0, 1
1−Γ

, 0).

The following result, which is not surprising given the definition of µ, allows us to restrict

0 < 1 < µ.

Lemma 4.2. For µ > 1 every trajectory eventually converges to the bouncing state.
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Proof. Consider the Lyapunov function

E(x, v, a, b) =
1

2

(
kx2 + k0v

2 + µ(a− 1

µ
)2 + µb2

)
.

Differentiation with respect to time t yields

dE
dt

= −
(
(v + b)2 + (µ2 − 1)b2 + (µa− 1)2

)
for trajectories following Equations 4. When µ ≥ 1, then dE

dt
≤ 0 with equality only at the

bouncing state. Thus it will be a global attractor.

We follow the linear stability analysis taken by Oza et. al [12] on two dimensional pilot

wave dynamics by applying a perturbation x(t) = xeq(t) + εx1(t)H(t) to the stationary

solution. Here H(•) is the Heaviside function introduced to apply a perturbation only for

t > 0, and ε is assumed small.

Taking the Laplace transform of Equation 3 yields:

L(x1)[s] =
k0sẋp(0)− k0xp(0)− xp(0)

s2k0 + s+ k − 1
µ

+ 1
µ+s

. (7)

Evidently xeq is stable if x1(t) decays to zero. Therefore, any exponential growth rates r

must have negative real part, which implies that the Laplace transform of frequency s should

never diverge when Re(s) > 0. Thus, we assess the stability of xeq by studying the poles

s ∈ C of L(x1)[s]. Equation 7 has a singularity at s = −µ < 0. The rest are given by the

roots of the polynomial:

p(s) := (µ+ s)

(
s2k0 + s+ k − 1

µ
+

1

µ+ s

)
= µk0s

3 + (µ2k0 + µ)s2 + (µk + µ2 − 1)s+ µ2k,

Clearly p always has a negative root in (0, 1), so it suffices to study the limit case when

the other two roots are conjugate imaginary roots. It is straightforward to check that this

happens exactly when k0µ
3 + µ2 − µ(k0 − k) − 1 = 0. This means that for every k, k0 > 0,

there exists a µs(k, k0) such that for µ > µs(k, k0) the fixed point is stable, and is unstable

otherwise.

Note that − 1
k0µ
p(s) is in fact the characteristic polynomial of matrix Df(y0, t).
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4.2 Wave dominated behaviour

To better understand the effect of memory on the droplet’s behaviour, in Figure 5 we

plot x against v (first column), a against b, second column, and x against t (third column)

for constant inertia and spring force and increasing memory. For low values of memory Γ, we

report behaviour akin to that of a simple harmonic oscillator, and as we increase memory

the particles trajectory is more strongly influenced by oscillations in it’s corresponding wave

field as the exerted wave force becomes stronger. Eventually the limit cycles destabilize and

culminate in a random walk like behaviour.

In the rest of our study, we restrict our attention to irregular walking displayed in Figure

5 (j), (k), (l). Before moving on, we provide a physical explanation for quantized behaviour

in the particles position, which we illustrate in a simple case. The limit cycle in Figure 4

elucidates the concept of a growth-relaxation process. This behaviour can be explained phys-

ically as follows: the particle’s velocity is close to zero for a long period of time, during which

the wave builds up beneath the particle. Eventually the wave force exceeds the drag force,

pulling the droplet towards a neighbouring minimum in the wave field. Here the confining

surrounding of the waves cause the droplet to slow down significantly. This process then

repeats.

(a) (b) (c)

Figure 4: Numerical solutions for the parameter case (k, k0, µ) = (6, 1, 0.005) plotted over 400 time
steps. (a) Position x(t) (blue) against local wave amplitude a(t) (red) over a scaled time period
(b) Position x(t) (blue) against local wave slope b(t) (red) over a scaled time period (c) Velocity v
against position x.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Numerical solutions plotting position over 400 time steps (a), (b), (c) (k, k0, µ) =
(0.1, 2, 0.9) (d), (e), (f) (k, k0, µ) = (0.1, 2, 0.3) (g), (h), (i) (k, k0, µ) = (0.1, 2, 0.23), (j), (k), (l)
(k, k0, µ) = (0.1, 2, 0.2).
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5 Results

To study random walk like behavior, we seek a parameter regime characterised by tra-

jectories where walkers switch between UPO’s chaotically. Hence, we study the cases of low

inertia k0 and high Γ.

We now present a sample of our results, having applied the tools discussed in Section 3.

5.1 The case (k, k0, µ) = (0.04, 0.6, 0, 22)

(a) (b) (c)

(d) (e) (f)

Figure 6: Numerical solution for the case (k, k0, µ) = (0.04, 0.6, 0, 22), all plots being x against v
(a) Whole trajectory (b) Orbit O1, (b) Orbit O2, (b) Orbit O3, (b) Orbit O4, (b) Orbit O5

Periodic orbit Floquet multipliers Largest Floquet multiplier
O1 7.1997, 1.0003, 0.9985, 4.3684e-15 7.1995
O2 7.1997, 1.0003, 0.9985, 4.3684e-15 7.1995
O3 4.0760, 1.0078, 0.9998, 7.9876e-14 4.0760
O4 4.0760, 1.0078, 0.9998, 7.9876e-14 4.0760
O5 15.0802, 1.0491, 1.1749, -5.8714e-15 15.0802

Table 1: Numerically computed Floquet multipliers using the method discussed in Subsection 3.2
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5.2 The case (k, k0, µ) = (0.05, 0.6, 0.22)

(a) (b) (c)

(d) (e) (f)

Figure 7: Numerical solution for the case (k, k0, µ) = (0.05, 0.6, 0, 22), all plots being x against v.
(a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6

Periodic orbit Floquet multipliers Largest Floquet multiplier
P1 3.2793, 1.0476, -0.2780, -1.2571e-13 3.2793
P2 2.4471, 0.9999, 0.9983, 1.6773e-12 2.4471
P3 2.4471, 0.9999, 0.9983, 1.6773e-12 2.4471
P4 3.0235, 1.0050, 0.9992, 3.7006e-13 3.0235
P5 3.0235, 1.0050, 0.9992, 3.7006e-13 3.0235
P6 6.0027, 1.0032, 1.0032, -1.0620e-15, 6.0027

Table 2: Numerically computed Floquet multipliers using the method discussed in Subsection 3.2

5.3 Emergence of multimodal statistics

Taking the Poincaré section at v = 0 yields a set of points y(ti) such that v(ti) = 0. In

Figure 8 we display the probability density distribution of x(ti).

In figure 9 we we can see that as time steps are increased from 50000 to 500000, the
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(a) (b)

Figure 8: Probability distribution functions position of turning points in a random walk like
behavior (a) (k, k0, µ) = (0.04, 0.6, 0.22) (b) (k, k0, µ) = (0.05, 0.6, 0.22)

distribution statistical distribution, which suggests that we must restrict our analysis to low

time steps.

(a) (b) (c)

Figure 9: Probability distribution function of turning points in amn irregular walking regime at
(k, k0, µ) = (0.05, 0.8, 0.25). Plotted over (a) 50000 time steps (b) 100000 time steps (c) 500000
time steps

6 Discussion

Overall, we have been successful in understanding the effect of memory on both chaotic

and non chaotic behavior, and hence providing a physical explanation for the transition

between these kinds of behavior. Further, we have reported strong speed oscillations in the

irregular walking regime which we justify appealing to the oscillatory nature of Equation 3.
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In contrast to Durey’s investigation of classical one dimensional pilot wave dynamics without

a spring force [16], we have not observed any diffusive tendencies as time increases.

We have observed a plethora of UPO’s during our numerical investigation, their shape

and distribution being strongly dependent on the parameter values. Unfortunately, there

does not seem to be a criteria to determine how many speed oscillations each shadowed

periodic orbit has. Also, note that the values for the Floquet multipliers displayed in ?? and

2 are in line with Theorem 3.2 and Lemma 3.3, as we always get a multiplier fairly close to

one an another one close to 0.

The main result we report from our stability analysis can be compressed in the following

heuristic: The multimodal statistical tendencies strengthen when the Floquet multipliers of

the shadowed unstable periodic orbits are low.

The major weak point in our study is that our approach to finding periodic orbits is not

exhaustive. Given that we are implicitly using the trajectory to construct our guesses for

any periodic orbit, if an orbit is too unstable it won’t close, and hence it will not be detected

by our algorithm. For instance, in Figure 10 we display a section of the droplet’s trajectory

in a chaotic walking regime.

Figure 10: Position against velocity plot for the parameter case (k, k0, µ) = (0.05, 0.6, 0.22)

Continuing our Floquet multiplier stability analysis, future study could have a more local
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perspective on transitions between unstable periodic orbits.

7 Practical takeaways

Nowadays, pilot wave dynamics are being studied as an interpretation of quantum me-

chanics, with a stringent focus on bridging quantum entanglement to dynamics of multiple

droplets bouncing in the same wave field.

This is motivated from de Broglie’s interpretation based upon particle-wave interaction,

given that there is a wave function interacting with the droplet’s movement. This non-

Markovian dynamical system has a fundamental similarity with particle mechanics, bridging

classical and quantum mechanics. The analogy has been explored through a series of exper-

iments and theoretical explorations, summarized in Bush’s review [22]. An example is Eddi

et al. [23] experimental investigation of a walker traveling over a submerged barrier, which

demonstrated that walkers exhibit similar features of quantum tunneling on a macroscopic

scale. Also, Couder and Fort [24] reported that walkers exhibit single particle diffraction and

interference when passing through apertures between submerged barriers; by sending single

walkers toward a submerged barrier with openings on the scale of the guiding wavelength,

it was observed that as the drop passed through the slit its trajectory was deviated. The

distortion of its pilot wave against the boundary of the slit provides a macroscopic version

particle diffraction.

Our research provides insight into this analogy, providing a consistent framework for the

emergence of quantized behavior in the particle’s trajectory. By studying the multimodal

statistical distribution, we motivate seeking for a relationship between pilot wave mechanics

under an added spring force and the quantum harmonic oscillator.
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