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Abstract

The isoperimetric inequality of a region Ω ⊂ Rn is an inequality com-
paring Ln−1(∂Ω) to Ln(Ω). Many symmetrization methods have been
developed to prove this, including Steiner SL(Ω) and circular Circ(Ω)
symmetrizations. The underlying idea in these symmetrizations is that
they preserve volume but reduce perimeter or surface area, which can
be shown using calculus of variations. We present an elementary proof
without using calculus of variations on perimeter reduction of a region in
R2 after circular symmetrization. We then show that the diameter of a
region entirely to the right of the y-axis does not increase after circular
symmetrization if the intersection of the region with an arc of radius r is
either a single arc or empty for all r > 0.

1 Introduction

The isoperimetric problem in R2 asks for the largest area of a subset of R2

with a fixed perimeter. The roots of the isoperimetric problem can be traced
back to Ancient Greece [8]. Pappus of Alexandria knew that this shape is
a circle, but the first rigorous proof of this result was obtained in the 19th
century. In R2, if a simple closed curve γ of length L encloses an area of A, then
4πA ≤ L2. Equality holds if and only if γ is a circle. This can be generalized
to Rn; namely, from Fusco, Maggi, and Pratelli [1], if E ⊂ Rn with n > 2, then

nLn(E)
n−1
n Ln(Bn(1)) 1

n ≤ Ln−1(∂E). Here Ln(E) denotes the n-dimensional
volume of E and Bn(1) denotes the n-ball of radius 1. Yau [9] generalized the
isoperimetic inequality to Riemann manifolds, and later, Yau, Li, and Schoen
[2] generalized it for minimal surfaces.
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Jakob Steiner [6] was a Swiss mathematician who developed Steiner sym-
metrization to show that the circle is the solution to the isoperimetric problem.
Let Ω ⊂ R2 and x = (x1, x2) ∈ R2. Let L = {(x1, 0) : x1 ∈ R} ⊂ R2 be a line.
Let Ωx1

= {x2 ∈ R : (x1, x2) ∈ Ω, x1 ∈ R}, and Ex1
= {x1 ∈ R : |Ωx1

| > 0}.
Then the Steiner symmetrization of Ω about the line L is denoted by SL(Ω)
and is defined as

SL(Ω) = {(x1, x2) ∈ R2 : x1 ∈ Ex1 , |x2| ≤ |Ωx1 |/2}.

(a) A region in R2 and a line L, with sev-
eral line segments contained in the region.
The blue dots represent the center points
of these line segments.

(b) The image of the region after Steiner
symmetrization. Notice that the center
points of the line segments lie on L.

Figure 1: The process of Steiner symmetrization of a region in R2.

The Steiner symmetrization of a region preserves its area, but the perimeter
of the shape does not increase. For more information on Steiner symmetrization,
we refer the reader to [7]. A similar process known as circular symmetrization,
developed by George Pólya and Gábor Szegö [3], also preserves the area of
a shape while not increasing its perimeter. Suppose Ω ⊂ C. The circular
symmetrization of Ω is denoted as Circ(Ω). The arc of radius t in Ω is defined
as Ωt = {θ ∈ [0, 2π] : teiθ ∈ Ω}. If |Ωt|/t ≥ 0, then

Circ(Ω) ∩ {|z| = t} =

{
teiθ : |θ| ≤ |Ωt|

2t

}
.
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Also, 0,∞ ∈ Ω if and only if 0,∞ ∈ Circ(Ω).
The proof of perimeter reduction of a region in R2 after circular symmetriza-

tion uses calculus of variations. We present an elementary proof without using
calculus of variations that the perimeter of the image of a region after circular
symmetrization does not increase. We also show that the diameter, the largest
distance between two points in a region, does not increase if the region is en-
tirely contained to the right of the y-axis and if the region is composed of single
arcs for r > 0.

We define the following notation that we use for the rest of the paper. This
provides a simple way to denote an arc of radius r by using the subtended angle
of the arc to the center of the circle.

Given a radius r > 0 and angles φ ∈ (0, π) and ψ ∈ (−π, π), Sr,ψ,φ denotes
the circular arc of radius r with aperture φ whose center makes an angle ψ to
the x-axis. Also, Sr(0) denotes the circle of radius r. Thus, we say

Sr,ψ,φ = {(r cos(t), r sin(t)) : ψ − φ ≤ t ≤ ψ + φ} .

(a) A trapezoid with arcs of different radii.
The orange dot denotes the center of the
red arc. The dotted line represents the cen-
ters of every arc contained entirely in the
trapezoid.

(b) The image of the trapezoid after circu-
lar symmetrization. Notice that the center
of the red arc indicated by the orange dot
lies on the x-axis.

Figure 2: The process of circular symmetrization on a trapzeoid.
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2 An Elementary Proof of Perimeter Reduction

In this section, we present an elementary proof of perimeter reduction for re-
gions with one arc of intersection after circular symmetrization, formally stated
in the following theorem.

Theorem 2.1. Let Ω ⊂ R2 be a closed and connected region given by the
continuous parametrizations x⃗(r) = ⟨x(r), y(r)⟩ and u⃗(r) = ⟨u(r), v(r)⟩ such
that y(r) ≥ v(r) for all r ∈ [r0, rf ], where r is the radius from the origin. Then
L1(∂Ω) ≥ L1(∂ Circ(Ω)).

We provide the set-up of the proof. Then, we show a sequence of lemmas that
reduces the problem, showing sufficient and necessary conditions to prove the
general theorem of perimeter reduction for regions with multiple arcs of inter-
sections after circular symmetrization. This is formally stated in the following
theorem.

Theorem 2.2. Let Ω ⊂ R2 be a closed and connected region. Then L1(∂Ω) ≥
L1(∂ Circ(Ω)).

2.1 Set-up

Consider an annular region R between two arcs with radii r1 and r2, respec-
tively, each centered at the origin with respective central angles φ1 and φ2 to
the x-axis. Suppose that the center points of these arcs make angles ψ1 and ψ2

to the x-axis. This is shown in Figure 3. Without loss of generality, assume
ψ1 = 0. Thus, we have the arcs Sr1,0,φ1 and Sr2,ψ2,φ2 . Let m and l be the
lengths of the top and bottom line segments as shown in Figure 4.

To obtain the circular symmetrization of R, we rotate Sr2,ψ2,φ2
along Sr2(0)

such that ψ2 = 0. Let m′ and l′ be the lengths of the line segments after
circular symmetrization. The circular symmetrization of R, denoted by Circ(R),
is shown in Figure 4.

We find the lengths of m, l, m′, and l′ using the Law of Cosines. We have

m =
√
r21 + r22 − 2r1r2 cos(φ1 − φ2 + ψ2),

l =
√
r21 + r22 − 2r1r2 cos(φ1 − φ2 − ψ2),

m′ = l′ =
√
r21 + r22 − 2r1r2 cos(φ1 − φ2).

The lengths of the arcs bounding R do not change. Thus, it is sufficient and
necessary to show that the sum of the lengths of the line segments decrease.
That is,

m+ l ≥ m′ + l′. (1)

For simplicity, we let α = r21 + r22, β = 2r1r2, and γ = φ1 − φ2 for the rest
of the paper.
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(a) The red arc of radius r1 has an aperture φ1,
meaning it opens at an angle φ1 in each direction
from the x-axis.

(b) The central black line segment is at an angle
ψ2 from the x-axis. The blue arc of radius r2 has
aperture φ2.

Figure 3: The set-up for the region R between two arcs.
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(a) The green line segments are formed by the end-
points of these two arcs.

(b) The second arc is now centered on the x-axis.
The new lengths of the line segments are m′ and l′.

Figure 4: The transformation after circular symmetrization.
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2.2 Reducing the Problem

Now we present a lemma that is equivalent to Inequality (1).

Lemma 2.3. Inequality (1) is equivalent to

4 cos(γ)

(
α

β
− cos(γ)

)
≥

(
1− cos2(γ)

)
(1 + cos(ψ2)) . (2)

Proof. Squaring both sides of Inequality (1) yields in

m2 + 2ml + l2 ≥ (m′)
2
+ 2m′l′ + (l′)

2
.

We notice that m2 + l2 ≥ (m′)
2
+ (l′)

2
because

2α− 2β cos(γ) cos(ψ2) ≥ 2α− 2β cos(γ).

Then, we have m2+ l2− (m′)
2− (l′)

2
= 2m′l′− 2ml ≥ 0. Expanding both sides

with some rearrangements of terms, we have

α− β cos(γ) (2− cos(ψ2))

≤
√
α2 − 2αβ cos(γ) cos(ψ2) + β2 cos(γ + ψ2) cos(γ − ψ2).

Squaring both sides, we obtain

α2 − 2αβ cos(γ) (2− cos(ψ2)) + β2 cos2(γ) (2− cos(ψ2))
2

≤ α2 − 2αβ cos(γ) cos(ψ2) + β2 cos(γ + ψ2) cos(γ − ψ2)

Using the trigonometric identity

cos(γ + ψ2) cos(γ − ψ2) = cos2(γ) cos2(ψ2)− sin2(γ) sin2(ψ2),

we reduce the inequality to

4α

β
cos(γ) (cos(ψ2)− 1) ≤ 4 cos2 (cos(ψ2)− 1)− sin2(γ) sin2(ψ2).

Finally, using the trigonometric identity sin2(γ) = 1− cos2(γ), we arrive at

4 cos(γ)

(
α

β
− cos(γ)

)
≥

(
1− cos2(γ)

)
(1 + cos(ψ2)) ,

as required. ■
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We also present the following theorem that allows x(r), u(r) ≤ 0.

Theorem 2.4. Let Ω be bounded by the continuous parametrizations x⃗(r) =
⟨x(r), y(r)⟩ and u⃗(r) = ⟨u(r), v(r)⟩ for y(r) ≥ v(r) and all r ∈ [r0, rf ]. Let ψ(r)
be the angle of the center of Sr(0) ∩ Ω to the x-axis. Then

lim
r2→r1

|ψ(r2)− ψ(r1)| = 0. (3)

Proof. The arcs under consideration are Sr,ψ(r),φ(r). To prove (3), it suffices to
show that the functions r 7→ ψ(r) and r 7→ φ(r) are continuous functions of
r. Let θ(r) be the angle subtended by Sr,ψ(r),φ(r) and let θt(r) be the angle of
the line segment connecting the origin to x⃗(r) from the x-axis. By definition,
θ(r) = 2φ(r). Then we have

cos(θ(r)) =
x⃗(r) · u⃗(r)

r2
=
x(r)u(r) + y(r)v(r)

r2
and cos(θt(r)) =

x⃗(r) · e⃗1
r

=
x(r)

r
.

Because ψ(r) = θt(r)− θ(r)
2 = θt(r)− φ(r), we have

ψ(r) = arccos

(
x(r)

r

)
− 1

2
arccos

(
x(r)u(r) + y(r)v(r)

r2

)
and

φ(r) =
1

2
arccos

(
x(r)u(r) + y(r)v(r)

r2

)
,

which are continuous because∣∣∣∣x(r)u(r) + y(r)v(r)

r2

∣∣∣∣ ≤ 1 and

∣∣∣∣x(r)r
∣∣∣∣ ≤ 1.

Hence the result. ■

Theorem 2.4 allows x(r), u(r) ≤ 0 because ψ(r1)−ψ(r2) becomes arbitrarily
close for r1 − r2 sufficiently close.

2.3 Necessary and Sufficient Conditions from Forbidden
Pictures

If the line segments of length m and l intersect the circle of radius r1, as
shown in Figure 5, then the region R is ambiguous. This ambiguity comes from
whether the part of the green line segment contained in Sr1(0) is a part of the
boundary of R. Let η be the angle of the green line segment from the horizontal
line, and let τ be the angle of the tangent vector of the circle at the point from
the horizontal line. To constrain the line segments, the size of η needs to be less
than the size of τ . That is, |η| ≤ |τ |. We have two cases to consider: the case
for the bottom green line segment of length l and the top green line segment of
length m, as shown in Figure 6.
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Lemma 2.5. The inequality

r1 ≤ r2 cos(γ) cos(ψ2) (4)

implies that the line segments of lengths m and l does not intersect Sr1,0,φ1

twice.

Proof. We first consider the line segment of length l. We begin with |η| ≤ |τ |.
To get the inequality in terms of angles, we observe that

tan(η) =
r2 sin(ψ2 − φ2) + r1 sin(φ1)

r2 cos(ψ2 − φ2) + r1 cos(φ1)
and tan(τ) =

cos(φ1)

sin(φ1)
.

Thus, tan(η) ≤ tan(τ), and after simplification, we obtain

r1 ≤ r2 cos (ψ2 + γ) . (5)

The line segment of length m is similar. We begin with |η| ≤ |τ |, and we obtain

r1 ≤ r2 cos(ψ2 − γ). (6)

The result follows from adding Inqualities (5) and (6). ■

We now present a sufficient condition for Inequality (2).

Lemma 2.6. The inequality

2 cos2(γ) cos2(ψ2) + 2− 4 cos2(γ) cos(ψ2) ≥ cos(ψ2)
(
1− cos2(γ)

)
(1 + cos(ψ2))

(7)
is sufficient for Inequality (2) to be satisfied.

Proof. Let ρ = r2/r1. Then
α

β
=

1 + ρ2

2ρ
.

If we define f(ρ) = α/β, then f(ρ) is increasing for ρ > 1 because 1 + ρ2 = 2ρ
when ρ = 1 and ρ2 > ρ for ρ > 1. Also,

ρ ≥ ρmin :=
1

cos(γ) cos(ψ2)

after manipulating Inequality (4). Substituting f(ρ) into Inequality (2) results
in

4 cos(γ) (f(ρ)− cos(γ)) ≥
(
1− cos2(γ)

)
(1 + cos(ψ2)) .

Because f(ρ) is increasing for ρ > 1, it suffices to show that the minimum of
the left-hand side is at least as big as the right-hand side. That is,

4 cos(γ) (f(ρmin)− cos(γ)) ≥
(
1− cos2(γ)

)
(1 + cos(ψ2)) .

Substituting this minimum value of ρmin yields the result. ■
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Figure 5: In both cases, a green line segment intersects the red arc twice. This
makes the region R between the two arcs and line segments ambiguous.
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Figure 6: The constraint |η| ≤ |τ | is necessary to avoid the green line intersecting
the arc of radius r1 twice.
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2.4 Proof of Theorem 2.1

We now present the following lemma.

Lemma 2.7. If r1 < r2 cos(γ) cos(ψ2) and cos(γ), cos(ψ2) > 0, then m + l ≥
m′ + l′.

Proof. We need to prove that Inequality (7) is true. Then by Lemma 2.6, we
also show Lemma 2.3 which implies the result. Inequality (7) simplifies to(

3 cos2(γ)− 1
)
cos2(ψ2)−

(
3 cos2(γ) + 1

)
cos(ψ2) + 2 ≥ 0. (8)

We need to show that Inequality (8) is true. This is true when cos(ψ2) = 1.
Then assume that cos(ψ2) ̸= 1. We start with the inequalities cos(ψ2) < 1 and
3 cos2(ψ2)−1 < 2. This results in 2 > cos(ψ2)

(
3 cos2(γ)− 1

)
. This is equivalent

to 2 + cos(ψ2) > 3 cos2(γ) cos(ψ2). The following inequalities are equivalent.

1− cos(ψ2)

1− cos(ψ2)
+ (1 + cos(ψ2)) > 3 cos2(γ) cos(ψ2).

1

1− cos(ψ2)
+ (1 + cos(ψ2)) >

cos(ψ2)

1− cos(ψ2)
+ 3 cos2(γ) cos(ψ2).

1 +
(
1− cos2(ψ2)

)
> cos(ψ2) + 3 cos2(γ) cos(ψ2) (1− cos(ψ2)) .

Moving all the terms in the right-hand side to the left-hand side yields Inequality
(8). ■

With Lemma 2.7, we are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let x⃗(r) = ⟨x(r), y(r)⟩ and u⃗(r) = ⟨u(r), v(r)⟩ for y(r) ≥
v(r) and r ∈ [r0, rf ]. Given any partition P ([r0, rf ]) = {r0 < r1 < · · · < rN},
let

F (P) =

N∑
j=1

(∥x⃗(rj)− x⃗(rj−1)∥+ ∥u⃗(rj)− u⃗(rj−1)∥).

Also, let X⃗(r) and U⃗(r) be the parametrizations of the curves x⃗(r) and u⃗(r)
after circular symmetrization. Let

G(P) =

N∑
j=1

(∥∥∥X⃗(rj)− X⃗(rj−1)
∥∥∥+

∥∥∥U⃗(rj)− U⃗(rj−1)
∥∥∥).

By Lemma 2.7, each term in the sum of F (P) is at least as big as the respective
term in the sum of G(P) for j = 1, . . . , N . Thus, F (P) ≥ G(P). From [5],
given a partition P = {a = t0 < t1 < · · · < tk = b}, the arc length of a
continuous parametrized curve α : [a, b] → R2 is given by

sup
P

{
k∑
i=1

∥α(ti)− α(ti−1)∥

}
.
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From [4], suppose f : R → R and g : R → R. If f ≥ g, then sup f ≥ sup g.
Then we have

supF (P) ≥ supG(P),

which proves the result. ■

2.5 Proof of Theorem 2.2

Now suppose we have a region with multiple arcs of intersections. That
is, suppose an arc of radius r1 intersects the region in n separate arcs of in-
tersections Sr1,ψ1(r1),φ1(r1), Sr1,ψ2(r1),φ2(r1), . . . , Sr1,ψn(r1),φn(r1). Also, suppose
an arc of radius r2 intersects the region in n separate arcs of intersections
Sr2,ψ1(r2),φ1(r2), Sr2,ψ2(r2),φ2(r2), . . . , Sr2,ψn(r2),φn(r2). This is shown in Figures
7 and 8.

Figure 7: The arcs of intersections for a circle of radius r1.
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Figure 8: The arcs of intersection for a circle of radius r2.

We rotate these arcs of radius r2 such that the centers of these arcs are at
ψn(r1). Thus, the arcs of radius r2 are now Sr2,ψ1(r1),φ1(r2), Sr2,ψ2(r1),φ2(r2), . . . ,
and Sr2,ψn(r1),φn(r2). By Theorem 3.1, the sum of the perimeters of the arcs of
intersection Sr2,ψ1(r1),φ1(r2), . . . , Sr2,ψn(r1),φn(r2) is less or equal to the perimeter
of the arcs of intersection Sr2,ψ1(r2),φ1(r2), . . . , Sr2,ψn(r2),φn(r2).

Then, we replace the n arcs of radius r1 with a single arc Sr1,0,
∑n

i=1 φi(r1).
Moreover, we replace the new arcs of radius r2 with a single arc Sr1,0,

∑n
i=1 φi(r2).

With this, we can now present the proof of Theorem 2.2.

Proof of Theorem 2.2. Let f : X → R, where X is a convex subset of a real
vector space. Then f is convex if and only if for all 0 ≤ t ≤ 1 and for all
x1, x2 ∈ X,

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (9)

The length of a line segment of the symmetrized region between two arcs of
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radius r1 and r2 with difference between the aperture γ is

f(γ) =
√
r21 + r22 − 2r1r2 cos(γ). (10)

To show that the perimeter decreases after symmetrization for n arcs, we have
to prove

n∑
j=1

f(γj) ≥ f

 n∑
j=1

γj

 . (11)

Since

nf

 n∑
j=1

γj
n

 ≥ f

 n∑
j=1

γj

 ,

it suffices to show that

n∑
j=1

f(γj) ≥ nf

 n∑
j=1

γj
n

 . (12)

To prove (12), we want to show that f(γ) is convex. Our basis of induction
is that f(γ) is convex for two variables. We find d2f/dγ2 to be

d2f

dγ2
=

r1r2√
r21 + r22 − 2r1r2 cos(γ)

(
cos(γ)− sin2(γ)

r21 + r22 − 2r1r2 cos(γ)

)
≥ 0. (13)

From our basis of induction, we know that

f

(
1

2
γ1 +

1

2
γ2

)
≤ f(γ1) + f(γ2)

2
.

Now assume that f(t1x1+· · ·+tn−1xn−1) < t1f(x1)+· · ·+tn−1f(xn−1). We aim
to show that f(t1x1+· · ·+tnxn) < t1f(x1)+· · ·+tnf(xn). Let s = t1+· · ·+tn−1

and

y =
t1x1 + · · ·+ tn−1xn−1

s
.

Then we have

f(t1x1 + · · ·+ tnxn) = f(sy + tnxn)

< sf(y) + tnf(xn)

= sf

(
t1
s
x1 + · · ·+ tn−1

s
xn−1

)
+ tnf(xn)

< s

(
t1
s
f(x1) + · · ·+ tn−1

s
f(xn−1)

)
+ tnf(xn)

= t1f(x1) + · · ·+ tnf(xn).

Thus, f is convex. By the convexity of f , the perimeter of Sr1,0,
∑n

i=1 φi(r1)

and Sr1,0,
∑n

i=1 φi(r2) is less than or equal to the sum of the perimeters of
Sr2,ψi(r1),φi(r2) and Sr1,ψi(r1),φi(r1) for i = 1, . . . , n. Therefore, the perimeter
of any region with any arcs of intersection does not increase after circular sym-
metrization. ■
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3 Diameter Decreases

In this section, we present a proof that circular symmetrization decreases
the diameter of a region entirely to the right of the y-axis. We assume that the
region is composed of single arcs for r > 0. To do this, we present two lemmas
concerning the distance between two arcs. First, we note that the diameter of
Ω is the maximum distance between two points contained in Ω. Even though
the two points attaining this distance must be in Ω, the line segment connecting
the two points does not necessarily have to be contained in Ω if Ω is not convex.

Lemma 3.1. Let 0 < r1 < r2 and 0 < φ1, φ2 < π/2, the maximum
distance d(Sr1,0,φ1

, Sr2,0,φ2
) is attained by pairs of opposite endpoints, which

are the pair (r1 cos(φ1), r1 sin(−φ1)) and (r2 cos(φ2), r2 sin(φ2)) and the pair
(r1 cos(φ1), r1 sin(φ1)) and (r2 cos(φ2), r2 sin(−φ2)).

Proof. By definition, we have

Sr1,0,φ1
= {(r1 cos(t), r1 sin(t)) : |t| ≤ φ1} and

Sr2,0,φ2
= {(r2 cos(s), r2 sin(s)) : |s| ≤ φ2} .

For any t ∈ [−φ1, φ1] and s ∈ [−φ2, φ2], the distance between (r1 cos(t), r1 sin(t))
and (r2 cos(s), r2 sin(s)) satisfy

|(r1 cos(t), r1 sin(t))− (r2 cos(s), r2 sin(s))|2 = r21 + r22 − 2r1r2 cos(t− s).

To maximize this distance, we must minimize cos(t − s). Since t ∈ [−φ1, φ1]
and s ∈ [−φ2, φ2] with 0 < φ1, φ2 < π/2, we have the difference s− t ∈ (−π, π),
where cosine is decreasing. Thus, the distance is maximized when t = −φ1 and
s = φ2 or when t = φ1 and s = −φ2. ■

Lemma 3.2. Suppose 0 < r1 < r2. For angles 0 < φ1, φ2 < π/2 and angles
|ψ1 − ψ2| < π/2 we have that

d(Sr2,ψ2,φ2
, Sr1,ψ1,φ1

) ≥ d(Sr2,0,φ2
, Sr1,0,φ1

). (14)

Thus, if two arcs of different radii are aligned such that the centers of the arcs
make the same angle to the x-axis, then the distance will not increase.

Proof. We use a similar set-up to that of Section 2.1. Without loss of generality,
assume ψ1 = 0. Then the two arcs Sr1,ψ1,φ1

and Sr2,ψ2,φ2
along with the

line segments connecting the endpoints form an annular region. Instead of
considering the green line segments in Figure 4, we construct the diagonal line
segments which connects the top of each arc to the bottom of the other, as shown
in Figure 9. For simplicity, let σ = φ1 + φ2. The lengths of these segments are√
α− β cos(σ + ψ2) and

√
α− β cos(σ − ψ2). When we symmetrize, let ψ2 = 0,

so the length of the diagonal segments are
√
α− β cos(σ). By our assumption

that 0 < φ1, φ2 < π/2, we know |σ| ≠ π. It follows that one of cos(σ + ψ2) and
cos(σ−ψ2) is smaller than cos(σ). This means that one of d1 and d2 is smaller.
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The maximum distance d(Sr2,ψ2,φ2 , Sr1,0,φ1) exceeds both of these lengths, so
we have

d(Sr2,ψ2,φ2 , Sr1,0,φ1) ≥ max
(√

α− β cos(σ + ψ2),
√
α− β cos(σ − ψ2)

)
≥

√
α− β cos(σ)

= d(Sr2,0,φ2
, Sr1,0,φ1

).

In the last equality, we use Lemma 3.1. ■

With these lemmas, we present the following theorem.

Theorem 3.3. Let Ω ⊂ R2 be a compact region to the right of the y-axis such
that for any radius r > 0, the circle Sr(0) intersects Ω in a single arc if the
intersection is nonempty. Then diam (Circ(Ω)) ≤ diam(Ω).

Proof. Let x, y ∈ Circ(Ω) be points that attain the maximum distance. In other
words, d(x, y) = diam(Circ(Ω)). We consider two cases according to whether or
not x and y are at the same distance from the origin.

First, suppose that x and y are not the same distance from the origin.
Say, without loss of generality, that ∥x∥ = r1 < ∥y∥ = r2. Let Sr1,ψ1,φ1 =
Sr1(0) ∩ Ω and Sr2,ψ2,φ2 = Sr2(0) ∩ Ω. These arcs are rotated to Sr1,0,φ1 and
Sr2,0,φ2

. Because x and y attain the maximum distance between any two points
in Circ(Ω), they also attain the maximum distance between any two points on
Sr1,0,φ1

and Sr2,0,φ2
. By Lemma 3.2, we have

d(Sr2,0,φ2
, Sr1,0,φ1

) ≤ d(Sr2,ψ2,φ2
, Sr1,ψ1,φ1

).

Finally, by definition of diameter, we have diam(Ω) ≥ d(Sr2,ψ2,φ2
, Sr1,ψ1,φ1

). It
follows that

diam(Circ(Ω)) = d(x, y) = d(Sr2,0,φ2
, Sr1,0,φ1

)

≤ d(Sr2,ψ2,φ2
, Sr1,ψ1,φ1

)

≤ diam(Ω).

Then, consider the case that ∥x∥ = ∥y∥ = r. In this case, x and y are on the arc
Sr,0,φ, which was rotated during circular symmetrization from an arc Sr,ψ,φ. If
we denote x̃ and ỹ as the preimages of x and y under this rotation, respectively,
then we have

diam(Circ(Ω)) = d(x, y) = d(x̃, ỹ) ≤ diam(Ω),

as required. ■
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Figure 9: For the case of diameter of a region, we connect the segments con-
necting pairs of opposite endpoints.
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